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Abstract Cinnamic acid, an ubiquitous alpha beta

unsaturated acid, upon hydroxylation yields p-hydroxy

cinnamic acid or p-coumarate, a plant mono phenol. Being,

precursor for the production of various di (lignans),

polyphenols (lignins) and also substituted derivatives, it

seems to be an important aromatic chemical in growth and

development of plants. This aromatic chemical substance

synthesized primarily by almost all forms of plants,

seemingly involves in the regulation of various physio-

logical processes. The presence of this ubiquitous plant

alpha beta unsaturated acid and its derivatives have been

adopted by plants for various mechanisms. An effort

towards the consolidation of these is made here.
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Cinnamic acid

Cinnamic acid (CA) and its hydroxy derivative, synthesized

with aromatic amino acids—phenylalanine and tyrosine—

comprises a large family of organic acid isomers mostly of

plant origin or synthesized in the laboratory or manufactured

industrially. Various flavonoid pigments and polymer tannins

produced primarily due to combinations of cinnamate and

benzoate derivatives are chiefly responsible for imparting

specific colour and flavour to a vintage wine (Jitareanu et al.

2011). The phenolic compound that gives oil of cinnamon its

characteristic odor and flavor is cinnamic acid. CA, also

known as phenylacrylic acid, forms monoclinic crystals, such

as needles or prisms having melting and boiling point of 133

and 300 �C, respectively. By structure the molecule is com-

posed of 9 carbon, 8 hydrogen, and 2 oxygen atoms (Zhiqui

et al. 2003). The phenol mimics the flavor of spice of cinna-

mon (Anslow and Stratford 2000) and also, demands con-

trolled storage conditions. Temperature, light, and pH need to

be kept constant to ensure the quality (Davidson et al. 2005).

The pH is reported to affect the solubility of CA and also the

derived flavonoids. Because of being dissociated, CA is more

soluble in an alkaline environment (higher than its pKa). CA

and its derivatives are reported to have antimicrobial cum

antifungal activities (Davidson et al. 2005; Lone et al. 2014).

It is also reported that it uncouples the energy transducing

membrane thereby stimulates non-specific membrane per-

meability. This allows proton influx across the plasma

membrane (Chambel et al. 1999). CA being a phenol char-

acteristically kills microorganisms like that of a typical phe-

nol or cresol, which are known to affect membrane

permeability and also interfere with enzyme function. This

therefore, also affects the metabolic pathways associated with

energy production (Technology 1998). CA and vanillin might

remain in soil after release from the root of Solanum melon-

gena (egg plant) despite root removal (Chen et al. 2011).

While Ding et al. (2007) and Shuab et al. (2013) reported

autotoxicity due to higher concentrations of CA in the Cu-

curbita ficifolia seedlings (fig leaf gourd) andCucumis sativus

cotyledons. Chen et al. (2011) too reported autotoxicity due to
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high CA concentration in the S. melongena, hence producing

an elevated susceptibility to infections causing disease. CA at

5 mg/L increased the height of plants in Magorana hortensis

and at 10 mg/L significantly increased oil percentage, total oil

yield and sugar content per plant (El-Moursi et al. 2012).

Lower cinnamate concentrations increase in vivo nitrate

reductase activity and total protein content (Singh et al. 1997).

However, higher concentration proved inhibitory. CA is a

plant production promoter, as a lasting-effect fungicide, high

yield, corrosion prevention and freshness preservation of

fruits and vegetables. It has extensive applications, but the

consumption in the domestic market is very small today. With

the development of the aspartame, production and the

expansion of its consumption sectors, the consumption of L-

phenylalanine will become brisk and the CA production will

be promoted. The demand of L-phenylalanine in the world is

around 15,000 tons a year, needing 23,000 tons of CA. The

demand of L-phenylalanine in China is around 2000 tons a

year, needing around 3000 tons of cinnamic acid. The output

of cinnamic acid in China is only less than 1000 tons today

and the deficit has to be bridged by imports. Unfortunately the

cited author has not been able to source such a data for

commerce in India vis-a-vis CA or L-phenylalanine (CNCIC

2006)! Last 10–15 years have seen an accelerated interest of

food scientists in hydroxycinnamates due to their being

components of bioactivity in human diet, since these com-

prise important structural cum functional entities of plant cell

wall. These also act as precursors (p-coumarate, caffeate,

ferulate, sinapate) for synthesis of food flavouring agents.

Norwich (UK) hosted Ferulate ‘98’ conference from July 9 to

11, 1998. There were five sections: hydroxycinnamates in

food—role in nutrition and health; hydroxycinnamates in

plant cell walls; biosynthesis of hydroxycinnamates; enzy-

mology of biosynthesis and degradation; exploitation of

hydroxycinnamates. In their review the then current state-of-

the-art was discussed and provided suggestions for future

research that arose from this conference.

Biosynthesis

Shikimic acid is the base precursor for polyphenols in all

higher plants, this pathway is uniquely restricted to plants,

bacteria and some marine animals (Chen et al. 2006a, b;

Vanholme et al. 2012a, b; Chen et al. 2012) (Fig. 1). Plant

natural products like phenylpropanoids are important for

plant, human and animal health (Dixon and Sumner 2003;

Sharma 2011). Erythrose-4-phosphate and phospho-

enolpyruvate (PEP), both products of the general carbohy-

drate metabolism, enter the shikimate pathway to produce

aromatic amino acids tyrosine, phenylalanine and tryptophan

(Orcaray et al. 2011; Corea et al. 2012). However, it is the

earlier two amino acids which on deamination introduce a

double bond in the non-aromatic part, by enzymes pheny-

lalanine ammonia lyase (PAL) yield cinnamic acid (CA) and

tyrosine ammonia lyase (TAL) which yields p-hydroxy cin-

namic acid directly. Phenylalanine ammonia lyase (PAL:

EC4.3.1.5) qualifies for being first enzyme in the phenyl-

propanoid biosynthesis pathway (Dixon and Lamb 1990).

One more enzyme cinnamate-4-hydroxylase (C4H) converts

cinnamate into p-hydroxycinnamic acid (Shadle et al. 2007;

Bi et al. 2011). Because of double bond in the non-aromatic

chain the molecule exists as trans isomer. The trans to cis

conversion of CA is known to be regulated and modulated

under light in vitro (Kahnt 1967) and root tissues grown in the

dark (Locher et al. 1994). Phenylalanine ammonia lyase

(PAL) seems to regulate the phenylpropanoid synthesis by

feedback inhibition due to trans-CA, since partial conversion

of trans-CA, its derivatives and glucosides to cis isomers by

UV exposure have been shown to quickly reverse PAL

inhibition (Lamb 1979; Mavandad et al. 1990; Sarma et al.

1998). The two main enzymes PAL and C4H, therefore, have

received major attention in phenylpropanoid synthesis, since

these ultimately decide the regulation and modulation of

flavonoids and other mono- and poly-derivatives of cinna-

mates. Observations from experiments using sense and anti-

sense transgenics with known activities of PAL and C4H, and

also after subjected to cDNA manipulations, confirmed the

earlier observation of negative feedback mechanism of trans-

CA on PAL enzyme activity (Blount et al. 2000). Further a

function alluded to trans-CA and phenylpropanoids is that of

being photoreceptors since PAL and C4H activity, as above, is

regulated due to an exposure to UV-B (280–320 nm) irradi-

ation (Braun and Tevini 1993). The CA is subsequently

converted to various substituted cinnamate derivatives like p-

coumaric, ferulic, caffeic and sinapic acids (Gang 2005).

Further substitutions and modifications of these cinnamate

derivatives generate precursors for mono, oligo and

polyphenol synthesis such as tannin and lignin (Hahlbrock

and Scheel 1989; Ralph et al. 2008; Dos Santos et al. 2008;

Zanardo et al. 2009; Vanholme et al. 2010, 2012a, b). The

other sources for the synthesis of diverse basic plant phenolic

structures and also other aromatic structures are through an

acetate pathway (Buchanan et al. 2000). These may be present

individually or in combination with the compounds synthe-

sized through shikimate pathway, e.g., large group of flavo-

noid compounds, chalcones, anthocyanidins/anthocyanins

(Lewis and Yamamoto 1990; Boerjan et al. 2003; Hatfield

et al. 2008).

Cinnamate isoforms

As mentioned earlier UV irradiation converts trans-CA to

cis-CA which is found in both monocots and dicots (Guo

et al. 2011). The biological activity of cis-cinnamic acid

64 Page 2 of 9 Acta Physiol Plant (2016) 38:64

123



(cis-CA) was first reported in 1935. An auxin like activity

viz. to promote growth in the pea split stem curvature test,

the pea segment test and the Avena straight and curvature

tests was ascribed to it (Hitchcock 1935; Haagen-Smit and

Went 1935). Later cis-CA vapors were reported to affect

like that of ethylene. Reason being the presence of double

bond (HC=CH) in its structure and inducing epinasty in

tomato plant (Yang et al. 1999). By employing two mutants

of tomato plant, one being deficient in ethylene biosyn-

thesis and the other being deficient in the ethylene per-

ception and after treating these with the vapour of cis-CA

and ethylene Yang et al. (1999) inferred that the cis-CA

vapour acts independent of ethylene receptor dependent

pathway. They also suggested different action sites for cis-

CA vapour and ethylene. cis-CA, however, has hardly been

sourced from plants in nature, except a report for Alpinia

malaccensis having too meagre amounts to allude to any

meaningful physiological activity. This, therefore, almost

established it for decades a synthetic plant growth regulator

and prompted Zhiqui et al. (2003) to infer that too little

determination was devoted to the study of function and

production of this plant growth regulator in higher plants.

This according to them was, therefore, a cause for very few

studies available on its physiological roles. Zhiqui et al.

(2003) further on showed the presence of natural cis-CA in

Brassica parachinensis also. They reported that the

biosynthesis of cis-CA is not well understood, however,

suggested possible pathways for cis-CA formation viz (1)

sunlight-mediated conversion from trans-CA, (2) sponta-

neous conversion from trans-CA in the presence of an

electron-transfer facilitator, (3) isomerase-mediated con-

version from trans-CA, and (4) direct enzymatic biosyn-

thesis from L-phenylalanine. Both cis-CA and its

glucosides are natural products that could be utilized by

various indigenous soil organisms.

It is thus likely, as per Hiradate et al. (2005), that cis-

CA and its glycosides are worth considering as plant

growth regulators. These they say are inexpensive to

synthesize and also possess a low risk of causing envi-

ronmental toxicity. However, too little information exists

Fig. 1 Biosynthesis and fate of cinnamic acid. DHS 3-deoxy-D-

arabinoheptulosonate 7-phosphate synthase, DQS 3-dehydroquinate

synthase, DHQD 3-dehydroquinate dehydratase, SD shikimate dehy-

drogenase, SK shikimate kinase, EPSPS 5-enolpyruvylshikimate-3-

phosphate synthase, CS chorismate synthase, AT amino transferase,

TAL tyrosine ammonia-lyase, PAL phenylalanine ammonia lyase,

C4H cinnamate 4-hydroxylase, 4CL 4-coumarate: CoAligase, C3H p-

coumarate 3-hydroxylase, CCoAOMT caffeoyl-CoA O-methyltrans-

ferase, CCR cinnamoyl-CoA reductase, F5H ferulate 5-hydroxylase,

COMT caffeic acid O-methyltransferase, CAD cinnamyl alcohol

dehydrogenase, UGT UDP-glucosyltransferase, HCALDH hydroxyl

cinnamaldehyde dehydrogenase, BGLU b glucosidase, CHS chalcone

synthase
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regarding effect of cis-CA on PAL enzymatic activity

regulation and also its immediate derivatives like cis-p-

coumaric acid, cis-ferulic acid, and cis-caffeic acid

(Haskins et al. 1964; Wu et al. 2001; Zhiqui et al. 2003)

have also been found to be occurring naturally. Yang et al.

(1999) demonstrated the biological activities of cis-CA in

plants. Molecular cloning and subsequent expression of

three PAL enzymes (PAL1, PAL2 and PAL4) from Ara-

bidopsis have shown that the enzyme activities of these

are affected in vitro by the cis-CA isomer (Chen et al.

2005). After trans-CA was reported by Rovira (1969)

being secreted from the roots of guayule (Parthenium

argentatum) a strong allelopathic plant, the allelopathic

potential of trans-CA has been further and frequently been

reported (Chon et al. 2003; Weir et al. 2004; Macı́as et al.

2007). trans-CA is one of the sole precursor for the

biosynthesis of all other phenylpropanoids (Dixon 2001).

Horbowicz et al. (2009) reported growth inhibition of

primary root of buckwheat by trans-cinnamic acid. Since

trans-CA isomer can be converted into cis-CA either by

the sunlight or by the presence of an electron-transfer

facilitator, it was suggested that the conversion of trans-

CA into cis-CA is involved in the allelopathic phe-

nomenon. This transformation might explain the reported

synergism between trans-CA and polygodial (Fuzita and

Kubo 2003) and abscisic acid (Li et al. 1993). The trans-

CA treatments have been shown to result in an intracel-

lular release of Ca2? to cytoplasm from the vacuole

leading, therefore, to an elevated [Ca2?] cyt level fol-

lowed by a gradual loss in cell viability of cucumber

roots. These results, taken together, were to suggest that

[Ca2?] cyt homeostatic disturbance is one of the primary

triggers for trans-CA phytotoxicity in cucumber (Yu et al.

2009).

Derivatives

CA and its methyl esters and hydroxyl derivatives are p-

coumaric, ferulic, caffeic and sinapic acids. These consti-

tute important prolifically used components in the indus-

tries of flavors, perfumes, synthetic dyes, and

pharmaceuticals (Schmidt et al. 1999; Gang 2005; Mahesh

et al. 2007; Milkowski and Strack 2010).

p-Coumaric acid

p-Hydroxy-cinnamate being widely distributed throughout

the plant kingdom plays important role in plant–insect

interactions. Their presence has been identified both in

aerial and underground tissues of angiosperms as well as in

ferns (Schaefer and Herrmann 1982; Daayf et al. 1997; Wu

et al. 1999; Dias et al. 2003). Various orchid species are

known to have hydroxyl/methyl-cinnamates, as a compo-

nent of their floral scent. This, therefore, acts as an

attractant for pollinators like euglossine bees (Dodson et al.

1969; Eltz and Lunau 2005). Electro-physiological activity

of hydroxyl/methyl-cinnamates towards detached bee

antennae has been reported by Eltz and Lunau (2005).

Further, leaves of sweet basil (Ocimum basilicum) accu-

mulate high levels of hydroxyl/methyl substituted deriva-

tives of cinnamate.

p-Coumaric acid has been reported to suppress the

expression of T3SS genes of the plant pathogen Dickeya

dadantii, through the HrpX/Y two-component system a

core regulator of the T3SS, thereby suggesting that by

manipulating the expression of the T3SS gene plants can

defend against bacterial pathogens. (Li et al. 2009). The

ectopic expression of the RsTAL gene encoding TAL,

isolated from Rhodobacter sphaeroides (RsTAL) a photo-

synthetic bacterium, when introduced in Arabidopsis

thaliana enhanced the metabolic flux thereby increasing

accumulation of anthocyanins, flavonoids and other

phenylpropanoids (Nishiyama et al. 2010).

Ferulic acid

Methyl-p-coumarate (ferulic acid) shows high levels of

insecticidal cum insect-deterrent (Winkel-Shirley 2002) and

also antifungal properties (Seifert and Unger 1994). Daayf

et al. (1997) suggested that ferulate acts as an anticipin and an

elicitor-inducible phytoalexin in Cucumis sativus. Lipid

peroxidation is a major oxidative process of food spoilage

and ferulic acid inhibits spoilage by inhibiting fatty acid

peroxidation (Kanski et al. 2002). The ferulate esters are

substituted cinnamate intermediates synthesized to be

transported as cell wall components and also suberin

biosynthesis (Mir Derikvand et al. 2008) and of suberins

(Soler et al. 2007; Molina et al. 2009; Rautengarten et al.

2012). In grasses (monocots) the ferulate-polysaccharide

esters have been shown to have well-established roles in

polysaccharide–polysaccharide bridging and lignin–

polysaccharide cross linking (Ralph et al. 1994a, b, 1998,

2010; Hatfield et al. 1999; Grabber et al. 2000). It is, there-

fore, suggested that ferulate esters may be acting as induction

sites for cell wall lignification (Ralph et al. 1995; Grabber

et al. 2002) and are therefore of a common presence in the

rice, wheat, oats and sweet corn (Sri et al. 2003).

Sweet basil (Ocimum basilicum) has interestingly been

shown as an excellent system for investigating the methyl

cinnamate and methyl-p-coumarate (ferulate) production in

plants. The glandular trichomes in basil are metabolically

super active entities producing large amounts of terpenoids,

phenylpropanoids and various fatty acid derivatives (ac-

etate pathway for aromatic compound synthesis) (Iijima

et al. 2004a, b). These secretory trichomes synthesize a
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battery of secondary compounds after diverting interme-

diates from major primary pathways to secondary path-

ways; which include the synthesis of abundance of volatile

compounds also. Several basil lines, producing differential

quantities of compounds through these pathways, espe-

cially volatile and aromatic compounds have been devel-

oped (Iijima et al. 2004a, b). One of the lines known as

cinnamon basil (line MC) is reported for its production of

methyl cinnamate in sizable amounts (Iijima et al. 2004a,

b) by the activity of a novel carboxyl methyl-transferase

designated as p-coumaric/cinnamic acid carboxyl methyl-

transferase (CCMT).

Caffeic acid

Caffeic acid is another naturally occurring cinnamate

derivative reported in many fruits, vegetables, and other

plants, in varying amounts depending upon the plant and its

species (Chung et al. 2004). It is also reported in the coffee

plant (Chung et al. 2004). Caffeic acid is a 5-p-coumarate

or 3, 4 dihydroxy cinnamate and is implicated prominently

in preventing DNA single-strand breakages and cytotoxi-

city (Sestili et al. 2002). Caffeic acid is a metabolite of the

phenylpropanoid pathway found in several plant species,

weed residues (Weir et al. 2004) and soils (Siqueira et al.

1991). It has been reported to induce changes in seedling

emergence (Miller et al. 1991), rhizogenesis (Batish et al.

2008), evapo-transpiration (Blum and Gerig 2005), pho-

tosynthesis (Barkosky et al. 2000) and root growth

(Baleroni et al. 2000). Caffeic acid have also been shown to

inhibit the root length and fresh and dry weights of dif-

ferent plant species, such as soybean seedlings (Bubna

et al. 2011), mung bean (Batish et al. 2008), Arabidopsis

thaliana (Reigosa and Pazos-Malvido 2007), canola

(Baleroni et al. 2000) and pea (Vaughan and Ord 1990).

Caffeic acid affects morphogenetic response of hypocotyl

cutting and early growth of mung bean (Batish et al. 2008),

thus also proving its phytotoxicity. Caffeic acid is reported

to generate an increase in activities of soluble peroxidase

along with other antioxidant enzymes (i.e., superoxide

dismutase, ascorbate peroxidase, glutathione reductase and

catalase) in the mung bean hypocotyl (Batish et al. 2008;

Singh et al. 2009). Exogenously applied caffeic acid

decreased the PAL activity and hydrogen peroxide content

and increase the soluble and cell wall bound peroxidase

activities. Caffeic acid in conjugation with piperonylic acid

(PIP, an inhibitor of the cinnamate 4-hydroxylase), equal-

ized the inhibitory effect of PIP, whereas with methylene

dioxocinnamic acid (MDCA, an inhibitor of the 4-cou-

marate:CoA liogase, 4CL) lignin production is decreased.

This indicated that exogenously applied caffeic acid can be

channeled into the phenylpropanoid pathway via the 4CL

reaction, by resulting lignin monomers increase thereby

solidifying the cell wall and thus inhibiting root growth

(Bubna et al. 2011). Caffeic acid biosynthesis from cin-

namic acid via p-coumaric acid involves plant-specific

cytochrome P450 dependent monooxygenase enzymes,

cinnamate 4-hydroxylase (C4H) and p-coumarate 3-hy-

droxylase (C3H) (Kim et al. 2011). Berner et al. 2006

reported in actinomycete Saccharothrix espanaensis that

the biosynthetic pathway for trans caffeic acid from L-

tyrosine via trans—p-coumaric acid involves the co-ex-

pression of sam5 and sam8 genes. The heterologous

expression of sam8, encoding tyrosine ammonia lyase, led

to the biosynthesis of p-coumarate and the sam5 encoding

p-coumarate 3-hydroxylase, producing trans-caffeic acid.

Sinapic acid

Sinapic acid, a phenylpropanoid compound with 3,

5-dimethoxyl and 4-hydroxyl substitutions in the phenyl

group of cinnamate, has been found in various high-bran

cereals and herbal materials and constitutes over 73 % of

the free phenolic acids (KozBowska et al. 1990). It is

present in variety of foods, fruits and edible plants (Shahidi

and Naczk 1995; Thiyama et al. 2006) particularly in

broccoli, citrus juices and leafy brassicas (Stevanovic et al.

2009). It has anxiolytic cum anti-inflammatory properties

and has been proposed as an efficient antioxidant (Yoon

et al. 2007; Yun et al. 2008). With the exception of its

antioxidant activities (Niwa et al. 1999; Kikuzaki et al.

2002; Akhter et al. 2003) its pharmacological properties

have rarely been reported (Yoon et al. 2007). Sinapate

esters (e.g., sinapoyl malate and Sinapoyl glucose) act as

UV protectants in Brassicaceae and the genes involved in

their biosynthesis in Arabidopsis are well described (Fraser

et al. 2007; Sinlapadech et al. 2007). Sinapoyl malate has

been suggested to act as a foliar UV protectant in Ara-

bidopsis (Landry et al. 1995). The pathway for sinapoyl

malate biosynthetic in the Brassicaceae is well character-

ized biochemically (Strack 1977), and Arabidopsis genes

encoding the enzymes upstream and downstream of UDP-

glucosyltransferase (UGT) involvement have been identi-

fied by mutational analysis (Lorenzen et al. 1996). Study of

the fah1-mutant of Arabidopsis defective in the accumu-

lation of sinapic acid-derived metabolites, including gua-

iacyl–syringyl showed that the seedlings were more

susceptible than wild type to UV stress (Landry et al.

1995). Since the fah1; being locus of Arabidopsis which

encodes the ferulate-5-hydroxylase (F5H) enzyme that

catalyzes the rate-limiting step in syringyl lignin biosyn-

thesis and is required for the production of sinapate esters.

It is a cytochrome P450-dependent monooxygenase

responsible for the formation of 5-hydroyferulic acid, the

precursor of sinapic acid (Chapple et al. 1992; Ruegger

et al. 1999) and the product of the reaction,
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5-hydroxyferulic acid, or metabolites downstream of

5-hydroxyferulic acid, such as sinapic acid and sinapoyl

malate, were involved in UV protection. However, recent

analysis of Arabidopsis over expression fah1 have shown

no accumulation of sinapoyl malate (Ruegger et al. 1999),

suggesting that levels of fah1 do not control flux through

this part of the cinnamate pathway. Since the glucose ester

is the direct precursor of sinapoyl malate, manipulation of

the UGT levels involved in its formation may provide a

better tool to investigate the potential link between sina-

poyl malate and UV protection (Lim et al. 2001). Niwa

et al. 1999 and Zou et al. 2002 have reported the strong

inhibition in peroxynitrite mediated oxidation due to

scavenging activity of sinapic acid. Sinapic acid isolated

from Brassicca juncea has been reported to be an inhibitor

of the production of serum protein nitration and low den-

sity lipoprotein lipid per oxidation (Zou et al. 2002).

Conclusion

Within the last few decades, strong evidence supporting the

role of phenolic compounds in the growth and development

of plants has been published. The presence of cinnamic

acid, alpha beta unsaturated acid, an ubiquitous plant

phenol and its derivatives is an enough indication that these

have been adopted by plants for various mechanisms.

Better understanding of these diverse groups in plants will

eventually help in modelling sustainable plant growth and

development.
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