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Abstract Salt in saline land is regarded as a kind of
abiotic stress that limits the productivity of plants and their
geographical distribution. To understand the mechanism of
how shrub willow clones seedling respond to salt stress at
the proteomic level, proteins extracted from seedling
leaves of salt sensitive cultivar JW9-6 and salt tolerant
cultivar JW2372 were tested under salt stress for the dif-
ferent durations, including 2, 12 and 72 h, using 2-D
electrophoresis. Totally, 83 differentially expressed pro-
teins were found using MALDI-TOF/TOF MS. These
proteins were divided into 11 classes. The primary findings
from this study are: (1) enhanced ROS scavenging capacity
leads to increased salt tolerance for the shrub willow that
protects redox homeostasis system from being damaged;
(2) different measures, e.g., the inhibition of protein syn-
thesis, protein folding and assembly, and enhancing protein
proteolysis, were essential for shrub willow seedlings to
respond to salt stress; (3) salt stress could affect the path-
ways of photosynthesis, carbohydrate metabolism, energy
supply, and metabolism for amino acid and nitrogen. (4)
JW2372 are more salt tolerant than that of cultivar JW9-6
due to overall performance of the above pathways.
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Introduction

Shrub willow (Salix spp.), one of the most widely dis-
tributed tree species in the world, has its unique charac-
teristics, e.g., grows apace and strong adaptation to
different soil types and areas. The number of willow spe-
cies is more than 190 and some of them are salt-tolerant to
some extent, including S.integra Thrnb, salix mongolica,
Salix triandra and JW 2372 (Sui et al. 2011).

Salt in saline and alkaline land is a major type of abiotic
stress that limits the productivity of plants and their geo-
graphical distribution (Wiebe et al. 2007). Nearly 9,900
million km? lands are affected by salinity in China (Askari
et al. 2006). The salinization of arable land is anticipated to
be increased by 30 % in the next 20 years, and it could be
further increased by 50 % till 2050 (Wang et al. 2003).
These saline and alkaline lands could lead to the reduction
of forest area and deterioration of ecological environment.
As a result, the development of agriculture and forestry
using saline and alkaline lands has become a priority for
modern biotechnology (Hoshida et al. 2000). Therefore, it
is important to pursue a solid understanding of how plants
respond to the salt stress. There are several different
molecular mechanisms for salt stress tolerance, including
detoxification of ROS, salt uptake/exclusion and compart-
mentalization, carbohydrate and energy metabolism, etc.
(Zhao et al. 2013).

To study the mechanisms of shrub willow clones in
response to salt stress, Jiangsu academy of forestry estab-
lished an index to evaluate salt tolerance for shrub willow
clones at the seeding stage (Sui et al. 2011). Results
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showed that different factors including plant height, rela-
tive water content and transpiration could be used as salt-
tolerance evaluation indices. Additionally, clone JW 2372
was found better than clone JW9-6 in terms of salinity
tolerance (Sui et al. 2011). Since there are few studies on
the effects of salts on physical and physiological processes
in willow, the mechanism of how shrub willow seedling
leaves respond to salinity stress is not quite clear. Hence, it
is necessary to use a proteomic strategy which has distinct
advantages in molecular level to study this problem.

In this paper, a proteomic method was used to analyze
leaves of the two shrub willow clones cultivars, JW9-6
(salt-sensitive) and JW2372 (salt-tolerant) to: (1) study
expression pattern of the proteome; (2) examine the dif-
ference of the expressed proteins in responding to salt
stress; and (3) understand how these proteins involved in
pathways in the shrub willow clones seedling leaves. The
mechanism of how shrub willow clones seedling leaves
respond to salinity stress was discussed.

Materials and methods
Plant materials

Two Shrub willow clones (salt-sensitive type JW9-6 and
salt-tolerant type JW2372) (17 cm) were cultivated in nu-
trient solution containing 1/4 Hoagland. It was replaced by
fresh solution every 7 days. The simulation of salt stress was
modified based on Sui et al. (2011). The seedlings were
planted in a growing chamber under 20-30 °C temperature.
Six-week-old seedlings were grown in each ampulla
(350 ml) under 1/4 Hoagland nutrient solution that included
3 % NaCl. The control were grown in the 1/4 Hoagland
nutrient solution. Leaves of Shrub willow clones collected at
different salt stress exposure durations (0, 2, 12 and 72 h)
were used immediately; or frozen in liquid nitrogen and
stored under the temperature of —70 °C. Leaves of Shrub
willow clones which were unstressed, were sampled at 2, 12
and 72 h, respectively, and used as control.

Protein sample preparation

For quality control, three biological repeats were carried
out for each sample analysis. Willow leaves were extracted
using acetone/TCA precipitation as described in Parker
et al. (2006) with slight modifications. The powder of leaf
samples was put in the solution of 10 % w/v trichloroacetic
acid/acetone with 1 % (w/v) DTT at —20 °C for 2 h. After
centrifugation and rinse, the size of the sample was 595 nm
using the method described in Bradford (BioRad, Brad-
ford), where bovine serum albumin was used as the
standard.
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2-D electrophoresis, gel staining, and image analysis

First-dimensional electrophoresis, in this study, was per-
formed on an IPG-phor IEF system (Bio-Rad products
from USA). About 1,200 pg protein was diluted in a two-
dimensional rehydration buffer (4 % w/v CHAPS, 0.5 %
v/v IPG buffer, 2 M thiourea, and 7 M urea) and added to
each IPG strip (24 cm non-linear, pH 4-7). It was then
rehydrated at 50 V and 20 °C for 13 h. Followed by this, it
was treated on the IPG phor apparatus under the following
conditions: 200 V for 1 h, 500 V for 1 h, 1,000 V for 2 h,
8,000 V for 4 h, and 8,000 V to reach 110,000 VH. Before
using SDS-PAGE, the strips were equilibrated for 15 min
in 10 ml of the equilibration buffer [6 M urea, 0.375 M
Tris—HCI (pH 8.8), 2 % (w/V) SDS, 20 % glycerol (V/V),
and 2 % (w/V) DTT] and then kept for another 15 min in
alkylating equilibration buffer containing 2.5 % (w/V)
iodoacetamide instead of 2 % DTT.

The second electrophoretic dimension was treated by
12 % SDS-PAGE. Gel electrophoresis was conducted at
16 °C with a 1.0 W/gel for 1 h and then mixed with
10 W/gel until the dye front at about 1 cm above the
bottom of the gel. The signal was visualised using the
equipment CBB G-250. Gel images were first digitalized
with a Bio-Rad FluorS system and further analyzed using
the software PDQuest (Version 7.2.0 of the software from
BioRad). Protein spots were first identified and then
matched automatically based on total density of gels. For
each of the identified spot, the mean relative volume was
assumed to be equal to its expression level at each stage.
The spots with a mean relative volume that has a mag-
nitude of change over 15 % or smaller than 6.6 %
(P < 0.05) were treated as differentially expressed protein
spots.

Protein in-gel digestion, protein identification,
and database search

The differentially expressed proteins were manually iden-
tified and extracted from gels, by washing with double-
distilled water and destaining twice with 50 mM NH,4
HCOj; in 50 % acetonitrile (ACN) for CBB G-250 staining
spots. The proteins were then mixed with DTT of 10 mM
in NH4HCO3; of 50 mM; and then alkylated in iodoac-
etamide of 40 mM and NH4HCO; of 50 mM for 1 h at
room temperature. The gel was first dried with 100 %
ACN; and then digested overnight at 37 °C with an addi-
tion of 15 pL of trypsin (Promega, USA, 1:50, enzyme to
protein) in 50 mM NH4HCO;. The resulting peptides were
extracted twice with 0.1 % TFA in 50 % ACN. The sam-
ples were air-dried and analyzed with a 4800 MALDI-
TOF/TOF Proteomics Analyzer (Applied Biosystems,
USA).
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All spectra of proteins were searched using a Mascot
search engine (http://www.matrixscience.com) in the
NCBInr databases. The following searching parameters
were used: taxonomic category restrictions to Viridiplantae
(Green plants). Mass tolerance for peptides is 100 ppm and
mass tolerance of TOF/TOF fragments is 0.5 Da using
cysteines carbamidomethylation for a fixed modification.
At the same time, methionine oxidation was used as a
variable modification. The confidence in the peptide mass
fingerprinting matches (P < 0.05) was determined based
on the MOWSE score. This was confirmed if an accurate
overlapping of the matched peptides with the major peaks
of the mass spectrum was found. Only significant hits
(P < 0.05) based on the MASCOT probability analysis
were accepted.

Results

To investigate the protein profiles changes (0, 2, 12, and
72 h) for the two cultivars under salt stress, 2-D elec-
trophoresis maps were obtained using IEF on 24 cm
pH4-7 nonlinear IPG gels. Results showed that more than
800 protein spots could be detected in the range of pH 4-7
(Fig. 1). The reproducibility of 2-DE gels, for different
samples, could be reflected by the data shown in Sup-
plemental 1. Quantitative analysis of the three replicates
indicated that there were 100 protein spots showed a more
than 1.5-fold or less than 0.66-fold difference (P < 0.05)
in expression values in at least one sample compared to
the control. Quantitative analysis using PDQuest were
shown in Supplemental material 2. Pictures of 2-D gels
from biological triplicate analysis were shown in Sup-
plemental material 3. The 100 spots, identified in 2-D
electrophoresis gels, were excised and digested and
MALDI-TOF-TOF MS analysis. The 83 proteins, shown
in Fig. 1, were identified based on the NCBI database
(Table 1).

The 83 identified proteins, which exhibited more than
15 % (P < 0.05) or less than 6.6 % (P < 0.05) differences,
were sub-grouped into 11 categories according to KEGG.
Various metabolic pathways and processes were found
associated with the identified proteins. Such pathways in-
cluded redox homeostasis (7 %), protein synthesis (5 %),
proteolytic proteins (5 %), protein folding and assembly
(5 %), carbohydrate metabolism (7 %), amino acid and
nitrogen metabolism (7 %), cellular processes (3 %),
photosynthesis (40 %), nucleotide metabolism (2 %), en-
ergy metabolism (13 %) and unclassified (6 %). The ‘un-
classified’ class denotes those matched with unknown
functions in the database. The largest function group
(40 %) was proteins involved in photosynthesis that were
heavily affected by salt stress (Fig. 2).

The change patterns in the proteins were quite different
as salt stress progressed (Table 1). Take JW9-6 as an ex-
ample. Some proteins, i.e., spots 1, 7, 48 and 53 were found
to be strongly increased in the first 2 h, and then decreased
to a constant lower level even when it was exposed to a
long duration of stress (12 or 72 h). Some proteins, i.e.,
spots 20, 32 and 74, were found to be strongly decreased in
the first 2 h, and then increased to a constant higher level
even when it was exposed to a longer period of stress (12 or
72 h). Some proteins, i.e., spots 31, 36, 39, 41, 51 and 75
increased steadily, whereas other proteins, spot 55 showed
a peak at 2 and 12 h stage, followed by a decrease at the
subsequent stage (72 h). These results implied that shrub
willow clones seedling leaves responded to different peri-
ods of salt stress and modulated the corresponding protein
expression to minimize potential damage.

Discussion

Changes in two shrub willow clones seedling leaves during
salt stress were associated with the disruption of various
aspects. However, there is little information regarding the
proteome in the biological processes. Hence, a compre-
hensive proteomics analysis between two different salt-
tolerant shrub willow clones is important to understand the
molecular mechanisms in plant under salt stress.

Proteins related to redox homeostasis

In the literature, it is found that proteins that are related to
reactive ROS in the processes of plant growth are usually
regulated by salt stress, including GST, ascorbate per-
oxidase (APX) (Csiszar et al. 2011). In this paper, four
identifiers were found to be related to redox homeostasis in
shrub willow clones seedling leaves. Ascorbate peroxidase
(APX) (spot 1), was up-regulated significantly in the leaves
of the cultivar of JW2372, but down-regulated at the 72 h
of JW9-6. The protein is a major ROS-scavenging protein
(Dixon et al. 2002), and its expressions were significantly
up-regulated by stresses (Wan and Liu 2008). At the same
time, ATP-sulfurylase (ATPS) precursor (spot 4) was up-
regulated significantly (P < 0.05) in cultivar JW9-6’s
leaves by salt stress. It was, however, significantly
(P < 0.05) down-regulated in cultivar JW2372’s seedling
leaves at 72 h. ATPS plays in bio-transportation of sulfate,
respectively as the key protein and enzyme in sulfate up-
take by the roots and the assimilation of sulfate in plants
(Zhu et al. 2007). Results indicated that the antioxidative
defense system was enhanced in the leaves of JW2372, and
decreased in the seedling leaves of JW 9-6 after salt stress.
Unexpectedly, there were two protein spots, NADPH-de-
pendent thioredoxin reductase isoform 2 (spot 2) and
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Fig. 1 The position of 83 leaf protein spots from cultivars JW9-6
(salt-sensitive) and JW2372 (salt-tolerance) under salt treatment for 2,
12 and 72 h were shown in 2-DE pictures. The numbers with arrows

lactoylglutathione lyase-like (spot 3), that were down-
regulated significantly (P < 0.05) due to salt treatment, the
later remained unchanged (P > 0.05) in cultivar JW2372’s
seedling leaves, under both non-salt and salt stresses
(Table 1). Thioredoxin is a ubiquitous small protein
disulfide reductase, involved in cellular redox regulation
(Laloi et al. 2004). Lactoylglutathione lyase is also known
as glyoxalase, which can convert toxic 2-oxoaldehydes into
less reactive 2-hydroxyacids using glutathione as a co-
factor (Espartero et al. 1995).

Overall, higher expression of two proteins (APX and
ATPS) might imply that their hydrogen peroxide-scav-
enging capacity was enhanced at the beginning of salt
treatment. The two down-regulated proteins (thioredoxin
and lactoylglutathione lyase) implied that antioxidative
systems of the two cultivars were impaired under salt
stress, and more down-regulated proteins in cultivar JW9-6
under salt stress at the late stage of salt treatment denoted
that cultivar JW2372 is of higher hydrogen peroxide-s-
cavenging capacity, comparing to cultivar JW9-6. This
may be due to the fact that cultivar JW2372 is of better salt

@ Springer

indicate the identified protein spots. And 2-D gel picture of each time
point have been shown

tolerance than cultivar JW9-6. Results also revealed that
shrub willow increased salt tolerance through increasing
scavenging capacity of the hydrogen peroxide and pro-
tecting the redox homeostasis system from damaged.

Proteins related to protein biosynthesis, protein folding
and assembly, and protein proteolytic

A total of 12 identifier were found to be involved in protein
biosynthesis, protein folding and assembly, and protein
proteolytic (Table 1). There were four proteins that were
identified in protein biosynthesis. Among them, chloroplast
elongation factor Tu A (EF-TuA) (spot 6) was up-
regulated, and eukaryotic translation elongation factor
(spot 8) was down-regulated in cultivar JW9-6’s leaves.
However, these two proteins were not affected in cultivar
JW2372’s leaves by salt stress. These proteins were di-
rectly involved in initiation and elongation of the newly
growing peptide chains (Mittler et al. 2004). The 30S ri-
bosomal protein S1 (spot 7) was up-regulated in JW9-6’s
seedling leaves, but it was down-regulated at the early
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phase of stress exposure (2 h) and then up-regulated at the
late phase of stress exposure time (72 h) in cultivar
JW2372’s seedling leaves. Ribosomal proteins are believed
to take part in the regulation of protein synthesis at the
level of the protein elongation step (Marek 2002). The
differently express of these proteins demonstrated that
proteins biosynthesis was increased in cultivar JW9-6
while decreased in cultivar JW2372.

Four identified proteins were identified to be associated
with protein folding and assembly (spot 13, 14, 15 and 16).
On the one hand, two proteins (spots 14 and 15) were up-
regulated in cultivar JW9-6, but no significant changes in
cultivar JW2372. They were identified as 40 kDa thylakoid
lumen PPlase and cyclophilin-like protein. PPlase cata-
lyses the slow cis—trans isomerization of proline peptide
bonds in oligopeptides and accelerates slow, rate-limiting
steps in the folding of several proteins (Fischer and Bang
1985; Lang et al. 1987). Cyclophilin, a family of proteins,
usually bind with the immunosuppressant cyclosporin A,
and assist in protein folding (Fischer et al. 1989; Schreiber
1991). The chaperones and Hsp were found to be related to
protein folding and assembly (Scarpeci et al. 2008; Raza-
vizadeh et al. 2009). One heat shock protein, cognate 1 at
spot 13, was up-regulated in cultivar JW2372 and the other
proteins (spot 16, cpl0-like protein) were down-regulated
in cultivar JW9-6. The up-regulation of these proteins
showed that protein folding and assembly were increased
under salt stress.

Protein proteolytic pathways play a dynamic and vital
role in the regulating different metabolic processes and in
the cell’s response to external environmental conditions. It
is capable of removing irreversibly damaged polypeptides
that may interfere with these pathways (Joanna et al. 1999).
There were four identities that were found to be associated
with protein proteolytic pathways (Table 1). Among them,
papain-like cysteine proteinase (spot 9) was up-regulated in
the two cultivars. It was, however, down-regulated at the
late stress stage in the cultivar JW9-6. Putative cysteine
proteinase precursor (spot 10) was significantly up-
regulated in cultivar JW9-6’s seedling leaves (P < 0.05) by
salt treatment but down-regulated significantly in cultivar
JW2372 at the late treatment. Cysteine proteinases are also
referred to as thiol proteases and play an essential role in
proteins proteolytic pathway in various cellular compart-
ments. They also participate in plant growth, senescence
and programmed cell death (Malgorzata and Barbara
2004). The 26S protease regulatory subunit 6 identified at
spot 11 was down-regulated significantly (P < 0.05) in
cultivar JW9-6’s leaves at the late stress treatment. They
were not changed in expression in cultivar JW2372.
Proteasomes are parts of a major mechanism by which cells
may regulate the concentration of some proteins and de-
grade misfolded proteins (Lodish et al. 2004). At last, one

0.89 £+ 0.21

72 h

1.12 £ 0.23

12h

1.20 £+ 0.28

2h

JW2372
0h
1.00 £ 0.21

0.08' + 0.04

72 h

0.96 £+ 0.02

12h

2h

1.00 £ 0.22  0.44j + 0.02

MPY TplE  Tmw"  JW9-6'
0'h
4 476 564

Sce
(%)
9

Protein
score!
227

trichocarpa x Populus

Protein name®
deltoides

gil118489117  Unknown, Populus

Accession

no-.

83

J Indicates significant (more than 1.5-fold or less than 0.66-fold) difference between control and treatment at 0.05 level

¢ Names and species of the proteins obtained via the MASCOT software from the NCBInr database
! The protein abundance ratio (treatment/control) at each particular time point

® Accession number from the NCBInr database
4 MOWSE score probability for the entire protein

% Numbering corresponds to the 2-DE in Fig. 1
¢ The sequence coverage of identified proteins
T The total number of identified peptide

Table 1 continued
€ Tpl is theoretical isoelectric point
" Tmw is theoretical molecular mass
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no®
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Fig. 2 Functional groups of
differentially expressed proteins
identified from control and salt
treated shrub willow clones
(cultivars JW9-6 and JW2372)
seedling leaves for different
stress hours (2, 12 and 72 h).
This classification is based on
KEGG (http://www.kegg.jp/
kegg/pathway.html) and
literature

13%

2%

40%

protein (ATP-dependent Clp protease ATP-binding subunit
ClpC, spot 12) was down-regulated in the two cultivars of
willow leaves under salt stress. ClpC belongs to the
clpA/clpB family, ATP-dependent specificity component
of the CIpAP protease. The primary function of the ClpA-
ClpP complex appears to be the degradation of unfolded or
abnormal proteins. Thus, the pattern of this protein showed
that protein proteolysis was decreased.

Overall, regulated expression response patterns of
above-mentioned three groups showed that decreasing of
protein biosynthesis, protein folding and assembly, and
increasing protein proteolysis were required for shrub
willow seedlings to survive under salt treatment. Protein
synthesis in cultivar JW2372 was opposition to cultivar
JWO9-6, which indicated that shrub willow clones need
more proteins to resist the salt treatment.

The relationship between differentially expressed
proteins and photosynthesis

Photosynthesis is the process of using energy from sunlight
to split water to liberate O, and converts CO, into organic
compounds, e.g., sugars (Bryant and Frigaard 2006). In this
study, a total of 34 differentially expressed identities were
found to be associated with the photosynthesis processes
(Table 1). Six proteins (spots 35, 42, 59, 60, 61 and 62)
were associated with light-harvesting reaction. Both spots
35 and 42 were found as type III chlorophyll a/b binding
protein. Spot 42 was up-regulated at 0—12 h in the seedling
leaves. Spot 36 was down-regulated in the seedling leaves
of the cultivar JW9-6, and later up-regulated in cultivar
JW2372 (Table 1). Type III chlorophyll a/b binding pro-
tein, a component of light-harvesting complex in plants,
facilitates light absorption and transfers the excitation en-
ergy to reaction centers due to reduced amount of NADP™
to NADPH (Wan and Liu 2008). The protein at spot 59,
identified as cytochrome b6-f complex iron-sulfur subunit,
was up-regulated in cultivar JW9-6 and later down-

6%

o Redox homeostasis

7%

H Protein synthesis
H Proteolytic proteins

H Protein folding and assembly

5% u Carbohydrate metabolism

B Amino acid and nitrogen metabolism
7%
Cellular processes

Photosynthesis

7% Nucleotide metabolism

3% Energy metabolism

Unclassified

regulated in cultivar JW2372 at the stress stage 12 and
72 h. Three proteins (spots 60, 61 and 62) were identified
as coproporphyrinogen oxidase, ferredoxin—-NADP reduc-
tase, leaf isozyme, chloroplastic-like isoform 1 and ATP-
dependent zinc metalloprotease FTSH 2, respectively.
Coproporphyrinogen oxidase and ferredoxin—-NADP re-
ductase, leaf isozyme, chloroplastic-like isoform 1 were all
significantly (P < 0.05) down-regulated in cultivar JW9-
6’s seedling leaves, but ferredoxin—-NADP reductase, leaf
isozyme, chloroplastic-like isoform 1 was up-regulated in
cultivar JW2372’s seedling leaves. Coproporphyrinogen
oxidase catalyzes chlorophyll biosynthesis pathway(s) (Ole
et al. 1993). ATP-dependent zinc metalloprotease FtsH was
related to photosystem II, preventing cell death under high-
intensity light conditions (Ge et al. 2007; Hui et al. 2004).
Overall, the decrease in expression of the proteins (Type III
chlorophyll a/b binding protein, Cytochrome b6-f complex
iron-sulfur subunit and ferredoxin—-NADP reductase, leaf
isozyme, chloroplastic-like isoform is associated with PS I,
which could reduce light absorption and electron transfer in
the photosynthetic pathways.

Oxygen-evolving enhancer protein 2 (OEEP2), was re-
lated to oxygen-evolving of photosystem II. OEEP2 was
significant up-regulated in cultivar JW9-6, but down-
regulated at 12 h in cultivar JW2372. Results revealed that
oxygen-evolving of PS II was enhanced in cultivar JW9-6
and decreased in cultivar JW2372.

Additionally, there were 26 identities in CO, assimila-
tion, including two ribulose 1,5-bisphosphate carboxylase,
rubisco (spots 41 and 54), seven ribulose 1, 5-bisphosphate
carboxylase large subunits, RLSs (spots 37, 39, 40, 46, 47,
49 and 57), nine glyceraldehyde 3-phosphate dehydroge-
nase, G3PDH (spots 33, 34, 38, 48, 51, 53, 55, 56 and 63),
five transketolases, Trans (spots 43, 44, 45, 50 and 52), one
phosphoribulokinase (spot 58), one sedoheptulose-1,
7-bisphosphatase, chloroplast, SBPase (spot 64) and one
carbonic anhydrase, CA (spot 65) (Table 1). Rubisco often
combines carbon dioxide with ribulose-1, 5-bisphosphate
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to generate 3-phosphoglycerate (Makino et al. 2000).
G3PDH could remove hydrogen from NADPH and added
it to the 1, 3-bisphosphoglycerate, where glyceraldehyde-3-
phosphate could be generated in Calvin cycle (Maberly
et al. 2010). Transketolase could combine sedoheptulose-7-
mitochondrial phosphate with glyceraldehyde-3-phosphate
to assemble ten carbons in a Calvin cycle (Van et al. 1996).
Phosphoribulokinase was also involved in the Calvin cycle,
catalyzing the ATP-dependent phosphorylation of ribulose
5-phosphate to ribulose 1, 5-bisphosphate (Avilan et al.
2000). SBPase is a unique enzyme to photosynthetic or-
ganisms and plays an important role in regulating the
photosynthetic (Dunford et al. 1998). Of these 26 identities,
seven proteins (spots 34, 37, 40, 50, 52, 56 and 65) were
down-regulated in only one cultivar or in both cultivar
seedling leaves. Totally, 15 proteins (spots 33, 38, 39, 41,
43,44, 46, 47, 49, 51, 54, 57, 58, 63 and 64) were found to
show the increasing abundance in only one cultivar or in
both cultivar seedling leaves under salt stress. However,
three proteins at spots 48, 53 and 55 were up-regulated at
the early stress stage and then down-regulated at the 72 h
stress time in cultivar JW9-6’s seedling leaves. Only one
protein (spot 45) was significantly up-regulated in cultivar
JW9-6’s but significantly down-regulated in cultivar
JW2372 at the early stress stage. The data presented in this
section indicated that Calvin cycle in willow seedling
leaves was enhanced by salt stress and salt-tolerance cul-
tivar JW2372 had the stronger photosynthesis than salt-
sensitive cultivar JW9-6 by salt treatment.

Further, one protein (spot 32) engaged in rubisco acti-
vation was rubisco activase. It was down-regulated in
cultivar JW9-6 at the early stress stage and up-regulated
later at the late stress stage (72 h) by salt stress. It was later
significantly up-regulated by cultivar JW2372. Results
indicated that rubisco activation was significantly affected
by salt stress in willow seedling leaves.

Identified proteins related to carbohydrate metabolism

There were six identities (spots 17, 18, 19, 20, 21 and 22)
associated with carbohydrate metabolism. Two proteins
(spots 17 and 18, Malate dehydrogenase, (MDH)) of them
were up-regulated in cultivar JW9-6 by salt stress in the
seedling leaves. MDH is an enzyme which was involved
in tricarboxylic acid cycle and the generation of ox-
aloacetate from malate (Wang et al. 2007). Aldolase
(spots 19 and 20), ribulose-phosphate 3-epimerase (spot
21), fructose-1, 6-bisphosphatase, FBPase (spot 22), were
found down-regulated in only one cultivar or in both
cultivars seedling leaves under salt stress. Ribulose-
phosphate-3-epimerase could catalyze bidirectional con-
version of ribulose-5-phosphate to xylulose-5-phosphate
(Rogers et al. 2007). FBPase could catalyze the break-
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down of fructose-1, 6-bisphosphate to fructose-6-phos-
phate (Ge et al. 2007). The down-regulation of proteins
indicated that carbohydrate metabolism was decreased in
willow leaves under salt stress.

Proteins are associated with energy metabolism

Under salt stress, low energy metabolism rates were found
in plants to conserve energy and limit generation of ROS
(Moller 2001). There were 11 identities (spots 66, 67, 68,
69, 70, 71, 72, 73, 74, 75 and 76) associated with energy
metabolism in this study. Two proteins (spots 67 and 71) of
them were significantly (P < 0.05) down-regulated in
cultivar JW9-6 but up-regulated significantly (P < 0.05) in
cultivar JW2372’s leaves. These two proteins were iden-
tified as ATP synthase beta subunit. ATP synthases have
been found to be responsive to NaCl stimulus (Jiang et al.
2007). Five proteins (spot 66, 68, 70, 73 and 76) were
found significantly down-regulated in only one cultivar or
in both cultivars seedling leaves under salt stress, including
formate dehydrogenase (FDH), ATP synthase beta subunit
and phosphoglycerate kinase (PGK), putative FDH plays
an significant role in energy supply and in response to
stresses in other plants (Tishkov and Popov 2004). PGK
could catalyze the reversible transfer of a phosphate group
from 1, 3-bisphosphoglycerate to ADP, producing
3-phosphoglycerate and ATP. It acts as a major enzyme in
the first ATP-generating step of the glycolytic pathway.
Spot 69 was up-regulated in cultivar JW2372 and spot 72
was up-regulated in cultivar JW9-6 seedling leaves by salt
treatment. The two spots were detected as ATP synthase
beta subunit. ATP synthase CF1 alpha subunit identified at
spot 74 was down-regulated at the early stress and up-
regulated at the stress time (72 h) in cultivar JW9-6, while
significantly up-regulated in cultivar JW2372. The differ-
ently express pattern of these proteins indicated that energy
supply was inhibited in both cultivars after stresses, but
more seriously in cultivar JW9-6 than in cultivar JW2372.
This may imply that sufficient energy supply is required for
shrub willow seedling to handle salt stress. At the same
time, energy in the seedling leaves of genotype cultivar
JW9-6 is more abundant than in cultivar JW2372. This may
explain the fact that cultivar JW2372 is more salt-tolerant
than cultivar JW9-6.

Proteins related to other metabolisms and pathways
in shrub willow seedling leaves

In this study, 11 proteins were associated with the primary
metabolisms and its pathways, including metabolisms of
nucleotide, metabolism and cellular processes for amino
acid and nitrogen. Six proteins (spots 23, 24, 25, 26, 27 and
28), which were involved with amino acid and nitrogen
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metabolism, were found to be differentially expressed in
abundance under salt treatment (Table 1). One protein (spot
24) of them was down-regulated and two proteins (spots 25
and 26) were up-regulated in cultivar JW9-6, but no change
identified in abundance in cultivar JW2372. These were
identified as s-adenosylmethionine synthase 4-like isoform 1
(SAM synthase), cysteine synthasel and Gln synthetase
(GS), respectively. SAM synthase could catalyze the
biosynthesis of SAM from ATP and r-methionine and in-
volved in ethylene biosynthesis under salt stress (Ma et al.
2012). SAM often serves as a methyl group donor in
transmethylation reactions (Van et al. 1994). Here, SAM
synthase decreased in abundance under NaCl treatment that
is consistent with previous results (Jiang et al. 2007). Cys-
teine synthase is responsible for the last step in biosynthesis
of Cys (Masaaki et al. 2001). GS is an important enzyme
related with assimilating inorganic nitrogen into organic
forms. It also plays a key role in the nitrogen metabolism by
catalyzing condensation of glutamate and ammonia to form
glutamine (Hoelzle et al. 1992). It also plays a vital role in
improving rice tolerance to salt (Hoshida et al. 2000). The
other three proteins (spot 23, glutamate-1-semialdehyde
aminotransferase (GSA-AT), spot 27, glutamate—ammonia
ligase, cytosolic, spot 28, AlaT1) were down-regulated in
cultivar JW2372 at the late stress stage. GSA-AT catalyzes
the transamination of GSA to form ALA (Sandra et al.
1992). AlaT1, known as glutamate-pyruvate transaminase 1,
can generate pyruvate and glutamate by catalyzing the re-
versible transamination between 2-oxoglutarate and alanine.
Therefore, it plays an important role in the metabolism of
amino acids and glucose (Pollard and Cooper 2009). Our
analysis indicated that the nitrogen metabolism and amino
acid are increased in cultivar JW9-6, but inhibited in cultivar
JW2372 under salt stress.

Additionally, three proteins (spot 29, actin-3-like, spot
30, actin-depolymerizing factor and spot 31, alpha-tubulin)
were found to be related to cellular processes. Two of them
(spots 29 and 31) were up-regulated in the seedling leaves
of the two cultivars under salt stress, while the third one
was up-regulated only in cultivar JW9-6. While one protein
(spot 30) down-regulated only in the cultivar JW9-6 related
to cellular processes. Actin is a component in cytoskeletal
system that enables cell movements and cellular processes
(Pollard and Cooper 2009). Tubulin is one of several
members of a small family of globular proteins and a
component of the cytoskeleton. Both actin and tubulin
dynamics are of importance to cellular homeostasis. Up-
regulation of these proteins revealed that cellular processes
are improved by salt stress in shrub willow seedling leaves.

We further found, for two proteins (spot 77 and 78), the
mechanism of their responding to salt was related to nu-
cleotide metabolism. One protein (spot 77, UvrB/UvrC
protein : AAA ATPase) was down-regulated but the other

protein (spot 78, Adenine phosphoribosyltransferase 1,
(APRTase)) was up-regulated in cultivar JW9-6. At the
same time, it was not affected (P > 0.05) by the expression
in cultivar JW2372 under both salt and non-salt stresses.
APRTase is a kind of enzyme that is involved in the path-
way for purine nucleotide salvage. It is a catalyst in the
reaction between phosphoribosyl pyrophosphate (PRPP) and
adenine to form AMP (Sancar and Hearst 1993). Nucleotide
excision repair is initiated by the excinuclease which excises
a wide variety of DNA damages in a dodecanucleotide
(Grossman 1993). This is due to fact that the coordinated
reactions among UvrA, UvrB, and UvrC proteins. Our re-
sults indicated that under salt stress nucleotide metabolism
in shrub willow seedling leaves is affected.

Conclusions

In this study, comparative analysis of seedling leaves of
two shrub willow clones (salt-tolerant cultivar JW2372 and
salt-sensitive cultivar JW9-6) under salt stress were con-
ducted to investigate changes of total proteins under salt
stress. Totally, 83 differentially expressed proteins were
successfully identified using MALDI-TOF-TOF MS
(Table 1).

Major findings from this study are listed as follows: (1)
shrub willow increases salt tolerance by enhancing its ROS
scavenging capacity and protecting redox homeostasis
system from damage; (2) the inhibition of protein synthesis
as well as protein folding and assembly, and enhancing of
protein proteolysis were required by shrub willow seed-
lings to survive in salt stress; (3) salt stress might affect the
pathways of photosynthesis, carbohydrate metabolism,
energy supply, and nitrogen and amino acid metabolism.
(4) cultivar JW2372 more salt tolerant than that of cultivar
JW9-6 due to comprehensive performance of all the
pathways.

Investigating the mechanism at proteomic level allows
us to further our understanding and possibly develop
management strategies of cellular activities in salt-treated
shrub willow clones, providing new insights on the re-
sponses of shrub willow leaves to salt stress.
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