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Abstract Different physiological behavior of a wide

range of varieties and species belonging to the Citrus genus

was analyzed when subjected to salt stress with the aim to

seek new sources of tolerance that might be specie-specific.

Our goal was to use physiological results obtained along a

salt stress in order to clarify if it would be possible to

associate them with the known citrus genetic diversity. For

that purpose, we have selected 20 different genotypes rep-

resenting the major species on the basis of the genetic

diversity of Citrus genus complemented with one interge-

neric hybrid Carrizo citrange (C. sinensis 9 P. trifoliata).

A moderate salt stress of 75 mM of NaCl was applied for

12 weeks. For control plants, the main parameters con-

tributing for more than 25 % to the diversity on the two axes

of principal component analysis (PCA) were chlorophyll

content, photosynthesis and Fv/Fm under light. However,

the dispersal of species and varieties on the PCA did not

show any particular structure. Under salt stress condition,

four parameters (leaf chloride content, leaf chlorophyll

content, photosynthesis and stomatal conductance) con-

tributed more specifically to the dispersion on PCA repre-

sentation with more than 15 % of contribution for each

parameter. Large differences were observed within citrus

genus: mandarin and pummelo presented good tolerance to

salt stress while citron was very sensitive. Furthermore, all

secondary genotypes that presented good tolerance to salt

tolerance shared mandarin or pummelo as female parent.

Keywords Citrus � Salt stress � Genetic diversity �
Photosynthesis � Rootstocks

Introduction

Citrus species are considered sensitive to salt stress (Maas

1993). The adverse effects of salt stress on plant growth are

related to low osmotic potential, accumulation of ions to

toxic levels, and nutritional imbalance (Ashraf and Harris

2004; Byrt and Munns 2008). In citrus, effects of salt stress

have been extensively reported in the literature (Anjum

2008; Atmane et al. 2003; Garcia-Sanchez and Syvertsen

2009; Hussain et al. 2012; Lopez-Climent et al. 2008;

Mouhaya et al. 2010b; Saleh et al. 2008; Syvertsen et al.

2010). The observed effects of salinity are various and

including symptoms of leaf injury, growth suppression and

yield decline. Primary effects of salt stress in citrus are

decreased stomatal conductance (Anjum 2008), which

results in less CO2 diffusion, which ultimately decline net

photosynthesis (Garcı́a-Sánchez and Syvertsen 2006) and

ion accumulation (Hussain et al. 2012; Sudhir et al. 2005).

A large diversity within citrus genus towards salt stress

does exit, e.g., Rangpur lime, Sunki mandarin and Cleo-

patra mandarin are considered to be tolerant, while Carrizo

citrange is known to salt sensitive (Maas 1993). In citrus
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damages caused by salinity are usually associated with

chloride accumulation but not with sodium (Banuls et al.

1997; Hussain et al. 2012; Moya et al. 2002; Syvertsen and

Garcia-Sanchez 2014). Walker and Douglas (1983)

observed significant difference between Rangpur lime,

Kharna khatta lime, and Etrog citron for Cl- accumulation

in the leaves but little difference was observed for Na?

accumulation. Trifoliate orange (Poncirus trifoliata) is a

poor Cl- excluder (Cooper 1961), but an efficient Na?

excluder at low salinity level (Walker 1986).

As the ability to exclude Na? and Cl- ions seems to be

crucial in the evaluation of citrus tolerance status for salt

stress (Hussain et al. 2012), tests have been mainly per-

formed with citrus used as rootstocks or with scion grafted

on a rootstock. In citrus, rootstocks are propagated by

seedlings of polyembryonnic seeds. Some citrus produce in

their seeds somatic embryos in addition to the zygotic one.

Those embryos are originated from nucellar cells, a

maternal tissue, and therefore the regenerated plants

reproduce the maternal characters. From three basic spe-

cies, Citron (C. medica) and pummelo (C. maxima) are two

species which are not able to produce polyembryonic

seeds. This is the reason for their uselessness as rootstock

in modern agriculture where homogeneity and reproduc-

ibility of plant phenotypes are the conditions of plant

commercialization in citrus nursery. In breeding programs,

many opportunities are offered by sexual or somatic

crossings for combining favorable characters and create

new improved rootstocks more adapted to environmental

constraints (Grosser et al. 2007; Ollitrault et al. 1998, 2000,

2007, 2008). This challenge may be achieved more effi-

ciently if the genetic sources are widely evaluated for the

selection of new tolerances to salinity. Today all the citrus

scientific community had adopted hypothesis about Citrus

history and phylogeny proposed by (Barrett and Rhodes

1976; Scora 1975) where a large diversity of Citrus genus

is represented by three basic species such as mandarin,

citron and pummelo. They are at the origin of many sec-

ondary cultivated species such as orange, lemon, sour

orange, grapefruit, clementine by several sexual crosses

appeared spontaneously more or less recently during the

citrus history. Several molecular studies have confirmed

and specified sense and degree of relatedness of citrus

phylogeny (Barkley et al. 2006; Luro et al. 2001a; Nicolosi

et al. 2000). The current assumption is for four main spe-

cies citron (C medica), mandarin (C. reticulata), pummelo

[C. maxima (Burm.) Merr.] and micrantha (C. micrantha

Wester). From these four main species, all other species

were derived by hybridization. This hypothesis is sup-

ported by the results of studies using biochemical

and molecular markers such as isozymes (Herrero et al.

1996), restriction fragment length polymorphism (RFLP)

(Federici et al. 1998), random amplified polymorphic DNA

(RAPD) (Corazza-Nunes et al. 2002; Nicolosi et al. 2000),

inter-simple sequence repeat (ISSR) (Fang et al. 1998),

simple sequence repeat (SSR) (Corazza-Nunes et al. 2002;

Luro et al. 2001b). This concept gained further support

from various studies using cytoplasmic DNA markers

(Froelicher et al. 2010; Nicolosi et al. 2000). Therefore, in

this study, different varieties were selected representing the

major species on the basis of the genetic diversity of Citrus

assuming that the mechanisms of tolerance acquired during

the evolution should be shared by several varieties of the

same species and specificities should be observed in larger

taxa or their descendants. Thus, those taxa, covering most

of the genetic diversity of the genus Citrus: pummelo,

mandarin and citron, were more represented than second-

ary species. In addition, many species have only a sec-

ondary low genetic diversity linked to phenotypic

diversification gained by accumulation of somatic muta-

tions in contrast to the ancestral species where sexual

crossing has been the main mechanism of their evolution.

Materials and methods

Plant material

This study was carried out at INRA-CIRAD research station

of Corsica, France. Twenty different genotypes of citrus

were selected belong to major diversity of Citrus genus

complemented with one intergeneric hybrid carrizo citrange

(C. sinensis 9 P. trifoliata). A total of 8 species and one

hybrid were represented (Table 1). Six plants per genotype

were subjected to salt stress while only three plants were

selected for each control and salt stress condition.

Plant materials were propagated in two ways: for poly-

embryonic genotypes, propagation was done by sowing

seeds in a neutral substrate (perlite), while for monoem-

bryonic genotypes C. medica and C. maxima stem cutting

was used to produce true-to-type plants. Synthetic auxin

(Rhizopon 4 %) was used for root induction. Seedlings

were transplanted 3 months after germination in 2.5-l pots

with filter media, comprising 2/3 river sand and 1/3 silt,

and grown under greenhouse. Plants were irrigated thrice a

week with half diluted nutritive solution (fertilizer 28-14-

14, ref 205, Fertil, France).

Verification of genetic status of plants

As for genotypes propagated from seed, total DNA was

extracted on 0.5 cm2 of leaf of each plant seedlings plus

mother tree according to Doyle and Doyle (1987) and

adapted to citrus (Cabasson et al. 2001). The genetic con-

stitution of the seedlings was analyzed as described by

Hussain et al. (2012) using four inter-simple sequence
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repeat (ISSR) primers: HVH(CA)7T, DBDA(CA)7,

BDB(CA)7C, HVH(TCC)5 (Fang and Roose 1997). Ploidy

status of plants was determined by flow cytometry using

leaf samples according to Froelicher et al. (2007). Only

true-to-type plants were selected for further measurements.

Salt treatments

After the period of acclimation in greenhouse, plants were

divided as a non-saline control and salt treated. Three

plants per genotype were used for salt treatment and three

plants were used as non-saline control. The conditions of

salt stress were applied during 12 weeks (from mid-May to

10th of August). Salt-treated plants were watered three

times a week with the nutrient solution plus 75 mM NaCl.

The frequency of watering controls plants was identical to

that of stressed plants. Growing conditions were 18 �C min

38 �C max and a relative humidity of 55 % on average.

Plant diameter and leaf symptoms

Plant diameter was measured at start and at the end of

experiment for each non-saline control and salt-treated

plant. Plant diameter was measured with the help of vernier

calliper in (mm). The diameter increase percentage was

calculated after 80 days of salt stress for non-saline and

salt-treated plants. Leaf symptoms were observed

throughout the experiment representing different physio-

logical disorders: leaf necrosis, stem necrosis, leaf pointed

depigmentation, green leaf fall down. The symptoms were

recorded and transposed in different classes representing

the severity, the extension on leaves and on trees and the

delay of apparition.

Physiological parameters

Two leaves per plant at same height and same develop-

mental stage were tagged randomly. These two leaves were

used for the measurement of the studied parameters. For

each parameter, each genotype was evaluated consecu-

tively. Since it was not possible to measure all the

parameters the same day at the same time, control and salt

stress plants were split in two sets. Measurements were

performed at the beginning of the experiments and after

80 days of salt stress during two consecutive sunny days

for controls and stressed plants, respectively. Since the

temperature and humidity were very similar during the two

selected days, we expect to have limited the impact of the

environment on the measurements.

Gas exchange measurements

Net photosynthetic rate (A) and stomatal conductance (gs)

were determined with portable gas exchange fluorescence

system (GFS-3000) (Heinz Walz GmBH, Germany) with

photosynthetically active radiation photon flux of

1,000 lmol m-2 s-1. Measurements were performed in the

morning (8–11 am) to avoid high external temperature and

low humidity. Leaf temperature was 28 ± 2 �C, leaf to air

vapor pressure difference was 2.4 ± 0.4 kPa, and ambient

CO2 concentration was 370 ± 3 lmol mol-1 within the

cuvette of the portable gas exchange fluorescence system.

Chlorophyll fluorescence, chlorophyll content

and flavonoid content measurements

Chlorophyll fluorescence was measured during the night to

evaluate the maximum fluorescence capacity on dark-

Table 1 List of genotypes used for salt stress experiment

Common name Tanaka system Code ICVN and

SRA no.

Diamante citron C. medica L. CiD SRA 540

Digite citron C. medica L. CiB SRA 640

Etrog citron C. limonimedica L. CiE SRA 709

Poncire commun

citron

C. medica L. CiP SRA 601

Eingedi

pummelo

C. maxima (Burm.)

Merr

PuE SRA 610

Kao Pan

pummelo

C. maxima (Burm.)

Merr

PuK SRA 321

Timor pummelo C. maxima (Burm.)

Merr

PuT SRA 707

Eureka lemon C. limon (L.) Burm. LeE SRA 4

Lisbon lemon C. limon (L.) Burm. LeL SRA 16

Brazilian sweet

lime

C. limettioı̈des Tan. LiB SRA 697

Mexican lime C. aurantifolia

(Christm.) Swing.

LiM SRA 140

Rangpur lime C. limonia Osb. LiR SRA 777

Cleopatra

mandarin

C. reshni Hort. Ex Tan. MaC SRA 948

Sunki mandarin C. sunki Hort. Ex Tan MaS ICVN

0110076

Willow leaf

mandarin

C. deliciosa Ten. MaW SRA 133

Duncan

grapefruit

C. paradisi Macf. GrD SRA 470

Star Ruby

grapefruit

C. paradisi Macf. GrS SRA 293

Australian sour

orange

C. aurantium L. SoA SRA 851

Combava C. hystrix D.C. CoK SRA 630

Carrizo citrange C. sinensis 9 Poncirus

trifoliata

CaC SRA 796

ICVN International citrus variety numbering, SRA Station de research

agronomic
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adapted leaves with portable fluorometer (Hansatech Ltd.,

Kings Lynn, UK). The chlorophyll content or leaf green-

ness was measured for each plant with the help of SPAD

meter (Minolta SPAD-502, Japan). The leaf phenolic

compounds, mainly represented by flavonoids, was mea-

sured with the optical sensor Dualex3.3� start-up (Force-A

�).

Mineral analysis: sodium and chloride content

One leaf for non-saline control and three leaves for salt

treated were collected after 80 days of treatment. Mineral

analysis was carried out according to Mouhaya et al.

(2010a), Saleh et al. (2008). Leaves were oven dried at

60 �C for 1 week and used for chloride and sodium content

analysis. Leaves were weighed and crushed in hammer-

mill and stored at room temperature. 50 mg of powder was

burnt at 400 �C for 4 h. The resulting ashes were dissolved

in 100 mL of 0.5 N concentrated nitric acid. The solution

was divided into two parts for chloride and sodium ana-

lysis. The chloride concentration was determined using a

specific chloride electrode (Orion, 9417BN). Chloride

content was expressed in mg/g of dry weight of plant

material. Leaves, sodium and chloride contents were

expressed in mg g-1 of dry weight. For sodium analysis

inductively coupled plasma mass spectrometer (ICP-MS)

assays were performed at the Unité de Service ‘Analyse

des eaux, sols et végétaux’, Département performances des

systèmes de production et de transformation tropicaux of

CIRAD in Montpellier, France.

Statistical analysis

Average values were calculated for each tree from leaf

repetition measurements. All the data were analyzed with

R statistical software to represent physiological diversity

under normal growth (control) and under salt stress con-

ditions. Data were normalized and used in principal com-

ponent analysis (PCA) or to construct a dendrogram by

Ward aggregation method.

Results and discussion

Salt stress leaf symptoms

The leaf necrosis symptoms first appeared after 15 days of

stress in citron (C. medica L.), particularly in variety Etrog.

Leaf necrosis were developed from the tip of the blade and

then spread throughout the leaves and reached the ramifi-

cations. Most of the trees of citron species were badly

affected with only a limited number of leaves which were

not affected by necrosis (Fig. 1). Theses leaves were used

to measure the photosynthetic parameters. A progressive

loss of leaves was observed in Mexican lime [C. auranti-

folia (Christm.) Swing.] after 65 days onwards. Some

leaves were still present on trees after 80 days of salt stress

which allowed us to measure physiological parameters.

After 80 days plants eventually lost all their leaves. Carrizo

citrange showed leaf necrosis from the ends of leaves and

first observed on lower leaves. These symptoms appeared

after about 60 days of salt stress treatment. No significant

symptom was observed for all other genotypes during the

80 days of salt stress. Only a few points of small discol-

oration (less than 1 mm) were observed on some leaves of

pummelo but we did not consider them as salt symptoms. A

very unique behavior of sudden drop of all the leaves while

they were still green were observed in the two varieties of

grapefruit (C. paradisi Macf.) after 80 days of salt stress.

Unlike the Mexican lime, this leaf fall was followed by an

emergence of new leaves. We observed this behavior after

90 days of salt stress. To our knowledge such a behavior in

response to salt stress has never been reported in citrus.

Other symptoms associated to the salt stress such as the

reduction of leaf or branch growth have been observed in

few varieties. Nevertheless, this phenomena was particu-

larly visible when the control plants were in vigorous

growing but less or not observable when the control vari-

eties did not present a strong vegetative flush (Table 2).

The most expressed difference between control and salt

stressed variety was observed for Australian sour orange

(Fig. 1).

Principal component analysis of genotypes

under control condition

The results obtained from different parameters when plants

were grown in control condition showed a wide dispersion

of physiological behavior within species (Fig. 2). We

observed considerable differences in growth rate or pho-

tosynthesis among the investigated genotypes. Within one

variety, all trees presented the same behavior showing little

difference between plant replications which proved that

differences were due to genetic diversity and not caused by

a possible change in growing conditions. Therefore, for

control plants, we were able to obtain an average value of

each parameter for all varieties and used this average value

to calculate the relative values for trees when subjected to

salt stress. Pummelo species presented good photosynthetic

efficiency and the highest rate of polyphenols, while the

Digite citron, grapefruits, Willow leaf mandarin and

Carrizo citrange had the highest growth rates with high

content of sodium in leaves. This result reinforces the

proposition that the comparison of behavior under stress

must first be compared to control trees and then, relative

values can be used to compare different varieties. The
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parameters (chlorophyll content, photosynthesis and Fv/Fm

prime under light) contributing to more than 25 % to the

diversity were represented onto two axes of a PCA (Fig. 3).

Dispersal of species and varieties on the PCA did not have

a particular structure.

Principal component analysis of genotypes under salt

stress

When genotypes were subjected to salt stress, responses of

each variety was more heterogeneous than that observed

ones for the control plants (Fig. 4). The most heteroge-

neous behavior was observed for the Australian sour

orange (C. aurantium L.), Willow leaf mandarin

(C. deliciosa Ten.), grapefruits (C. paradisi Macf.) and

Poncire commun citron (C. medica L.). For all other

varieties, behavior of the three trees was almost identical.

The PCA of diversity in behavior of genotypes relative to

control under salt stress showed two clearly distinguishable

varietal groups (Fig. 4). The first group (I) corresponds to

varieties or species that showed lower photosynthetic

activity and accumulated high Cl- and Na? contents in

leaves as well as higher rate of phenolic compounds. In that

group we found all the citrons, the Mexican and Brazil

sweet limes and Carrizo citrange. In the second group (II)

we found lemons, mandarins, pummelos, Rangpur lime,

Combava, sour orange and grapefruit. This group was

distinguished mainly by a lower accumulation of toxic

Fig. 1 Different symptoms

presented by different

genotypes under salt stress

condition compared to their

control plants
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ions, but also by a higher photosynthetic activity than for

varieties of the first group. Four parameters contributed

more specifically to the dispersion of varieties in PCA

(Fig. 5). These parameters were leaf chloride content, leaf

chlorophyll content, photosynthesis and stomatal conduc-

tance with more than 15 % of contribution for each

parameter. The growth rate measured as the increase in

stem diameter relatively to the value measured for control

plants did not appear to be a good indicator of the differ-

entiation between the two groups and therefore, is probably

not a good indicator of sensitivity or tolerance for any

variety subjected to salt stress. For example, Diamante

citron and Carrizo citrange showed relatively high growth

but also presented the characteristics of sensitivity to salt

stress such as high Cl- content.

Our results also reflect the degree of relatedness of some

minor species. For example, the sour orange presented a

behavior quite close to both assumed parents (Pummelo

and mandarin). The lemon probably derived from a cross

between sour orange and citron inherited a behavior from

sour orange while Mexican and Brazil sweet lime inherited

the behavior from citron recognized as their paternal par-

ent. Unlike other limes, Rangpur lime is related with the

mandarin (Barkley et al. 2006) and, consequently, its

behavior is normally equated with varieties of the second

group.

Furthermore, if we look at the varietal dispersion of

species with symptoms, it is interesting to note that the first

group except the Brazil sweet lime presented symptoms of

leaf necrosis, leaf fall and for citron genotypes leaded

ultimately to the death of plants. The second group of

species is characterized by an absence of symptoms as

observed in the first group. However, we can note that

grapefruit species presented a unique behavior with sudden

leaf drops after 90 days of salt stress followed by the

emergence of new leaves. This behavior could be a

defensive mechanism, possibly to get rid of the leaves that

accumulated high contents of toxic ions (Cl-) and at the

end produced new leaves to maintain photosynthesis and

plant growth.

Detoxification mechanisms involved in tolerance to salt

stress allow reducing the level of intracellular reactive

oxygen species (ROS) produced consecutively to oxidative

stress (Jacoby et al. 2010; Mittler 2006). These mecha-

nisms are often controlled by cytoplasmic and mitochon-

drial genes (Addabbo et al. 2009; Asada 2006). Our results

may suggest that the cytoplasm of mandarin and pummelo

could bring effective detoxification mechanisms contrib-

uting to better tolerance of these genotypes. We know that

cytoplasm in Citrus is maternally inherited (Green et al.

1986; Masashi Yamamoto 1993). All the supposed hybrids

with pummelo or mandarin as mother plant such as sour

orange, grapefruit, lemon and Rangpur lime were found in

the group of varieties tolerant to salt stress. The Mexican

lime inherited the cytoplasm of C. micrantha (Nicolosi

et al. 2000). We did not have any information about the

tolerance ability of C. micrantha. The Brazil sweet lime

inherited a cytoplasm similar to that of Mexican lime and

was also found in the group of the susceptible varieties. Of

course, one cannot only consider the ability to detoxify

ROS as the only way to cope with salt stress. Indeed, there

are other mechanisms of adaptation (vacuolar compart-

mentation), but our results do not confirm that assumption.

It would then be required to analyze the genetics of toler-

ance to salt stress and extend the experiment not only to

other basic genotypes and varieties, but also to hybrids with

favorable nucleo-cytoplasmic combinations to confirm our

hypothesis of the strong involvement of cytoplasmic

inheritance of salt stress tolerance. Undoubtedly the ana-

lysis of nuclear inheritance provides insights into the

Table 2 Brief description of different symptoms observed during salt

stress for each genotype

Common name Symptoms

Diamante citron Leaf necrosis were developed from the tip of the

blade and then spread throughout the leaves and

reached the ramifications. Furthermore, all

leaves were fallen

Digite citron

Etrog citron

Poncire commun

citron

Eingedi

pummelo

Small discoloration (less than 1 mm) on certain

leaves

Kao Pan

pummelo

Timor pummelo

Eureka lemon No visible symptom was observed during the

80 days of salt stressLisbon lemon

Brazilian sweet

lime

A slight reduction in growth of plant

Mexican lime Yellowing of leaves, progressive leaf fall

Rangpur lime Slight reduction in plant growth

Cleopatra

mandarin

No visible symptom was observed during the

80 days of salt stress

Sunki mandarin

Willow leaf

mandarin

Duncan

grapefruit

Sudden drop of all the leaves while they were still

green and then emergence of new leaves

Star Ruby

grapefruit

Australian sour

orange

Reduction of vegetative growth

Combava Reduction of leaf and/or branch growth

Carrizo citrange Leaf necrosis symptoms were first observed on

lower (older) leaves, leaf necrosis start from the

end of the leaves and progress towards tip,

increase in vegetative growth

1740 Page 6 of 10 Acta Physiol Plant (2015) 37:1740

123



mechanisms of adaptation to salt stress which is also under

the control of nuclear genes. To study nucleo-cytoplasmic

interaction and nuclear and cytoplasmic inheritance of salt

tolerance, two paths could be explored. The first strategy

could be to produce cybrid with different combinations of

nucleus and cytoplasm inherited from tolerant and sensitive

varieties. Unfortunately cybrid production is quite difficult

and time consuming in perennial crops. The second option

would be to perform Mendelian heredity studies based

on segregating progenies resulting from parents with
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contrasted properties of tolerance when subjected to salt

stress. Because of the maternal heredity of cytoplasmic

organelles, all sexual crosses should then be done in both

senses (male and female). At the end the salt tolerance

cytoplasmic inheritance should be also investigated.

However, the establishment of such experimental tests will

be relatively long and measurements should be limited to

only the most informative parameters.

Conclusion

In conclusion, we propose that the search for new sources

of slat stress tolerance could be directed toward exploration

of mandarins and pummelo groups which presented the

highest genetic diversity. We may suppose that the cyto-

plasm of mandarin and pummelo play an important role in

tolerance of secondary species. Then, more emphasis

-4 -3 -2 -1 0 1 2

-3
-2

-1
0

1
2

37.6 %

22
.9

 %

CiE4
CiE5
CiE6

SoA4

SoA5

SoA6

MaW5

MaW6

MaW4

CoK4
CoK5

CoK6

MaC5

MaC4

MaC6

LeE5
LeE6

LeE7

CaC6CaC4

CaC5

CiB4

CiB5

CiB6

CiD4

CiD5 CiD6

CiP4
CiP5

CiP6
GrS4

GrS5

GrS6
GrD4

GrD6

GrD5

LeL5

LeL6
LeL4

MaS4
MaS5

MaS6

LiB5

LiB6

LiB4

LiR4 LiR5

LiR6LiM4

LiM5

LiM6

PuT4 PuT5
PuT6

PuE4

PuE5

PuE6

PuK4
PuK5

PuK6

Etrog citron

Mexicain lime 

Poncire commun citron 

Bouddha’s hand citron

Diamante citron

Brazil sweet lime

Engedi pummelo

Kao pan pummelo

Timor pummelo

Rangpur lime 

Cleopatra mandarin

Grapefruit

Carrizo citrange

Lemon

Sour orange

Combava

First group (I) Second group (II)

Fig. 4 PCA of citrus varieties and trees repartition on the two first axes representing 61 % of the population diversity calculated from

physiological parameters estimated on the stressed plants. Circles group indicates 3 repetitions of each genotype

Flavonoid content
Fv/Fm

Stomatal.conductance

Photosynthesis

Fv’/Fm’

Chloride 
contentSodium content

Stem enlargement

Chlorophyll 
content

0%

5%

10%

15%

20%

25%

30%

0% 2% 4% 6% 8% 10% 12% 14% 16% 18%
Relative contribution to axis 1 

R
el

at
iv

e c
on

tr
ib

ut
io

n 
to

 a
xi

s 2
 

Chlorophyll 
content

Phenolic 
content

Fv/Fm

Stomatal 
conductance

Photosynthesis
Fv’/Fm’ 

Chloride 
content

Sodium 
content 

Stem 
enlargement

Fig. 5 Contribution of each physiological factor to first two axes of PCA explaining the diversity of stressed plant compared relatively to control

1740 Page 8 of 10 Acta Physiol Plant (2015) 37:1740

123



should be given to the behavior of mandarins and pummelo

groups since those genotypes seem to be at the origin of

new traits of salt stress tolerance.
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