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Abstract A pot experiment was carried out to explore the

role of glycinebetaine (GB) as foliar spray foliar on two

pea (Pisum sativum L.) varieties (Pea 09 and Meteor Fsd)

under saline and non-saline conditions. Thirty-two-day-old

plants were subjected to two levels 0 and 150 mM of NaCl

stress. Salt treatment was applied in full strength Hoa-

gland’s nutrient solution. Three levels 0, 5 and 10 mM of

GB were applied as foliar treatment on 34-day-old pea

plants. After 2 weeks of foliar treatment with GB data for

various growth and physiochemical attributes were recor-

ded. Rooting-medium applied salt (150 mM NaCl) stress

decreased growth, photosynthesis, chlorophyll, chlorophyll

fluorescence and soluble protein contents, while increasing

the activities of enzymatic (POD and CAT) and non-

enzymatic (ascorbic acid and total phenolics) antioxidant

enzymes. Foliar application of GB decreased root and

shoot Na? under saline conditions, while increasing shoot

dry matter, root length, root fresh weight, stomatal con-

ductance (gs), contents of seed ascorbic acid, leaf pheno-

lics, and root and shoot Ca2? contents. Of three GB (0, 5,

10 mM) levels, 10 mM proved to be more effective in

mitigating the adverse effects of salinity stress. Overall,

variety Pea 09 showed better performance in comparison to

those of var. Meteor Fsd under both normal and salinity

stress conditions. GB-induced modulation of seed ascorbic

acid, leaf phenolics, gs, and root Ca2? values might have

contributed to the increased plant biomass, reduction of

oxidative stress, increased osmotic adjustment and better

photosynthetic performance of pea plants under salt stress.

Keywords Pea (Pisum sativum L.) � Salinity �
Glycinebetaine � Ascorbic acid � Antioxidants

Introduction

Abiotic stresses (e.g., drought, salinity, cold and heat)

adversely affect growth and yield of economically impor-

tant crops and more than 50 % yield losses are direct result

of these environmental factors (Rodriguez et al. 2005;

Ahmad et al. 2012). Among these abiotic stresses soil

salinity is a major issue which acts as a limiting factor for

the productivity of crops and is expected to destroy about

50 % cultivable land up to the middle of twenty-first cen-

tury (Mahajan and Tuteja 2005). High salt level in the

irrigation water or soil causes hyperionic and hyperosmotic

stress effects which leads to various metabolic disorders

and ultimately plant death (Mahajan and Tuteja 2005).

Various growth, physiological and biochemical attri-

butes, e.g., fresh and dry biomass (Shahbaz et al. 2011,

2012; Shaheen et al. 2012; Kausar et al. 2013), photosyn-

thesis (Kanwal et al. 2011; Kausar and Shahbaz 2013;

Perveen et al. 2010, 2013; Shahbaz et al. 2013; Kanwal

et al. 2013), chlorophyll fluorescence (Kanwal et al. 2011;

Habib et al. 2013; Perveen et al. 2013), water relations

(Perveen et al. 2012a, 2014; Odjegba 2013), mineral

nutrients (Perveen et al. 2012b) and activities of antioxi-

dant enzymes (Perveen et al. 2011; Ashraf et al. 2012;

Odjegba 2013) are severely inhibited under saline condi-

tions (Shahbaz and Ashraf 2013). However, plants protect
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themselves from negative effects of salt stress by synthesis

or accumulation of low-molecular-weight compatible

organic compounds such as glycinebetaine (GB), proline

(Pro) and raffinose (Wakeel et al. 2011; Chen and Murata

2002, 2011; Sakr et al. 2012), etc.

Glycinebetaine (N,N,N-trimethyl glycine) is a quater-

nary ammonium compound that is ubiquitous in occurrence

(Rhodes and Hanson 1993) and known as an effective

compatible solute that accumulates in the chloroplasts of

certain plants under abiotic stress conditions like drought

and salinity stresses (Robinson and Jones 1986; Girida-

rakumar et al. 2003). GB plays protective role against salt

stress primarily by osmotic adjustment (Gadallah 1999),

protection of photosynthetic machinery (Cha-Um and

Kirdmanee 2010), stabilization of proteins structure

(Makela et al. 2000) and scavenging of reactive oxygen

species (Ashraf and Foolad 2007). However, GB accumu-

lation varies not only under different environmental con-

ditions, e.g., extreme temperatures (Karabudak et al. 2014),

drought (Abbas et al. 2014), salinity (Girija et al. 2002) and

alkaline stress (Cui et al. 2008), but also on type of plant

species (Moghaieb et al. 2004), plant varieties (Hassine

et al. 2008) and plant organelles (Zhu et al. 2003).

McCue and Hanson (1990) reported that activity of

betaine aldehydehydrogenase, a GB synthesizing enzyme,

is increased under salinity stress. Varshney et al. (1988),

however, were of the view that choline and betaine accu-

mulation was higher in salt sensitive Trifolium alexandri-

num lines. Similarly, Wyn Jones et al. (1984) did not find

positive correlation in accumulation of GB and salt toler-

ance in Elymus, Agropyron and Triticum genera. Accu-

mulation of GB is a widespread and sporadic and varies in

different plant species (Ashraf and Harris 2004). For

example, the concentration of GB is tenfold more in sor-

ghum than that found in maize (Grieve and Maas 1984;

Rhodes et al. 1987). Yildiztugay et al. (2014) reported that

osmolytes such as GB, proline and choline accumulate

under mild level of salt stress in Sphaerophsa kotschyana

plants. However, some other crops did not/little possess

natural ability of GB-accumulation under abiotic stresses

(Subbarao et al. 2001).

In recent decades, exogenous application of osmopro-

tectant such as proline, glycinebetaine and trehalose has

helped reduce the negative effects of salinity stress (Hoque

et al. 2008; Zeid 2009; Kausar et al. 2014).GB enables

plant species to tolerate wide range of environmental

stresses (Yang and Lu 2005) by helping plant cells with

poor or no solute accumulation in osmotic adjustment

(Ashraf and Foolad 2007). For example, under abiotic

stresses foliar application of GB has been reported to

increase growth of wheat (Shahbaz et al. 2011), rice (Cha-

um et al. 2013) and maize (Reddy et al. 2013). Exogenous

application of GB has been reported to stimulate growth of

tomato (Chen et al. 2009), rice (Shahbaz and Zia 2011),

canola (Sakr et al. 2012), soybean (Ali et al. 2012) and

maize (Nawaz and Ashraf 2010; Kaya et al. 2013) although

adverse effects of higher doses of GB have also been

reported in grapevines (under low temperature) (Wilson

2001), kidney bean (under salt stress) (Lopez et al. 2002)

and cotton (under normal conditions) (Makhdum and

Shababuddin 2006). However, complete mechanism of

GB-mediated salt-stress tolerance is not well-known in

crop plants.

Pea (Pisum sativum L.) is an important leguminous crop

that ranked on 4th position globally and occupies 2nd

position in Pakistan on productivity basis (Shahid et al.

2011, 2012). It is an excellent source of proteins, carbo-

hydrates, vitamins, minerals, salts and antioxidants (Hus-

sein et al. 2006; Noreen and Ashraf 2009). Pea is cultivated

in tropical and sub-tropical regions of the world (Javaid

and Ghafoor 2002). Pea is cultivated on an area of

528.71 thousand hectares with total production of

441.53 thousand tons globally (Ashraf et al. 2011). In

Pakistan pea is cultivated as winter crop and used as food

and fodder throughout the country. It is cultivated on an

area of 10.00 thousand hectares with total annual produc-

tion of 82.00 thousand tons (Khan et al. 2013). Punjab is

the leading province and contributes 70–80 % of total pea

production (Zaidi et al. 2013). However, production level

of pea could not meet the domestic needs as its annual

consumption goes up to 160.00 thousand tons. Salt stress

adversely affects germination rate, fresh and dry biomass,

plant height, photosynthetic efficiency and mineral nutri-

ents of pea crop (Shahid et al. 2011, 2012). No information

is yet available on the effect of foliar application of GB on

pea plants under salt stress conditions. So, keeping in view

the protective role of GB and economic importance of pea

crop a hypothesis was made whether or not foliar appli-

cation of GB could be effective in ameliorating the dele-

terious effects of salt stress on pea plants. So the objectives

of current study were to assess the effect of foliar spray of

glycinebetaine on various growth (root and shoot fresh and

dry weights and root and shoot length), physiological (gas

exchange characteristics and chlorophyll fluorescence) and

biochemical (chlorophyll pigments, activities of enzymatic

and non-enzymatic antioxidants, soluble proteins and

mineral ions) attributes of pea plants under saline and non-

saline regimes.

Materials and methods

Plant material and experimental design

To explore the role of foliarly applied glycinebetaine (GB)

on various growth and physiochemical parameters of two
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pea (Pisum sativum L.) varieties (Pea 09 and Meteor Fsd)

under saline (150 mM) and non-saline conditions, an

experiment was carried out in the wire-house of Botanical

Garden, University of Agriculture, Faisalabad, under nat-

ural climatic conditions with average day and night tem-

peratures 31.83 ± 4 �C and 10.66 ± 3 �C, respectively,

9.33 and 14.67 light and dark period at PPFD

800–1,100 lmol m-2 s-1, respectively, and relative

humidity from 68.83 to 50 %. Seeds of two pea varieties

(Pea 09 and Meteor Fsd) were obtained from Ayub Agri-

cultural Research Institute (AARI), Faisalabad. Each

plastic pot was filled with thoroughly washed river sand

(10 kg per pot) and ten seeds per pot were sown. The

design of the experiment was completely randomized with

four replicates. When seedlings were 1 week old thinning

was performed to reduce the number of plants to 6 in each

pot. Plants were supplemented with full-strength Hoa-

gland’s nutrient solution at the rate of 2 l per pot every

week. Salt stress of 150 mM NaCl was applied after

36 days of sowing. To avoid osmotic shock to plants salt

solution (NaCl ? Hoagland’s nutrient solution) was

applied by increasing the salt level gradually in aliquots of

50 mM NaCl every day up to day 3 until final volume

150 mM was attained. Salt treatment was applied at the

rate of 2 l per pot every week until the end of experiment.

Moisture content of sand were maintained by adding

150 ml water per pot every day. Glycinebetaine (mol. wt.

117.15 of Sigma Aldrich, Germany) solution was prepared

by dissolving solid GB in distilled water and 0.1 % tween-

20 to ensure effective penetration in leaf cells. Three levels

of glycinebetaine, i.e., 0, 5 and 10 mM were applied at the

rate of 25 ml per pot as foliar spray in the evening to avoid

evaporation after 38 days of sowing. Data for various

growth and physiochemical attributes were recorded after

2 weeks of foliar treatment with GB. Plastic zipper bags

were used for the collection of fresh leaf samples during

early morning to avoid desiccation and stored at -20 �C

for determination of various biochemical attributes. Two

plants were carefully up-rooted from each replication,

measured shoot and root fresh weights (g plant-1), and

shoot and root lengths (cm). Then the same plant material

was oven-dried at 65 oC, and shoot and root dry weights (g

plant-1) were recorded.

Physiological attributes

Determination of gas exchange characteristics

Net CO2 assimilation rate (A), transpiration rate (E), sto-

matal conductance (gs) and sub-stomatal CO2 (Ci) were

determined by using a portable infrared gas analyzer

(Analytical Development Company, Hoddesdon, LCA-4

ADC). The gas exchange measurements were performed

in situ from 10.30 a.m. to 12.30 p.m. with some specific

adjustments/specifications as mentioned in Perveen et al.

(2010). PAR (Qleaf) at the surface of leaf was

941 lmol m-2 s-1.

Chlorophyll fluorescence determination

A Multi-Mode Chlorophyll Fluorometer of model OS5P-

Sciences, Inc. Winn Avenue Hudson, USA, was used for

the determination of maximum quantum photosynthetic

yield (Fv/Fm) according to the method of Strasser et al.

(1995). The oscillations were produced by light intensity of

2,800 lmol m-2 s-1. All the leaves were dark adapted for

30 min before recording the data for maximum fluores-

cence with all PSII reaction centers open (Fm), minimum

fluorescence with all PSII reaction centers open (Fo), var-

iable fluorescence (Fv) and efficiency of quantum yield of

PSII (Fv/Fm). Measuring beam frequency was 6 and

20 kHz for all measurements of Fo and Fm, respectively,

during saturation flash. Fo was recorded by weak red light

of \0.1 lmol m-2 s-1 intensity. Fm were recorded at

8,000 lmol m-2 s-1 saturation pulse of 0.8 s duration,

while Fv/Fm, electron transport rate (ETR) and coefficient

of nonphotochemical quenching (qN) were determined by

1,500 lmol m-2 s-1 actinic light intensity.

Following formulae were used for ETR and qN

calculation:

ETR ¼ Y � PAR � 0:84 � 0:5

qN ¼ Fm�F0m=Fm�Fo;

where 0.84 is absorption coefficient of leaf and 0.5 is

absorbed light fraction of PSII antennae.

Biochemical attributes

Determination of chlorophyll pigments

Arnon (1949) method was used for the determination of

chlorophyll (chl. a and b) contents. Fresh leaf samples

(0.1 g) were extracted in 5 ml acetone (80 %). The optical

densities of the supernatant were recorded at wavelengths

645 and 663 nm using a UV–visible spectrophotometer

(Model IRMECO U2020, Germany).

Chlorophyll contents were calculated by using the fol-

lowing formulae:

Chla ¼ 12:7 OD 663ð Þ� 2:69 OD 645ð Þ½ � � v=1;000

� w

Chlb ¼ 22:9 OD 645ð Þ� 4:68 OD 663ð Þ½ � � v=1;000

� w

where v is the volume of the extract (ml), and w is the fresh

leaf mass (g).
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Determination of total phenolics

Total phenolic contents were determined by following the

method of Julkenen-Titto (1985) using Folin and Ciocal-

teau’s phenol reagent (MP Biomedicals, USA). Fresh plant

leaf (0.5 g) material was extracted in 80 % acetone. Then

centrifuged extract at 10,0009g for 10 min. The aliquot

(0.1 ml) was diluted with 2 ml of distilled H2O plus 1 ml

of Folin and Ciocalteau’s phenol reagent. After shaking the

mixture, 5 ml sodium carbonate (Na2CO3) (20 %) was

added. Then to the above mixture was added distilled water

and volume maintained to 10 ml in test tubes. After vortex

read the OD at 750 nm on a spectrophotometer (US-Visi-

ble, IRMECO, GmbH, Germany).

Seed ascorbic acid (Asc) content determination

Mukherjee and Choudhuri (1983) method was used for the

determination of ascorbic acid contents. Fresh seeds 250 mg

were homogenized with trichloroacetic acid (6 %) and vol-

ume raised to 10 ml in test tubes. Then 4 ml extract was

mixed with 2 ml of 2 % dinitrophenyl hydrazine and then one

drop of thiourea (10 % dissolved in 70 % ethanol) was added.

The mixture was boiled for 15 min. in a water bath at 95 oC.

Then cooled down and added 5 ml of sulphuric acid (80 %) to

the sample mixture. The absorbance was read at 530 nm and

Asc values were calculated with the help of standard curve.

Antioxidant enzymes activities

Extraction of enzyme Fresh leaf 0.5 g was homogenized

in 10 ml of 50 mM cooled phosphate buffer (pH 7.8),

placed on an ice bath and then centrifuged at 15,0009g for

20 min at 4 �C.

Determination of superoxide dismutase (SOD) Giannop-

olitis and Ries (1977) method was used for SOD deter-

mination. For the appraisal of SOD enzyme activity,

criteria of nitroblue tetrazolium (NBT) photoreduction

inhibition was used as one unit of SOD enzyme activity

will be equal to the amount of enzyme that inhibit 50 %

NBT photoreduction. SOD reaction mixture (1 ml) in

plastic cuvettes consists of 500 ll phosphate buffer (pH

7.8), 0.5 ml distilled H2O, 100 ll methionine, 50 ll NBT

and 50 ll sample extract, which were kept under light for

20 min. After that optical density of irradiated aliquots was

read at 560 nm using a spectrophotometer.

Catalase and peroxidase determination CAT and POD

activities were determined by following Chance and

Maehly (1955) with slight modifications. The CAT reac-

tion solution (3 ml) consisted of 1.9 ml phosphate buffer

(50 mM; pH 7.0), 1 ml H2O2 (5.9 mM) and 0.1 ml enzyme

extract. Reaction was initiated by adding an aliquot

(100 ll) of the enzyme extract. Changes in enzyme activity

were recorded by spectrophotometer at 240 nm after every

20 s for 2 min. For determination of POD activity reaction

mixture consists of 750 ll phosphate buffer (50 mM; pH

5.0), 100 ll guaiacol (20 mM), 100 ll H2O2 (40 mM) and

100 ll enzyme extract. Changes in absorbance values of

reaction mixture were read at 470 nm after every 20 s for

3 min by spectrophotometer.

Determination of total soluble proteins Bradford (1976)

method was used for the determination of total soluble

protein contents. Fresh leaf (500 mg) was triturated with

10 ml of 50 mM potassium phosphate buffer (pH 7.8) in an

ice bath. The aliquot was centrifuged at 10,0009g for

15 min at 4 �C.

Determination of mineral ions Dried root or shoot

material (0.1 g) was finely ground in digestion flasks with

digestion mixture (2 ml) by following Allen et al. (1985)

method. The digestion flasks were left for 24 h at room

temperature. The flasks containing samples were heated by

gradually increasing the temperature of hot plate up to

250 �C and kept at this temperature for 40 min. until fumes

are produced, after which, 35 % H2O2 (0.5 ml) was poured

down along the sides of flasks. When sample mixture

became colorless, heating was stopped and the samples

cooled down. Then volume of samples was maintained up

to 50 ml with distilled water and the samples filtered and

used for the determination of Ca2?, K? and Na? by flame

photometer (Jenway PFP 7).

Application of state on data

Data were analyzed statistically using analysis of variance

(ANOVA) for all parameters and calculated using com-

puter software (Co-STAT). Snedecore and Cohran (1980)

method was used for comparing mean values via least

significant difference.

Results

Effect of salt (NaCl) and glycinebetaine (GB)

on growth attributes

Root and shoot biomass and root and shoot lengths

Rooting-medium applied salt stress of 150 mM NaCl sig-

nificantly decreased shoot and root fresh weights (Fig. 1a,

b), shoot and root dry weights (Fig. 1c, d), and shoot and

root lengths (Fig. 1e, f) of two pea varieties, pea 09 and

meteor Fsd (Table 1). Of both varieties, Pea 09 was
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significantly higher in root and shoot fresh and dry bio-

mass, and root length than Meteor Fsd under both control

and salt stress conditions. Glycinebetaine (GB) applied as

foliar spray did not alter these growth attributes signifi-

cantly under non-stress and salt stress regimes. However,

foliar application of GB increased shoot dry weight

(Fig. 1b) and root fresh weight (Fig. 1c) in variety Pea 09,

while decreased root fresh weight (Fig. 1c) and root length

(Fig. 1f) in var. Meteor Fsd under non-saline conditions.

Effect of salt (NaCl) and glycinebetaine (GB)

on physiological attributes

Effect on gas exchange characteristics

Gas exchange characteristics like net CO2 assimilation

rate (A) (Fig. 1g), transpiration rate (E) (Fig. 1h) and

stomatal conductance (gs) (Fig. 2a) significantly

decreased in both pea varieties under salt stress of

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 1 Shoot and root fresh and

dry weights, shoot and root

lengths and photosynthetic

attributes of pea (Pisum sativum

L.) plants foliarly sprayed with

glycinebetaine under saline and

non-saline conditions
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150 mM NaCl (Table 1). Of two varieties, Pea 09

exhibited greater decline as compared to Meteor Fsd to

net CO2 assimilation rate (A) under saline stress, while

in var. Meteor Fsd the reduction in transpiration rate

(E) was more prominent in comparison to that of Pea 09

under saline and non-saline regimes. Overall, var. Pea 09

was higher in gs value as compared to var. Meteor Fsd

under both NaCl stress and non-stress conditions. Foliar

application of GB significantly improved stomatal con-

ductance of var. Pea 09 under non-stress condition only

(Table 1).

Considerable (P B 0.001) improvement was observed in

sub-stomatal CO2 (Ci) (Fig. 2b) of both pea varieties under

salt prevailing regimes. GB had non-significant effect on Ci

of both varieties under salt stress as well as non-stress

condition. Meteor Fsd showed better performance in

maintaining the Ci under salt-stressed conditions (Table 1).

Effect on chlorophyll fluorescence

Maximum quantum yield of photosystem-II (Fv/Fm)

(Fig. 2c), electron transport rate (ETR) (Fig. 2d), non-

Table 1 Mean squares from

analysis of variance of the data

for various growth, gas

exchange, chlorophyll

fluorescence, chlorophyll and

key metabolites of pea (Pisum

sativum L.) plants subjected to

different concentrations of

foliar-applied glycinebetaine

under saline and non-saline

conditions

df degrees of freedom, Chl. a, b

and a/b ratio chlorophyll a,

b and chlorophyll a/b ratio,

respectively, Ci sub-stomatal

CO2 conc, gs stomatal

conductance, E transpiration

rate, A net photosynthetic rate,

Fv/Fm efficiency of photosystem

II, ETR electron transport rate,

NPQ non-photochemical

quenching, qN co-efficient of

non-photochemical quenching

***, **, and * significant at

0.001, 0.01 and 0.05 levels,

respectively; ns, non-significant

Source of variation df Shoot f. wt. Shoot dry wt. Root f. wt. Root dry wt. Shoot length

Varieties (var.) 1 6.984*** 0.330* 0.015** 2.707* 5.528 ns

Salinity (S) 1 102.2** 3.339*** 0.025*** 0.001*** 293.7***

Glycinebetaine (GB) 2 0.516 ns 0.059 ns 0.001 ns 4.908 ns 24.50 ns

Var 9 S 1 0.028 ns 0.108 ns 0.002 ns 1.408 ns 1.244 ns

Var 9 GB 2 0.058 ns 0.003 ns 0.006* 8.325 ns 32.07 ns

S 9 GB 2 1.968 ns 0.069 ns 2.224 ns 1.158 ns 21.20 ns

Var 9 S 9 GB 2 1.968 ns 0.178* 0.001* 1.158 ns 6.950 ns

Error 36 0.692 0.052 0.001 4.491 10.28

Source of variation df Root length Chl. a Chl. b Chl. a/b ratio Total chl.

Varieties (var.) 1 18.58** 0.013 ns 0.049 ns 0.559 ns 0.112 ns

Salinity (S) 1 18.46** 0.558*** 0.840*** 2.617*** 2.777***

Glycinebetaine (GB) 2 1.758 ns 0.037 ns 0.050 ns 0.123 ns 0.167 ns

Var 9 S 1 0.026 ns 0.008 ns 9.100 ns 0.034 ns 0.007 ns

Var 9 GB 2 2.213 ns 0.032 ns 0.001 ns 0.208 ns 0.037 ns

S 9 GB 2 0.269 ns 0.032 ns 0.031 ns 0.593 ns 0.0623 ns

Var 9 S 9 GB 2 6.152* 0.084 ns 0.029 ns 0.378 ns 0.194 ns

Error 36 1.825 0.0387 0.016 0.183 0.0752

Source of variation df A E gs Ci Fv/Fm

Varieties (var.) 1 15.35*** 0.054*** 602.1** 6,244*** 0.058*

Salinity (S) 1 28.59*** 0.10*** 2,799*** 6,986*** 0.017 ns

Glycinebetaine (GB) 2 0.005 ns 0.003 ns 413.3** 226.2 ns 0.028 ns

Var 9 S 1 5.380*** 1.02 ns 133.3 ns 1,643* 0.004 ns

Var 9 GB 2 0.239 ns 3.583 ns 45.07 ns 71.19 ns 5.233 ns

S 9 GB 2 0.298 ns 4.083 ns 508.1** 154.1 ns 0.031 ns

Var 9 S 9 GB 2 0.051 ns 0.013* 160.7 ns 855.9 ns 0.029 ns

Error 36 0.135 0.002 65.85 286.8 0.012

Source of variation df ETR qN NPQ Total phenolics Ascobic acid

Varieties (var.) 1 3.685 ns 0.007 ns 8.333 ns 3.866*** 2.855 ns

Salinity (S) 1 0.010 ns 6.302 ns 0.012 ns 2.253*** 14.28***

Glycinebetaine (GB) 2 1.751 ns 0.007 ns 0.142*** 0.552*** 7.810***

Var 9 S 1 70.32 ns 3.502 ns 0.053 ns 0.423*** 0.004 ns

Var 9 GB 2 8.776 ns 7.170 ns 0.016 ns 0.244** 1.248 ns

S 9 GB 2 7.926 ns 0.006 ns 0.002 ns 0.012 ns 0.953 ns

Var 9 S 9 GB 2 50.25 ns 0.026* 0.066* 0.011 ns 0.321 ns

Error 36 24.46 0.007 0.013 0.030 0.790
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photochemical quenching coefficient (qN) (Fig. 2e) and

non-photochemical quenching (NPQ) (Fig. 2f) remained

uniform under saline regimes (Table 1). Foliar-applied GB

did not alter these chlorophyll fluorescence attributes under

both saline and non-saline condition except qN and NPQ.

Foliar-applied GB prominently increased (P B 0.001) the

NPQ value of both pea varieties both under control and

150 mM NaCl level (Fig. 2f). However, var. Pea 09

showed high qN and NPQ values by foliar-applied GB

under non-saline conditions. Of both varieties, Meteor Fsd

was superior (P B 0.05) in Fv/Fm ratio as compared to that

of variety Pea 09 under both control and saline regimes.

Among various concentration of GB, 10 mM was proved

to be more effective as compared to others.

(d)

(f)

(c)

(e)

(g) (h)

(a) (b)Fig. 2 Photosynthetic and

chlorophyll fluorescence

attributes and chlorophyll a and

b contents of pea (Pisum

sativum L.) plants foliarly

sprayed with glycinebetaine

under saline and non-saline

conditions
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Effect of salt (NaCl) and glycinebetaine (GB)

on biochemical attributes

Effect on chlorophyll pigments

Chlorophyll a, b (Fig. 2g, h) contents significantly

(P B 0.001) decreased, while chl. a/b ratio (Fig. 3a)

increased (P B 0.001) in both varieties of pea under salt

stress. Contents of total chlorophyll (Fig. 3b) also

decreased under salt stress in both pea varieties. Exoge-

nously applied various levels of GB had no pronounced

effect on chlorophyll contents of both varieties under both

control (0 mM NaCl) and salt-stressed (150 mM NaCl)

conditions (Table 1).

(c) (d)

(e) (f)

(h)(g)

(a) (b)Fig. 3 Chlorophyll a/b ratio,

total chlorophyll, total

phenolics, ascorbic acid,

activity of antioxidant enzymes

and total soluble proteins of pea

(Pisum sativum L.) plants

foliarly sprayed with

glycinebetaine under saline and

non-saline conditions
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Effect on total phenolics

Total phenolic (Fig. 3c) contents of both pea varieties

significantly (P B 0.001) increased under saline condition

(Table 2). Both pea varieties significantly (P B 0.001)

differed in total phenolics. Variety Pea 09 was superior to

that of var. Meteor Fsd in total phenolic contents under

saline and non-saline regimes (Fig. 3c). GB application as

foliar spray significantly increased total phenolic contents

of both pea varieties under both control and salt-stressed

conditions (Table 2). However, var. Pea 09 accumulated

more total phenolics than var. Meteor Fsd under non-saline

conditions.

Effect on seed ascorbic acid

Root-medium applied salt stress markedly enhanced

ascorbic acid (Fig. 3d) contents in pea seeds. Both pea

varieties did not differ significantly in seed ascorbic acid

contents. GB application as foliar spray had prominent

effect (P B 0.001) on the level of seed ascorbic acid con-

tents in both varieties (Table 1). Of various GB levels,

10 mM GB significantly (P B 0.001) enhanced seed

ascorbic acid contents of both pea varieties under both

control and 150 mM NaCl level (Fig. 3d).

Effect on activities of antioxidant enzymes

Salt stress did not alter activity of superoxide dismutase

(SOD) (Fig. 3e) in both pea varieties. Variety Pea 09 was

higher in SOD enzymatic activity than that of Meteor Fsd

under both control and 150 mM NaCl conditions. GB

applied as foliar spray did not improve activity of SOD in

both pea varieties under non-saline or saline regimes

(Table 2).

Peroxidase (Fig. 3f) and catalase (Fig. 3g) activities

were appreciably (P B 0.001) elevated in both pea varie-

ties subjected to saline regimes (Table 2). Variety Meteor

Fsd showed high activity of CAT and POD as compared to

variety Pea 09 under both control and 150 mM NaCl level.

Foliar application of different GB levels did not alter the

activities of POD and CAT in both varieties under control

and saline conditions.

Effect on total soluble proteins

Salt stress significantly decreased total soluble protein

(Fig. 3h) contents in both pea varieties (Table 2). This

reduction (P B 0.001) was higher in variety Meteor Fsd

than that of variety Pea 09 under both control and 150 mM

salt level (Fig. 3h). GB application as foliar spray did not

alter the level of soluble proteins in both varieties of pea

crop (Table 2).

Effect on mineral ions

Root and shoot K? contents (Fig. 4a, b) significantly

decreased in both pea varieties under saline stress. Both

pea varieties showed uniform behavior in accumulation of

shoot K? (Fig. 4a) under both salt-stressed and non-stres-

sed conditions; however, Meteor Fsd was prominently

higher in accumulation of root K? (Fig. 4b) as compared to

Table 2 Mean squares from

analysis of variance of the data

for activities of leaf antioxidant

enzymes and shoot and root

mineral contents of pea (Pisum

sativum L.) plants subjected to

different concentrations of

foliar-applied glycinebetaine

under saline and non-saline

conditions

df degrees of freedom

***, **, and * significant at

0.001, 0.01 and 0.05 levels,

respectively; ns, non-significant

Source of variation df SOD POD CAT Soluble proteins Shoot K?

Varieties (var.) 1 1,393*** 484.9*** 164.8*** 33.75*** 30.88 ns

Salinity (S) 1 64.28 ns 350.0*** 158.9*** 8.643** 338.6***

Glycinebetaine (GB) 2 1.477 ns 5.51 ns 3.837 ns 1.073 ns 1.598 ns

Var 9 S 1 155.6* 9.674 ns 0.034 ns 1.808 ns 9.360 ns

Var 9 GB 2 44.02 ns 14.61 ns 41.17 ns 1.678 ns 8.317 ns

S 9 GB 2 8.073 ns 6.715 ns 0.710 ns 0.779 ns 31.14 ns

Var 9 S 9 GB 2 22.82 ns 2.269 ns 4.301 ns 0.481 ns 26.81 ns

Error 36 23.72 11.17 12.76 1.130 13.64

Source of variation df Root K? Shoot Na? Root Na? Shoot Ca2? Root Ca2?

Varieties (var.) 1 48* 18.75 ns 147** 12.50 ns 16.92*

Salinity (S) 1 705.3*** 1,800*** 833.3*** 94.92*** 34.17**

Glycinebetaine (GB) 2 13.77 ns 27.08 ns 103.5** 8.973 ns 36.85***

Var 9 S 1 35.02 ns 1.333 ns 90.75* 30.88* 8.755 ns

Var 9 GB 2 14.06 ns 0.25 ns 6.812 ns 25.25* 11.73 ns

S 9 GB 2 26.27 ns 42.25* 105.1** 16.51 ns 14.39*

Var 9 S 9 GB 2 0.145 ns 1.583 ns 0.437 ns 2.880 ns 13.16*

Error 36 10.65 12.04 16.58 6.605 3.671
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that of variety Pea 09. Foliar-application of GB did not

alter root and shoot K? contents in both pea varieties

(Table 2).

Root and shoot sodium ions significantly increased

(Fig. 4c, d) in both pea varieties under salt stress. Variety

Pea 09 was higher in root Na? (Fig. 4d) contents to that of

var. Meteor Fsd under salt stress condition. Foliar appli-

cation of GB significantly decreased root and shoot Na?

contents in both pea varieties under 150 mM NaCl level

(Table 2).

A marked reduction (P B 0.001) in root and shoot Ca2?

(Fig. 4e, f) contents was observed in both pea varieties

under saline regimes. Varietal behavior was uniform in

shoot Ca2? (Fig. 4e), while variety Pea 09 had high root

Ca2? (Fig. 4f) than that of Meteor Fsd under control and

salt-stressed condition. Foliar-applied GB significantly

increased shoot Ca2? in var. Pea 09 (Fig. 4e) and root Ca2?

(Fig. 4f) in both pea varieties under both non-stressed and

salt-stressed conditions (Table 2).

Discussion

Glycinebetaine regulates a plethora of physiological and

biochemical phenomena under saline environment (Kaya

et al. 2013). Glycinebetaine when applied externally to the

plants ameliorates damaging effects of salinity stress by

regulating various stomatal and non-stomatal factors under

salt stress (Kausar et al. 2014). Photosynthetic machinery

components such as ribulose-1,5-bisphosphate carboxyl-

ase/oxygenase (rubisco) (Nomura et al. 1998) and oxygen

evolving complex of photosystem II (Murata et al. 1992)

(f)

(b)(a)

(e)

(c) (d)

Fig. 4 Shoot and root

potassium, sodium and calcium

contents of pea (Pisum sativum

L.) plants foliarly sprayed with

glycinebetaine under saline and

non-saline conditions
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are protected by GB via enhancing antioxidant enzymes

activities (Khan et al. 2014) and inhibiting peroxidation of

membrane lipids (Demiral and Turkan 2004). GB accu-

mulation led to improved photosynthesis through reduction

in oxidative stress under salt stress (Khan et al. 2014). The

current study was conducted to assess whether foliar spray

of different concentrations of glycinebetaine can reduce

negative effects of salinity stress on pea (Pisum sativum L.)

plants or not.

In the current study, 150 mM NaCl stress drastically

reduced plant growth of both pea varieties. High amount of

salt in the rooting medium has been reported to decrease

plant biomass of various crop species like canola (Shahbaz

et al. 2013), pepper (De Pascale et al. 2003a), celery (De

Pascale et al. 2003b), pea (Shahid et al. 2011, 2012) and

wheat (Perveen et al., 2014). Although foliar application of

5 and 10 mM GB could not improve growth significantly

under saline conditions, however, under control environ-

ment (0 mM NaCl) foliar-applied GB enhanced shoot dry

weight, root fresh weight and root length of pea variety Pea

09. There are some reports which show non-significance of

GB when applied exogenously in different crop species

like sunflower (Ibrahim et al. 2006), cotton (Meek et al.

2003), kidney bean (Lopez et al. 2002) and tomato (Heuer

2003).

In the current study, under salinity stress of 150 mM

NaCl chlorophyll contents (chl. a and b) and total chloro-

phyll decreased in both pea varieties. Similar results were

reported by Shahid et al. (2012) in seven pea genotypes

under 75 mM of NaCl. Foliar application of GB has no

considerable effect on salinity-induced reduction in the

chlorophyll content. Similarly, Akhter et al. (2007) was of

the view that seed treatment with GB did not significantly

change chl. b contents in wheat.

Long time exposure to NaCl stress leads to premature

senescence of leaves and ultimately decreases photosyn-

thetic rate (Cramer and Nowak 1992). Sodium and chloride

ions’ accumulation in the leaf tissues decreases turgor

potential within cell due to which stomata closed, resulting

in reduced stomatal conductance (gs). In this study,

150 mM NaCl stress decreased all gas exchange parame-

ters such as gs, transpiration rate (E) and principally net

photosynthetic rate (A) of both varieties. Shahid et al.

(2012) reported similar results in seven pea genotypes. GB

plays a role in maintaining ionic balance and osmotic

adjustment in various plant species under salinity stress

(Sakamoto and Murata 2000; Yildiztugay et al. 2014). In

this study, foliar-applied GB did not alter gas exchange

characteristics. These results can be correlated with the

findings of Meek and Oosterhuis (1999) in which GB did

not improve photosynthetic rate of cotton. Contrarily, Raza

et al. (2006) reported that photosynthetic rate (A) improved

when glycinebetaine applied exogenously under NaCl

stress in wheat. GB has been reported to enhance salt stress

tolerance due to increased stomatal conductance and con-

sequently high photosynthetic rate of field-grown tomato

plants (Makela et al. 1999). In another report exogenous

application of GB improved all gas exchange characteris-

tics such as water use efficiency (WUE), sub-stomatal CO2

(Ci), stomatal conductance (gs) and net CO2 assimilation

rate (A) of maize under NaCl stress (Kausar et al. 2014).

Timasheff (1992) reported that GB increases stomatal

conductance due to increasing the amount of bound water

in plant cells.

Kalaji et al. (2010) reported that photochemical effi-

ciency of PSII (Fv/Fm) can be used as criteria for evalu-

ating plant performance under stressful conditions. Lower

Fv/Fm values indicate reduced electron transport rate and

damaged PSII reaction centers under NaCl stress (Basu

et al. 1998). In this study, all chlorophyll fluorescence

attributes like Fv/Fm, ETR, qN and NPQ remained unaf-

fected under salt stress. Similar to these results, salinity

stress did not alter PSII activity in cotton and barley

(Morales et al. 1992; Brugnoli and Bjorkman 1992). Under

mild salt (150 mM NaCl) stress Fv/Fm did not get affected,

while under high level of salt (300 mM NaCl) Fv/Fm sig-

nificantly decreased in Sphaerophsa kotschyana plants

(Yildiztugay et al. 2014). In this study, foliar applied GB

did not alter Fv/Fm and ETR significantly, however,

increased NPQ value under saline conditions in var. Pea 09

and qN and NPQ values in both pea varieties under non-

saline conditions. Raza et al. (2006) reported that GB did

not exert any significant effect on efficiency of photosys-

tem II (Fv/Fm) in wheat under salt stress.

Plants tolerance criteria are related with low Na? uptake

and higher accumulation of beneficial K? and Ca2? to

maintain optimal K?/Na? ratio (Munns and Tester 2008).

Our results can be related with earlier findings explained by

Heuer (2003) that exogenously applied GB and proline did

not reduced the uptake of sodium and chloride ions in the

leaves and roots of tomato. GB as seeds’ treatment did not

alter status of mineral nutrients in wheat plants both under

non-stress or salt stress conditions (Akhter et al. 2007).

In this study, total phenolic and ascorbic acid contents

increased under saline condition in both pea varieties.

Contrary to our results, Navarro et al. (2006) reported that

NaCl stress reduces the ascorbic acid and total phenolic

contents in pepper. In previous studies it has been reported

that GB can ameliorate unfavorable effects of salinity by

up regulating enzymatic antioxidant activity (Raza et al.

2007; Nawaz and Ashraf 2010). In our study, CAT and

POD enzymes’ activities increased under NaCl stress in

both pea varieties; however, GB did not modulate antiox-

idant enzyme activities under either salt stress or non-stress

conditions. GB is not always a compatible organic com-

pound for all plant species (Ibrahim et al. 2006); it could be

Acta Physiol Plant (2014) 36:2985–2998 2995

123



phytotoxic because various physiological and biochemical

processes such as photosynthetic rate and activity of met-

abolic enzymes are negatively affected at higher concen-

trations of GB. It has been reported that the effect of GB

varies according to environmental conditions, plant spe-

cies, cultivars, concentration and number of application

(Ashraf and Foolad 2007; Reddy et al. 2013).

In conclusion, 150 mM of NaCl markedly reduced root

and shoot fresh and dry matter, lengths of root and shoot,

photosynthetic pigments such as chl. a, b and total chlo-

rophyll, A, E, gs and protein contents, while increasing root

and shoot Na? contents, and activity of non enzymatic

(ascorbic acid, phenolics) and enzymatic (POD, CAT)

antioxidants in both pea varieties. Application of GB as

foliar spray (0, 5, 10 mM) increased dry matter of shoot,

fresh weight of root and root length, stomatal conductance,

NPQ, root and shoot Ca2? (in Pea 09), ascorbic acid and

total phenolic contents. Of various GB levels, 10 mM

proved more effective in reducing Na? content of root and

shoot and increasing key metabolites in both pea varieties

under saline conditions. Possible mechanism involved in

GB-mediated abiotic stress tolerance includes induction of

specific genes expression that encodes enzymes that scav-

enge reactive oxygen species and prevent excess ROS

accumulation (Chen and Murata 2011). In this study, GB

might have stabilized proteins structure and maintained

membrane integrity by increasing activities of non-enzy-

matic antioxidants that might have led to scavenging of

reactive oxygen species under salt stress. Furthermore, GB

might be involved in the nutrients’ uptake as it is exhibited

by increased root Ca2? accumulation in root and shoot

tissues. Overall, variety Pea 09 showed better performance

in comparison to that of variety Meteor Fsd.
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