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Abstract Halophytes are plants able to tolerate high salt

concentrations but no clear definition was retained for

them. In literature, there are more studies that showed salt-

enhanced tolerance to other abiotic stresses compared to

investigations that found enhanced salt tolerance by other

abiotic stresses in halophytes. The phenomenon by which a

plant resistance to a stress induces resistance to another is

referred to as cross-tolerance. In this work, we reviewed

cross-tolerance in halophytes at the physiological, bio-

chemical, and molecular levels. A special attention was

accorded to the cross-tolerance between salinity and

organic pollutants that could allow halophytes a higher

potential of xenobiotic phytoremediation in comparison

with glycophytes.

Keywords Genomic level � Metabolomic level �
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Introduction

Halophytes are plants known for their ability to tolerate

high salt levels in the soil. However, no clear definition

was given to them and researchers still cannot certainly

distinguish between halophytes and glycophytes. Flowers

and Colmer (2008) call a halophyte any plant able to

complete its seed-to-seed cycle at 200 mM NaCl or

higher. Halophytes are considered to be rare plant species

that arose separately in unrelated plant families during the

diversification of Angiosperms (O’Leary and Glenn 1994;

Flowers et al. 2010) similar to epiphytes, saprophytes,

xerophytes, aquatics, and marsh plants (Kremer and Van

Andel 1995). They were estimated to constitute 1–2 % of

the flora (Flowers and Colmer 2008). Several fundamental

and applied (economical) potential uses were attributed to

halophytes as promising phytoresource. At the funda-

mental level, they help understand mechanisms involved

in high salinity tolerance using morphological, anatomi-

cal, ultrastructural, physiological, biochemical, and

molecular tools (Jithesh et al. 2006; Barhoumi et al. 2008;

Smaoui et al. 2010; Rabhi et al. 2010b; Ellouzi et al.

2011; Debez et al. 2013; Ben Hamed et al. 2014). At the

applied level, halophytes are used for food, fodder, for-

age, edible oil, biofuel, medicines, phytoremediation,

phytodesalination, sandy soil fixation, ornamentation

(Rabhi et al. 2010a, d; Zaier et al. 2010; Al-Oudat and

Qadir 2011).

Among several classifications of halophytes, a habitat-

based one distinguishes between xerohalophytes, those

thriving under saline arid conditions, and hydrohalophytes,

those thriving under saline moist conditions (Al-Oudat and

Qadir 2011). In their natural habitats, halophytes are

simultaneously subjected to a multitude of abiotic stresses.

However, data about pretreatment of halophytes with abi-

otic stresses such as draught, heavy metals, flooding, and

nutrient deficiencies to enhance their tolerance to salinity

are scarce. Recently, Ellouzi et al. (2013) investigated the

responses of the halophyte Cakile maritima to increasing

salt concentrations after pretreatment with three abiotic

stresses: drought, salinity, and cadmium. They found that
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all pretreatments enhanced salt tolerance in this species

through oxidative stress alleviation, in particular under

severe salinity conditions. A seed priming with a relatively

high CaCl2 concentration (50 mM) was also shown to

alleviate the adverse effects of high KCl, NaCl, Na2SO4,

and MgSO4 concentrations on germination of Urochondra

setulosa (Shaikh et al. 2007).

In literature, there are more works about salt-enhanced

tolerance to other abiotic stresses than about enhanced salt

tolerance by other abiotic stresses in halophytes (See Ben

Hamed et al. 2013). In Artemisia anethifolia and Suaeda

salsa, salt adaptation enhanced PSII tolerance to heat stress

through an improvement of thermotolerance of PSII reac-

tion centers, oxygen-evolving complexes, and light-har-

vesting complex (Lu et al. 2003). In Hordeum maritimum,

it was also shown that moderate salinity alleviated the

effects of phosphorus deficiency (Talbi-Zribi et al. 2012).

Moreover, under low potassium availability conditions, salt

stress improved K/Na selectivity in this halophyte (Hafsi

et al. 2007). In the same context, Glenn et al. (2012)

showed that salinity enhances Atriplex spp. tolerance to

drought in drying soils. Beneficial salt effects on Sesuvium

portulacastrum responses to drought (Slama et al. 2007)

and heavy metals (Ghnaya et al. 2005; Zaier et al. 2010)

were also reported. Salt priming was also shown to

improve Distichlis spicata establishment under low to

moderate salinity conditions (Sargeant et al. 2006).

Cross-tolerance is defined as the phenomenon by which

a plant resistance to a stress induces resistance to another

(Genoud and Métraux 1999). Because much of the injuries

they induce in plants are associated with oxidative damage

at the cellular level, oxidative stress tolerance is thought to

play a key role in cross-tolerance to a variety of environ-

mental stresses (Iseki et al. 2013).

Mechanisms involved in halophyte salt-induced
tolerance are common to other abiotic stresses

Cross-tolerance physiology

Intracellular compartmentalization of toxic molecules

and osmotic adjustment

As subjected to salt stress, halophytes compartmentalize

excess ions predominantly in vacuoles, maintaining in this

way their concentrations in the cytoplasm within tolerable

limits. They accumulate organic osmolytes such as proline,

glycinebetaine, and sugars mainly in cytoplasm for osmotic

adjustment without impairing metabolic activities (Debez

et al. 2010). This significantly contributes to the overall

water relations that allow halophytes to obtain water from

saline soils (Flowers and Colmer 2008). Osmolyte

accumulation under salt-induced water deficiency was also

observed in the case of direct (insufficiently irrigated soil)

and PEG- and mannitol-induced drought (Slama et al.

2007; Rouached et al. 2013). The comparison between H.

martimum and H. vulgare after 60 h of salt stress showed

that the former is more able to accumulate inorganic

solutes (such as Na?) in vacuoles for osmotic adjustment

and to keep organic solutes and a large part of K? for

metabolic activities. Such an economic strategy was absent

in H. vulgare whose osmotic adjustment was based on

organic osmolytes regardless of stress severity (Yousfi

et al. 2010). Munns (2002) reported that the use of one

mole of Na?, mannitol, proline, glycinebetaine, or sucrose

as an osmoticum in leaf cell needs 3.5, 34, 41, 50, or

52 mol of ATP, respectively. Moreover, even within

halophytes themselves, species differ in succulence and in

the solutes they accumulate, Chenopodiaceae being more

able to use salt ions in osmotic adjustment than Poaceae

(Flowers and Colmer 2008). Succulence results in an

increase in cell size and a decrease in growth extension,

this process reduces surface area per tissue volume, leading

to higher water content per unit area (Weber 2009).

Maintaining water status within plant tissues requires, in

addition to osmotic adjustment, a decrease in water losses

through a decline in stomatal conductance (gs). Neverthe-

less, differences between halophytes were described. For

instance, in a comparative study between two obligate

halophytes Sesuvium portulacastrum (C3) and Tecticornia

indica (C4), different stomata responses were observed at

moderate salt concentration (200 mM NaCl); in the former

gs was enhanced whereas in the latter it showed no vari-

ation. At higher salt concentration (400 mM NaCl), this

parameter was decreased in both species. The decrease in

gs constitutes an identical early response to water and salt

stress (Munns 2002). Indeed, plant responses to salt stress

occur in two phases: a fast osmotic phase (whose period

depends on species and stress severity) due to the increase

in external osmotic pressure followed by a slower ionic

phase due to ion accumulation in leaves (Munns and Tester

2008). Water use efficiency (WUE = A/E with A and

E standing, respectively, for net CO2 assimilation and

transpiration rate) was shown to be a good tool for mea-

suring the aptitude of a plant to adjust its gas exchanges

under stressful conditions by increasing CO2 capture and

reducing water losses (Gleick et al. 2011).

Vacuole sequestration is not limited to salt ions but it is

also extended to a variety of toxic ions and molecules such

as heavy metals (Hossain et al. 2012) and organic pollu-

tants (Tissut et al. 2006). In the case of heavy metals, a

prior chelation phase is needed (Mendoza-Cózatl et al.

2010). As regards organic pollutants, three phases are often

described: (1) biotransformation that converts xenobiotics

into more polar compounds (in some cases, this phase is
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not necessary), (2) conjugation that adds to the xenobiotics

sugars, amino acids, or peptides to facilitate their meta-

bolism, and (3) sequestration of conjugated molecules into

vacuoles or their fixation to the cell wall components

(Tissut et al. 2006).

Excretion of toxic molecules

Many halophytes were shown to have trichomes or salt

glands controlling salt accumulation in plant tissues. Salt

glands are embedded in the leaf epidermis. They can be

multicellular, as observed in dicots (Plumbaginaceae and

Tamaricaceae), or bicellular, as reported in monocots

(Poaceae; Barhoumi et al. 2008). Trichomes are composed

of two parts: (1) a stalk embedded in the epidermis bearing

and (2) a unicellular bladder cell with a huge vacuole, a

well-reduced cytoplasm pushed close to the wall, and only

a few organelles (Smaoui et al. 2010). In some cases, salt

excretion is performed by leaf cuticle as described in

Suaeda fruticosa (Chenopodiaceae), a species with no

excreting glands or trichomes (Labidi et al. 2010). Hence,

salt excretion is a phenomenon by which halophytes

eliminate excess salt reaching their leaves (Sobrado 2001)

in a highly selective way, secreting mostly NaCl and thus

contributing to maintain a suitable K?/Na? ratio of cell

cytoplasm. However, other ions such as K?, Mg2?, Ca2?,

and SO4
2– can be excreted (Sobrado and Greaves 2000) if

they are in excess in leaf tissues. Manousaki and

Kalogerakis (2011) reported also that salt glands and tri-

chomes on leaf surfaces of some halophytes (such as Ta-

marix smyrnensis, Atriplex halimus, Armeria maritima,

Avicennia marina, Avicennia germinans, and Spartina

alterniflora) can excrete excess metals as a possible

detoxification mechanism.

Nutrient homeostasis

Nutrient homeostasis is one of the major factors allowing

halophytes to survive under extreme saline conditions. It is

based on two main strategies: nutrient uptake efficiency

and nutrient use efficiency. Since the most abundant salt is

NaCl, the former strategy relies on cation/Na? selectivity

and anion/Cl- one that increase to mitigate the salt-induced

reduction in nutrient uptake efficiency (Hafsi et al. 2007;

Rabhi et al. 2010c). However, K?/Na? selectivity is the

most studied one as this macronutrient is often more

affected by salinity than other nutrients. Although nutrient/

salt selectivity is often described in halophytes in response

to salt stress, it is not sufficient to maintain nutrient uptake

efficiency at the level of the control. This is why high use

efficiency is needed (Hafsi et al. 2007; Rabhi et al. 2010c).

Mineral nutrition is imbalanced by several stresses other

than salinity. For instance, the two halophytic Aeluropus

species A. lagopoides and A. littoralis displayed an

increase in K? and Na? concentrations under drought

stress (Vaziri et al. 2011). This is important for osmotic

adjustment during water stress as inorganic osmolytes

increase osmotic potential. Gulzar et al. (2003) who

observed an enhancement in K? level in A. lagopoides

tissues attributed such a response to drought stress to a high

selectivity for K? by retaining higher Cl- and Mg2? ions in

roots. Heavy metal stress is also a factor of nutrition dis-

turbances and plants able to maintain their nutrient

homeostasis under this stress are thought to overcome it.

For instance, the two halophytes Sesuvium portulacastrum

and Mesembryanthemum crystallinum experienced differ-

ent potassium and calcium status as subjected to a range of

cadmium (Cd) concentrations (0, 50, 100, 200, and

300 lM), the former being more able to maintain its

nutrient homeostasis than the latter (Ghnaya et al. 2007).

This was due to the fact that Sesuvium portulacastrum

displayed a higher aptitude to produce biomass and to limit

Cd uptake even under severe stress conditions than M.

crystallynum (Ghnaya et al. 2007), which is probably due

to its higher Ca2? and K? selectivity over Cd2?. In addi-

tion, recently, Zhan et al. (2013) found that a K? influx/H?

efflux reaction is coupled with the transport of the poly-

cyclic aromatic hydrocarbon (PAH) phenanthrene into root

cells, which constitutes a new insight into its uptake by

plant roots. This also opens new perspectives on the role of

nutrient homeostasis in plant tolerance to organic pollu-

tants, in particular in halophytes.

Membrane integrity

Plant cells contain many membrane systems that are not

considered as simple barriers delimiting different com-

partments; they are specialized to particular functions

undertaken by their lipid components and membrane-as-

sociated proteins (Komatsu et al. 2007). Hence, almost all

plant responses to environmental stresses directly or

indirectly require membrane integrity to be maintained,

although stresses themselves cause significant intracellular

restructuring (Buchanan et al. 2000). The most studied

membranes under abiotic stress conditions are plas-

malemma, tonoplast, and thylakoid membranes. Plas-

malemma plays structural and communicating (interface

with the extracellular environment exchanging information

and substances) roles. Hence, it constitutes the site of

signal processing in response to stresses (Komatsu et al.

2007). To estimate membrane integrity under stress, some

usual parameters are often used: (1) malondialdehyde

(MDA) concentration that constitutes an indirect mea-

surement of lipid peroxidation (for all membranes), (2)

electrolyte leakage that indicates the degree of the plas-

malemma permeability and therefore, its inaptitude to
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retain electrolytes (for plasmalemma since it is the last

membrane to be crossed, (3) the correlation between

excessive salts within a tissue and its water content to

estimate the degree of their sequestration into vacuoles

(for tonoplast), and (4) chloroplast ultrastructure that

illustrates the degree of damage in grana (for thylakoid

membranes). In halophytes, as in all plants, the use of

these parameters among others has shown that a variety of

severe abiotic stresses induce membrane damages (Ben

Hassine et al. 2009; Parida and Jha 2013), which is due to

the generation of reactive oxygen species (ROS) respon-

sible for oxidative stress (Bose et al. 2013). Hence, ROS

homeostasis is one of the major factors allowing halo-

phytes higher salt tolerance in comparison with glyco-

phytes (Bose et al. 2013).

ROS overproduction was described in halophyte

responses to several abiotic stresses as reviewed by Jithesh

et al. (2006). It is initiated by the univalent reduction of O2

or the transfer of excess excitation energy to O2. The

transfer of one, two, or three electrons generates, respec-

tively, superoxide radicals (O��
2 ), hydrogen peroxide

(H2O2), or hydroxyl radical (HO�) (Mittler 2002). Never-

theless, plants are equipped with two antioxidant systems

that can scavenge ROS and therefore protect cell mem-

branes and molecules from damages. The non-enzymatic

system groups a variety of molecules such as tocopherol,

carotenoids, ascorbate, and glutathione, whereas the

enzymatic one groups several enzymes, namely superoxide

dismutase, catalase, ascorbate peroxidase, monohy-

droascorbate reductase, dehydroascorbate reductase, and

glutathione reductase (Jithesh et al. 2006).

Chloroplast (thylakoid membrane) is one of the main

targets of ROS. Its protection is, therefore, a priority in

halophytes under stress conditions. Rabhi et al. (2010b)

showed that the halophyte Sesuvium portulacastrum is able

to protect thylakoid membranes and proteins even at

400 mM NaCl. Similar results were also found in the

halophyte Sulla carnosa under magnesium deficiency

conditions (Farhat et al. 2014, 2015) as well as under

individual and combined effects of salinity and iron defi-

ciency (unpublished data).

Biochemical and molecular mechanisms

of cross-tolerance

Gene duplication and promoter adaptation

Gene duplication is a kind of genome adaptive mechanisms

to environment fluctuations (Kondrashov 2012). The

identification of copy-number variations (CNVs) in

response to stressful or changing conditions may help

understand gene duplications as an adaptive mechanism.

Studies of 80 Arabidopsis thaliana ecotypes showed that

natural selection has led to CNVs covering 2.2 Mb of the

reference genome (Cao et al. 2011). The genomes of A.

thaliana and its halophyte relative Thellungiella parvula

have approximately 10 % of their total genes in tandem

duplicates (Dassanayake et al. 2011), and they are clearly

involved in the species dramatically different stress toler-

ance strategies. This is exemplified by the amplification of

NHX8 homologs, known to encode a putative Li? trans-

porter in A. thaliana (An et al. 2007). The duplication led

to a constitutively higher expression in T. parvula than in

A. thaliana. This was probably responsible for the

improvement of T. parvula tolerance to high Li? concen-

trations in its natural biotope. Some other examples were

also reported such as the duplications of CBL10 orthologs,

encoding a calcium sensor, AVP1, encoding a vacuolar

proton transporter in T. parvula, and HKT, present in a

single copy in A. thaliana and in three ones in T. parvula

(Dassanayake et al. 2011).

Based on molecular and genomic studies, several key

transcription factors were identified to be induced under

several abiotic stress conditions. Among them, DREB and

ABF are well-characterized transcription factors known to

play an important role in regulating gene expression in

response to abiotic stresses through both ABA-independent

and dependent pathways. In parallel, many salt-induced

promoters are not specific to salinity. Promoters of the

stress-induced genes contain cis-regulatory elements such

as DRE/CRT, ABRE, MYC recognition sequence

(MYCRS), and MYB recognition sequence (MYBRS),

which are regulated by various upstream transcriptional

factors (Mahajan et al. 2005; Zhu 2002). Nawaz et al.

(2014) compared expression levels and promoter activities

of candidate salt tolerance genes in the halophyte T. sal-

suginea and the glycophyte A. thaliana using promoter

swap experiments. They showed that SOS1 and VATD

promoters were, respectively, fivefold and twofold more

active in T. salsuginea than in A. thaliana. These obser-

vations were supported by an expression of a higher

number of gene families nonspecific to salt stress in the

halophyte than in the glycophyte (Wu et al. 2012).

Wide genome transcriptional adaptation to abiotic stresses

Wu et al. 2012 found that 21 transcription factor families

were expanded in T. salsuginea genome as compared to

that of A. thaliana. These expansions may be associated

with the adaptation of T. salsuginea to extreme environ-

ments, as individual members of some A. thaliana factor

families have been shown to be related to stress tolerance.

For example, the RAV gene family that has been reported

to respond to several stresses, including salinity (Fowler

et al. 2005; Sohn et al. 2006), expanded from six members

to nine, respectively, in A. thaliana and T. salsuginea (Wu
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et al. 2012). In the extreme halophyte Salicornia brachiata,

transcript profiling revealed an abundance of SbUSP (an

uncharacterized universal stress protein gene) transcripts in

response to salt stress as well as to drought, heat, and cold

stresses. Heterologous expression of this gene conferred

salt and osmotic tolerance to E. coli (Udawat et al. 2014).

Some other salt-responsive genes cloned from this halo-

phyte experienced also elevated expression under abiotic

stress conditions in the host plant. For instance, SbMT-2

gene was up-regulated by salinity, drought, and heat

stresses and its expression increased with treatment time

(Chaturvedi et al. 2012). The peroxisomal ascorbate per-

oxidase gene (SbpAPX) was also strongly induced by cold

(Singh et al. 2013). In addition, pAPX gene cloned from

Avicennia marina was up-regulated by salinity, H2O2,

prolonged light, and ferric citrate treatment (Kavitha et al.

2008). Indeed, a small Ubiquitin related Modifier enzyme

gene ‘SaSce9’ from experienced induced transcripts under

salinity, drought, cold, and exogenously supplied ABA

conditions in leaves as well as in roots of the halophytic

grass Spartina alterniflora. Its constitutive overexpression

in A. thaliana improved its tolerance to salinity and

drought (Karan and Subudhi 2012). In the halophyte Li-

moniastrum monopetalum, El-Bakatoushi (2011) showed

that crude oil exposure overexpressed salt and drought

genes.

Proteomic analysis revealed the induction of several

nonspecific-stress- and defense-related proteins

While addressing the key pathways regulating abiotic

stress plant adaptation, comprehensive data presented

confirmed that proteins are relevant tools to confer toler-

ance. Therefore, it has been found out that salinity induces

more proteomic changes in A. thaliana than in T. sal-

suginea (Oliver et al. 2011; Gechev et al. 2012; Dooki

et al. 2006). The former displayed 88 differentially

abundant protein spots versus 37 ones in T. salsuginea as

compared to their controls (Dooki et al. 2006). Therefore,

salinity changes more the proteomic profile of A. thaliana

as compared to that of T. salsuginea since the latter is able

to maintain enough photosynthetic activity and ATP pro-

duction for stress adjustment. A proteomic study of

Suaeda salsa under individual and combined effects of

salinity and heat shock showed that out of 80 proteins

whose levels were increased by salt stress and 70 proteins

whose levels were reduced by heat shock, an overlap of

only 17 proteins was detected. In addition, out of 112

proteins accumulated by the combined effects, only 43

were salt-elevated and 30 were heat shock-elevated (Li

et al. 2011). Hence, among 124 induced proteins (during

salinity, heat shock, or their combination), only 14 were

common in the three treatments (Li et al. 2011).

Interestingly, the authors found an overexpression of

STO5 not only by salt stress but also by heat shock and

their combination, which can lead to higher salt tolerance

in transgenic plants (Nagaoka and Takano 2003). An

aluminum-induced protein-like protein (AIPLP) that has

been shown to be involved not only in aluminum stress

response but also in other metal, wounding (Snowden

et al. 1995), and drought stress responses (Oztürk et al.

2002), was induced in Puccinellia tenuiflora under 95 mM

Na2CO3 treatment, which suggests that it might also

contribute to its tolerance to Na2CO3 stress (Yu et al.

2013). In addition, a developmentally regulated plasma

membrane polypeptide (DREPPPM)-like protein that has

been shown to be involved in cold acclimation and salt

stress increased under Na2CO3 stress. This protein may be

associated with the Ca2? signal transduction pathway in

the seedlings of P. tenuiflora under Na2CO3 stress (Yu

et al. 2013).

Cross-tolerance-enhanced abundance of protective

proteins involved in photosynthesis activation and protein

biosynthesis

Abiotic stresses negatively affect photosynthesis at differ-

ent levels, altering both photochemical and non-photo-

chemical processes (Saibo et al. 2009). Nevertheless, plants

have developed many adaptive strategies allowing them to

cope with severe conditions (Zhu 2002; Saibo et al. 2009).

Identification of photosynthesis-related proteins that are

differentially abundant under drought and severe salt stress

is very important. So far, many photosynthesis-related

proteins exhibited an increase or decrease in response to

these two stresses (Oliver et al. 2011; Vanhove et al. 2012;

Aranjuelo et al. 2011). The comparison between halophyte

and glycophyte proteins under salt stress reviewed by

Kosová et al. (2013) reported an increase in PsbP, ferre-

doxin-NADPH reductase, OEE2, RubisCO activase, TPI,

GAPDH, and Glucose-6-P dehydrogenase in glycophytes

and an increase in LHC, OEE2, RubisCO LSU and SSU,

RubisCO activase, D2, CP24, CP47, PSI subunit IV, car-

bonic anhydrase; SBP, and PGK. In response to salinity,

non-salt-specific proteins can be accumulated. For

instance, Chen et al. (2012) found an enhanced abundance

in eleven heat-shock proteins (HSPs) in the halophyte Ni-

traria sphaerocarpa under saline conditions. Based on

literature and their own results, the authors suggested an

HSP/chaperone network in plants that responds to salinity.

As subjected to salt stress, the halophytic plant P. tenui-

flora exhibited an increased abundance of tocopherol

cyclase, a crucial enzyme in the biosynthesis of a-toco-

pherol in plants (Yu et al. 2011) conferring it higher stress

tolerance. It is also known that free metal ions can catalyze

ROS formation. Therefore, responses leading to the
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elimination of free metal ions were observed in salt-stres-

sed plants (Kosová et al. 2013). Stress also results in an

accumulation of several protective proteins as chaperones

from HSP90 family, HSP70 family, and Hsc70 (heat-shock

cognate) (Kosová et al. 2013). Other stress-protective

proteins, such as osmotin and osmotin-like proteins, are

involved in enhancing osmotic stress responses. PR-10

proteins respond not only to biotic, but also to abiotic

stresses, such as drought, salt, cold, and oxidative stresses,

and UV irradiation (Agarwal et al. 2013).

Abiotic stress commonly induced alterations

in carbohydrate nutritional status

Sugar metabolism is a very dynamic process and its

metabolic fluxes and concentrations highly fluctuate with

development stage and in response to environmental

stresses (Rolland et al. 2006). Under abiotic stress, glucose

has an important role as osmolytes in maintaining cell

turgor, stabilizing cell membranes, and decreasing protein

degradation (Sharp et al. 2004). Non-reducing disaccha-

rides such as trehalose can accumulate with higher levels

in tolerant plants. Other sugars with no energetic role,

such as the oligosaccharides raffinose and stachyose were

accumulated in response to abiotic stress conditions such

as drought, salinity, and extreme temperatures (Kaplan

et al. 2004). Relevant physiological studies have shown

that soluble carbohydrates, such as glucose, fructose,

sucrose, or fructans, significantly contribute to the mech-

anisms of adaptation to salt stress (Parida et al. 2002). Gil

et al. (2011) studied sugar accumulation in five halophytes

(Juncus acutus, J. maritimus, Plantago crassifolia, Inula

crithmoides, and Sarcocornia fruticosa) and found that

sucrose, and at a lower level, glucose and fructose were

the most abundant sugars in J. acutus and J. maritimus,

and sorbitol the only soluble sugar accumulated in P.

crassifolia. In addition to their involvement in osmotic

adjustment, soluble carbohydrates stabilize also proteins

and membrane structure and protect plant cell against

ROS, especially in halophyte species (Szabados and

Savouré 2010; Boriboonkaset et al. 2013). Polyols and

sugar alcohols such as mannitol or sorbitol were also

accumulated and linked to abiotic stress tolerance (Arbona

et al. 2008). In addition to all cited roles, sucrose, fructose,

and glucose play also pivotal roles as signaling molecules

to abiotic stresses (Koch 2004; Rolland et al. 2006; Ruan

2014).

Enhanced biosynthesis of organic osmolytes, phenolic

compounds, and lignin

Under abiotic stresses, plants synthesize osmolytes such as

soluble sugars and amino acids that contribute to turgor

maintaining by osmotic adjustment (Arbona et al. 2003,

2008). In this context, it is interesting to follow the syn-

thesis and levels of osmolytes involved in stress tolerance

such as amino acids, secondary metabolites, and regulatory

metabolites (Arbona et al. 2013). Indeed, increases in

Proline (Pro) content have been reported in response to a

variety of abiotic stress conditions such as salt stress

(Yoshiba et al. 1995; Arbona et al. 2008), soil flooding (de

Campos et al. 2011), drought (Arbona et al. 2008), and

extreme temperatures (Kaplan et al. 2004). The target

enzyme is a pyrroline-5-caboxylate synthetase (P5CS)

(Arbona et al. 2008). Pro plays also a role in ROS scav-

enging (Arbona et al. 2003) as well as in DNA, membrane,

and protein stabilization (Arbona et al. 2008). Polyamines

(PA) also have protective ROS scavenging roles (Alet et al.

2012). A variety of abiotic stresses were shown to induce

PA accumulation that was found to positively correlate

with stress tolerance (Martin-Tanguy 1997; Bitrián et al.

2012). Putrescine (Put), spermidine (Spd), and spermine

(Spm) are the most abundant PAs found in higher plants

(Arbona et al. 2013). It has been recently reported that, in

non-adapted Thellungiella salsuginea accessions, sugars

and polyamines could be involved in the mechanisms of

cold adaptation (Colinet et al. 2012). However, the most

described and important compounds are sugars, sugar

alcohols, and nitrogenous compounds with low molecular

weight (in particular Pro and glycinebetaine). Their accu-

mulation in adapted plants is thought to be involved in their

tolerance to stresses (Witt et al. 2012). Under conditions of

excess of heavy metals, to reduce metal accumulation in

photosynthetic organs is considered as a tolerance trait like

phytochelatin biosynthesis and glutathione metabolism

(Arbona et al. 2013).

It is known that heat induces PAL activity and phenolic

production and reduces, at the same time, their oxidation,

contributing to heat stress acclimation (Arbona et al. 2013).

The precursors of lignins, phenylpropanoids are also

involved in stress defense mechanisms, in particular in

roots where they can adjust cell wall composition and

stiffness (Van Poecke et al. 2001; D’Auria et al. 2005).

Carotenoids and xanthophylls are lipophilic compounds

synthesized in plants from isopentenyl pyrophosphate

(IPP) via the plastidial methyl erythritol phosphate (MEP)

pathway. The role of carotenoids is not restricted to cell

protection from UV radiation under stress conditions.

Indeed, it was demonstrated that the overexpression of

phytoene synthase gene in transgenic tobacco plants

resulted in a higher osmotic and salt tolerance, but through

channeling carotenoid flux to ABA biosynthesis which

resulted in an enhancement of ABA levels (Cidade et al.

2012).

The following diagram (Fig. 1) summarizes specific and

nonspecific responses to combined stresses.
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Cross-tolerance between salinity and organic
pollutants: application for phytoremediation

Compartmentalization and subcellular

sequestration are common mechanisms involved

in salinity and organic pollutant tolerance

As heavy metals and salts, organic pollutants constitute one

of the major hazardous chemicals that contaminate soils

today (El-Bakatoushi 2011). The uptake of toxic organics

in plant cells and/or their sequestration or metabolism is

essential for detoxification of the rhizosphere and in turn

for phytoremediation. Therefore, organic pollutants such as

phenanthrene may passively penetrate the plasmalemma of

root and shoot cells (Alkio et al. 2005). Wild et al. (2004)

traced the movement of anthracene in maize leaves and

showed that it was localized on the leaf surface; it diffused

into the cytoplasm within 72 h. This finding was supported

by Alkio et al. (2005) who showed that phenanthrene can

diffuse in Arabidopsis through direct contact with the tis-

sue as well as from the air. Also, Zhan et al. (2010) found

in wheat two modes of phenanthrene transport; a simple

diffusion and an active absorption by a transporter. In the

same context, Cobbett and Meagher (2002) reported that

the uptake of organic xenobiotics into the plant cell is often

mediated by an ABC transport protein. A subclass of the

ABC transporters, originally named the multi drug resis-

tance proteins (MRPs) in reference to animal cells and

bacteria, is the best-characterized family of plant proteins

that carry organics across membranes. MRPs are involved

in the uptake, efflux, and sequestration of toxic compounds

and xenobiotics (Tommasini et al. 1998). In literature, little

is known about the mechanisms of polycyclic aromatic

hydrocarbon (PAH) metabolism and accumulation in

plants. All authors used the green lever model to explain

plant cell internalization, degradation, and sequestration of

organic compounds such as PAHs (Sandermann 1992). In

plants, the metabolism of xenobiotics can be divided into

Fig. 1 Schematic diagram showing the possible cross-talk involved

in the response of halophytes to multiple stresses. The signal

pathways resulting from several stresses induce specific and non-

specific genes that can confer stress tolerance. The latter are

responsible for cross-tolerance. GPCR G-protein-coupled receptor,

RLK receptor-like kinase, CBL calcineurin B-like interacting protein

kinase, CPK calcium-dependent protein kinase, MAPK mitogen-

activated protein kinase, ROS reactive oxygen species, TFs transcrip-

tion factors
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three phases leading to the neutralization of the organic

pollutant: transformation (phase I), conjugation (phase II),

and compartmentalization (phase III) (Sandermann 1992).

The first two phases are similar to those used by animals.

During phase I, the compound is transformed by oxidation

(frequently), reduction, or hydrolysis, creating one or more

functional groups on the molecule (Komives and Güllner

2005). The hydrophobic character of organic pollutants

such as PAHs suggests hydroxylation by specific enzymes

to transform them into hydro-soluble compounds in cyto-

plasm. Hence, in phase II, one or more substituents are

attached onto endogenous or existing active sites formed

during phase I. The main reactions include conjugation of

glycosides, glutathione, amino acid, or malonic acid.

During phase III, the soluble compounds are either stored

in the vacuole or incorporated into lignin or other cell wall

components of becoming non-extractable. Due to its sim-

ilarity with the hepatic detoxification mechanisms in ani-

mals, the term ‘‘green liver’’ has been adopted for the

operation of plant cells during xenobiotic metabolism

(Sandermann 1994). This concept was supported by Alkio

et al. (2005) who demonstrated that in A. thaliana,

phenanthrene was detected and sequestrated in particular

cell ‘‘trichomes’’ and after higher amount of PAHs it was

diffused to basal unclear cells, with increased the levels of

particular mono- or dioxygenases that allow increased

tolerance and transform PAHs to non-toxic intermediate

compounds during phase I (Cerniglia 1997; Kanaly and

Harayama 2000).

Similarly, since monovalent ions, used by halophytes

and salt-tolerant glycophytes for osmotic adjustment, are

toxic at the required concentrations, Na? and Cl- are

predominantly vacuole-compartmentalized to maintain

their concentrations in the cytoplasm within tolerable limits

(Wyn Jones and Gorham 2002). Although the evidence is

limited, Na?/H? exchange and the activity of one or more

of the PMF-generating enzymes appear to play a role in the

accumulation of Na? as they increase under saline condi-

tions. However, ion transport across tonoplast is not suffi-

cient for efficient compartmentalization; their retention

within vacuoles is also required and was shown to be

correlated with low tonoplast fluidity (Leach et al. 1990).

Hence, one can speculate that since halophytes are more

efficient in saline ion compartmentalization than glyco-

phytes, they are theoretically more able to sequester any

other toxic ion or compound.

ROS accumulation and signaling are common

features shared between stresses induced by salinity

and organic pollutants

Liu et al. (2009) suggested that phenanthrene oxidized by

mono- or dioxygenases, like the CYP, increased ROS level,

which induces oxidative stress. However, it cannot be

confirmed if oxidative stress is a consequence of phenan-

threne detoxification activities or of its own or derivative

phytotoxicity (Liu et al. 2009). ROS production is an

unavoidable event for all organisms exposed to oxygen and

Na? and Cl– accumulation in the cytosol increased ROS

production (Allakhverdiev et al. 2000). The result of

hydroxylation of organic pollutant by cytochrome P450

generated also ROS production. A higher antioxidant

capacity in halophytes than in glycophytes has been sug-

gested to confer them a higher tolerance to stresses such as

salinity (Flowers and Colmer 2008; Kosová et al. 2013)

and phenanthrene toxicity (Shiri et al. 2014). Mittler (2006)

reported that the exposure of a plant to a combination of

several abiotic stresses will co-activate different stress-re-

sponse pathways. The results of stress combination have a

synergistic or antagonistic effect. This suggests that a

cross-talk between co-activated pathways is likely to be

mediated at different levels. These could involve a variety

of transcription factor networks, mitogen-activated protein

kinases (MAPK) (Cardinale et al. 2002; Xiong and Yang

2003), a multitude of stress hormones (ethylene, jasmonic

acid, and abscisic acid) (Anderson et al. 2004), calcium

and/or ROS signaling (Mittler et al. 2004; Bowler and

Fluhr 2000) as well as numerous receptors and signaling

complexes (Casal 2002).

The stress tolerance by increasing antioxidant activity is

attractive to explain a high tolerance in halophytes to

organic pollutants that generated an oxidative stress (Liu

et al. 2009). Therefore, the higher levels of enzymatic

antioxidants in halophytes, in particular that of SOD,

suggest that the crucial role to rapid conversion of O��
2 to

H2O2 may be essential for early defense signaling. Halo-

phyte species induced rapidly H2O2 levels, then they have

higher SOD level ‘in stock’ (Bose et al. 2011). Second,

high levels of APX and CAT may interfere with H2O2

signaling and decrease its positive role. However, only OH

is highly reactive and causes significant damage to cell

structures and is the major compound resulting from

hydroxylation of PAHs, it is also known to activate directly

a range of Na?, K?, and Ca2?-permeable cation channels

(Demidchik et al. 2010; Zepeda-Jazo et al. 2011) disturbing

K?/Na? ratio within cytoplasm and inducing programmed

cell death (PCD) (Shabala et al. 2007; Shabala, 2009;

Demidchik et al. 2010).

The understanding of salinity and organic pollutant

tolerance may help improve phytoremediation

Phytoremediation is known as a green technology using

plants to remediate contaminated environments. It is cheap,

non-instructive, and effective means of pollutant cleanup.

In literature, little is known about halophyte use in
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phytoremediation of organic pollutants. The majority of the

examples of phytoremediation by halophytes was reported

in salt marshes, their natural habitats (Howes Keiffer and

Ungar 2002; Al-Mailem et al. 2010; Masciandaro et al.

2014; Ribeiro et al. 2014). Salt marshes constitute impor-

tant ecosystems severely exposed to risks due to the oil

spills resulting from accidental discharges, leakage from

boats, industrial wastewater discharges, and urban runoff

(Ribeiro et al. 2014). Phytoremediation of organic pollu-

tants is based on the observation that planted contaminated

soil versus unplanted soil showed on acceleration of

organic pollutant degradation in the presence of plants

(Burken and Schnoor 1996; Masciandaro et al. 2014).

There are two different strategies of phytoremediation:

direct and explanta phytoremediation (Salt et al. 1998). The

first one consists of pollutant uptake by analogy to phy-

toextraction of heavy metals. However, the availability of

organic pollutants depends on their physicochemical

properties and their concentration in soil (Wenzel et al.

1999). The second one is based on exudates synthesized by

roots like enzymes involved in the degradation of organic

pollutants and other compounds stimulating fungi and

bacteria growth that use pollutants as carbon source.

In this context, phytoremediation of organic pollutants

remains unexplored enough. The majority of investigations

in this field focused on the interaction between microor-

ganisms and roots to improve the degradation of organic

pollutants in soil. Some studies reported that PAHs can be

taken up by plant leaves from air or by their roots from soil

(Simonich and Hites 1994; Kipopoulou et al. 1999; Fismes

et al. 2002). Indeed, because of their high lipophily, they

are adsorbed either on leaf cuticle and passed through it by

solubilization in waxes or on root suberine cortical zones

and absorbed by root cells (Simonich and Hites 1994;

Kipopoulou et al. 1999; Fismes et al. 2002). The halophyte

Halocnemum strobilaceum naturally inhabiting hypersaline

soils was shown to remediate soil contaminated by aro-

matic hydrocarbon in the Arabian Gulf (Al-Mailem et al.

2010). A ‘phytoremediation’ culture of C. maritima on

sterilized sand (without microorganisms) contaminated

with phenanthrene significantly decreased its phytotoxicity

in a subsequent culture of Thellungiella salsuginea (Shiri

et al. 2015). Meudec et al. (2005) investigated also the

uptake of fuel oil PAHs by the halophytic plant Salicornia

fragilis and the bioaccumulation of these compounds into

shoot tissues in the upper aerial part of the plant. This

finding proves that plants are able to take up and to accu-

mulate PAHs in their biomass. This bioaccumulation

depends on the time and dose of exposure to fuel oil in the

sediment. In this example of halophytic plant, the uptake

by roots of PAHs seems to be the main pathway. The

particular morphology of Salicornia plants (no real leaf)

and the absence of PAHs in control also suggest that PAHs

detected are not originated from atmospheric contamina-

tion. The different PAH distribution suggests that low-

molecular-weight PAHs, such as phenanthrene and pyrene

due to their higher solubility, are transported more easily in

the phloem than high-molecular-weight PAHs such as

benzo(a)pyrene. Fismes et al. (2002) reported that the

transport of low molecular weight PAHs from root to aerial

parts could be passive and driven by transpiration flux.

Concluding remarks

Halophytes are of significant interest since they naturally

occur in environments with excess toxic ions and research

findings suggest that they also tolerate other abiotic stresses

through cross-tolerance mechanisms that allow them tol-

erance to several stresses in addition to salt stress tolerance.

In this review, we focused on cross-tolerance mechanisms

in halophytes at the physiological, genomic, transcrip-

tomic, proteomic, and metabolomic levels with an

emphasis on their cross-tolerance to salinity and organic

pollutants. Their powerful subcellular sequestration of

toxic ions and compounds and their high activities of

antioxidant enzymes constitute key traits in their high

tolerance to both salinity and organic pollutant stresses.

However, data about halophyte use in the phytoremediation

of organic pollutant-contaminated soils are scarce. Com-

parative studies between halophyte and glycophyte

responses to these pollutants are encouraged. In addition,

the effects of optimal salinity levels on halophyte phy-

toremediation potential of organic pollutants are particu-

larly required.
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