
ORIGINAL PAPER

Effects of nitrogen source and phosphate concentration
on biomass and metabolites accumulation in adventitious
root culture of Glycyrrhiza uralensis Fisch

Shuangshuang Yin • Yao Zhang • Wenyuan Gao •

Juan Wang • Shuli Man • Hui Liu

Received: 13 April 2013 / Revised: 21 October 2013 / Accepted: 16 December 2013 / Published online: 28 December 2013
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Abstract We investigated the influence of ammonia/

nitrate ratio and phosphate concentration on biomass and

accumulation of metabolites in adventitious roots of

Glycyrrhiza uralensis Fisch. A NH4
?/NO3

- ratio of 10:20

was optimal for the production of biomass (0.30 g dry

weight) as well as polysaccharide (18.98 mg g-1) and

glycyrrhetinic acid (0.31 mg g-1). The content of glyc-

yrrhizic acid (0.47 mg g-1) and flavonoid (8.11 mg g-1)

reached the optimum at an ammonia/nitrate ratio of 15:15

and 20:10, respectively. In case of phosphate concentra-

tion, a higher growth rate (9.18) and content of polysac-

charide (15.66 mg g-1) was obtained at 1.25 mM

phosphate concentration. However, 0.625 mM phosphate

was favorable for the content of flavonoid (7.54 mg g-1)

and glycyrrhizic acid (0.57 mg g-1). The content of glyc-

yrrhetinic acid (0.32 mg g-1) reached the peak when

treated with 0.3125 mM phosphate. A scale-up culture of

adventitious roots was established using a balloon-type

bubble bioreactor (BTBB). Maximum growth rates of

25.95- and 22.44-fold were obtained in 3 and 5 L BTBBs,

respectively, which was higher than that in 0.5 L shake

flask (18.36). The contents of flavonoid (7.60 mg g-1) and

polysaccharide (15.09 mg g-1) reached the peak in 5 L and

3 L BTBB, respectively. The contents of glycyrrhizic and

glycyrrhetinic acid were a little higher than that in BTBBs.
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Introduction

Glycyrrhiza uralensis Fisch has been widely used for over

3,000 years as a traditional oriental herb (Zhang et al.

2009). In China, it was used in a large number of traditional

Chinese medicinal prescriptions for the treatment of can-

cer, hepatitis as well as detoxication (Li et al. 2011).

Glycyrrhizic and glycyrrhetinic acid, as main saponins, are

the most important pharmacologically active component in

G.uralensis, exhibiting anti-inflammation, anti-virus and

anti-HIV properties (Wang et al. 2012). Flavonoids, sec-

ondary metabolites of the plant, are widely used for anti-

oxidant (Man et al. 2013) and anti-tumor (Zhang et al.

2009). The polysaccharide, primary metabolites in G. ur-

alensis has drawn the attention of researchers due to its

physical and functional properties (Wan and Cheng 2009).

In recent years, G. uralensis has been increasingly used

as a health additive formulated into kinds of commercial

products such as food, health products, cosmetics (Man

et al. 2013). Recently, natural sources of wild G. uralensis

are very limited because of over-exploitation (Dong et al.

2012). The current supply of G. uralensis mainly depends

on field culture, which is an extremely time-consuming and

labor-intensive process. However, there is a great demand

and scant supply for G. uralensis. As a result, cell, tissue,

and organ culture has been exploited as an alternative for
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more efficient and controllable production of G. uralensis

and its active constituents.

Nitrogen source has been an essential factor that influ-

ences the quality of cell and root growth in a species-

dependent manner (Gorret et al. 2004). The significant role

of the nitrogen source has been well demonstrated in many

cultures such as Panax ginseng (Kim et al. 2005), Echin-

acea angustifolia (Wu et al. 2006), Eleutherococcus ko-

reanum Nakai (Lee and Paek 2012) and so on. Phosphate

source is another important element that constitutes

nucleotide, phosphatides and adenosine triphosphate and so

on (Wang et al. 2009; Zhong and Zhu 1995). Moreover, it

has an important influence on the growth and active com-

ponents synthesis which has been proved by many reports

(Liu and Zhong 1998; Jiang et al. 2006; Huang et al. 2010).

Callus induction and suspension cell culture systems as

well as hairy root culture have been studied to obtain

flavonoids in G. uralensis (Guo et al. 2012; Yang et al.

2008; Zhang et al. 2009). Wang et al. (2012) made content

comparison with regards to seeding, callus, cell and

adventitious root in G. uralensis. However, to our knowl-

edge, there have been few reports on adventitious root

culture of G. uralensis with regard to optimization of cul-

ture conditions. The objective of this study was to optimize

the ratio of ammonium to nitrate and phosphate concen-

tration for the large-scale productivity of biomass and bio-

active compounds in adventitious roots of G. uralensis.

Materials and methods

Plant material

Seeds of G. uralensis were supplied by Beijing materia

herbal medicine technology Co. (Beijing, China).

Seeds’ surface were washed under running tap water for

2 h and then they were further sterilized with 75 % (v/v)

ethanol for 30 s, immersed in 2 % (v/v) NaClO solution for

30 min and rinsed with sterile distilled water. The steril-

ized seeds were inoculated into conical flasks containing

50 mL Murashige and Skoog (MS) medium supplemented

with 30 g L-1sucrose and 6.5 g L-1 agar. Cultures were

maintained at 23 ± 2 �C with 54–72 lmol m-2 s-1 light

intensity under a 16/8 h (day/night) photoperiod. After

4 weeks, they grew into plantlets and the root explants

were cut into 1 cm length for the subsequent experiments.

Induction of adventitious roots and their maintenance

Adventitious roots of G. uralensis were induced from root

explants on half-strength MS medium supplemented with

30 g L-1 sucrose, 1 mg L-1 IBA and 6.5 g L-1 agar.

Those induced adventitious roots were inoculated into

250 mL Erlenmeyer flasks containing 100 mL half-

strength MS medium supplemented with 1 mg L-1

IBA and 30 g L-1sucrose. Cultures were maintained at

23 ± 2 �C in the dark on gyratory shakers at 120 rpm and

were sub-cultured every 30 days.

Effects of nitrogen source and phosphate concentration

on adventitious root growth and metabolite

accumulation

Adventitious roots (6 g L-1) were inoculated into 1/2 MS

medium supplemented with 30 g L-1 sucrose, 1 mg L-1

IBA and various ratios of NH4
?/NO3

- (0/30, 10/20, 15/15,

20/10, 30/0, using NH4Cl and KNO3) at the constant

nitrogen source level of 30 mM, which was basically the

level of that in a half-strength MS medium. Adventitious

roots (6 g L-1) were inoculated into 1/2 MS medium

supplemented with 0, 0.3125, 0.625, 1.25, 1.875 mM

phosphate. The ratio of NH4
?/NO3

- was 10:20 and the

culture conditions were the same as described above. Each

treatment was repeated three times.

Scale-up culture of adventitious root from shake flask

to bioreactor

Adventitious roots were further proliferated in 0.5 L

Erlenmeyer flasks, 3 and 5 L balloon-type bubble biore-

actors (BTBBs) with 0.2, 2 and 3 L working volume,

respectively. The half-strength MS medium was supple-

mented with 1 mg L-1 IBA and 30 g L-1 sucrose. Root

inoculum was adjusted to a density of 1.0 g L-1 and the air

volume was adjusted to constant flow rate of 0.4 air vol-

ume/culture volume/min (vvm) during BTBBs cul-

ture according to previous experimental optimization.

Cultures were maintained at 23 ± 2 �C in the dark. Each

treatment was repeated three times.

Determination of root biomass

After 30 days culture, the harvested roots were washed with

running water twice, and then rinsed with distilled water

three times. Fresh weight (FW) was determined after blot-

ting the washed roots on filter paper. The fresh roots were

then dried in vacuum at 50 �C for 2 days to constant dry

weight (DW). The growth rate was calculated as (harvested

dry weight-inoculated dry weight)/inoculated dry weight.

Determination of total flavonoid and polysaccharides

Samples of adventitious roots were ground to a fine powder

and extracted twice with 30 mL of 75 % ethanol for

30 min at 60 �C in an ultrasonic bath (Kunshan, China).

After filtration, the extract was evaporated to dryness, and
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then dissolved in 2 mL 75 % ethanol. The content of fla-

vonoid was determined as described in the paper (Man

et al. 2013) with Liquiritin as a reference standard

(A = 0.0065C - 0.0046, r = 0.9976).

In terms of the extraction of polysaccharides, the residue

after filtration was drying and extracted three times with

25 mL distilled water for 1 h at 100 �C. The extract was

diluted to 50 mL for quantification. The content of polysac-

charide was analyzed using the method of sulphuric acid—

anthrone reported by Chen et al. (2005) with glucose as a

reference standard (A = 0.0073C ? 0.0213, r = 0.9962).

Determination of the content of glycyrrhizic

and glycyrrhetinic acid

Extracts of ethanol were analyzed by HPLC (Agilent1100,

PaloAlto, CA) using a promosil C18 column (4.6 mm 9

250 mm, 5 lm; Agela, Tianjin, China) to determine the

content of glycyrrhizic and glycyrrhetinic acid. Mobile

phase was composed of A-formic acid (0.04 %, v/v) and

B-acetonitrile. Gradient elution profile (A:B) was 0–4 min,

80:20; 20 min, 62:38; 25 min, 45:55; 38–40 min, 10:90.

The detection wavelength was set at 250 nm. The flow rate

was 1.0 mL min-1 and the column temperature was

maintained at 30 �C.

Statistical analysis

The statistical analysis was performed according to the V 17.0

SPSS system. Mean and standard errors were used through-

out, and the statistical significance between the mean values

was assessed applying a Duncan’s multiple range tests.

A probability of P \ 0.05 was considered significant.

Results and discussion

Effects of nitrogen source on biomass production

and metabolites accumulation

Nitrogen source significantly influenced the biomass accu-

mulation of G. uralensis adventitious roots. The optimum

biomass of 5.08 g flask-1 FW and 0.30 g flask-1 DW were

obtained when the NH4
?/NO3

- ratio was 10:20 (Table 1).

The highest polysaccharide content (18.98 mg g-1) was

also obtained under a NH4
?/NO3

- ratio of 10:20; whereas,

the content of total flavonoid reached the peak at a NH4
?/

NO3
- ratio of 20:10. In case of saponin, glycyrrhizic acid

was optimum when the NH4
?/NO3

- ratio was 15:15 and the

content of glycyrrhetinic acid reached the peak at a NH4
?/

NO3
- ratio of 10:20. These results suggest that the NH4

?/

NO3
- ratio of 10:20 was favorable to generate the optimum

biomass and accumulation of polysaccharide and glyc-

yrrhetinic acid. It was a general trend that a lower NH4
?/

NO3
- ratio is more beneficial for plant cell growth (Panda

et al. 1992; Kaul and Hoffman 1993; Yu et al. 2001), and

our study also supported this point (Table 1). It may be

because ammonium diffuses easily and accumulates into

the cell which becomes toxic if not immediately metabo-

lized, so the ammonium must control to a low concentration

(Zhang et al. 2011).

With ammonium as the sole N source (i.e. NH4
?/

NO3
- = 30/0), the root scarcely grew in the culture

(Table 1). Zhong and Wang (1998) demonstrated that high

ammonium concentration had an inhibitory effect on cell

growth in culture of Panax quinquefolium. Kaul and

Hoffman (1993) also reported that ammonium as the sole N

source inhibited callus growth of Pinus strobus. We can

suppose that the sole nitrogen source of ammonia was

unfavorable for root growth. In the case of nitrate as the

sole N source, the root grew a little better than that with

totally ammonium in the medium. In the other case where

ammonium and nitrate were both supplied into the med-

ium, the root grew well compared with nitrate or ammo-

nium as the sole N source in the medium. The existence of

ammonium could suppress nitrate assimilation which

would result in medium acidification. Generally speaking,

the plant cell utilized the ammonium priority in the med-

ium. However, excessive ammonium has toxic effects on

plant cell and root growth (Wang et al. 2009). Although

nitrate is safe for plant, over addition may result in over-

acidification of the medium which is unfavorable to root

growth (Zhang et al. 2011).

Table 1 Effects of ammonia/nitrate ratio on biomass production and metabolites accumulation in adventitious root culture of G. uralensis

NH4
?/

NO3
-

Fresh weight

(g/flask)

Dry weight

(g/flask)

Growth ratio Glycyrrhizic

content (mg/g)

Glycyrrhetinic

content (mg/g)

Flavonoid

content (mg/g)

Polysaccharide

content (mg/g)

0:30 2.08 ± 0.15d 0.14 ± 0.01d 3.10 ± 0.15d 0.43 ± 0.03c 0.21 ± 0.03d 5.19 ± 0.42e 8.75 ± 0.58d

10:20 5.08 ± 0.36a 0.30 ± 0.02a 8.12 ± 0.31a 0.39 ± 0.02e 0.31 ± 0.02a 7.45 ± 0.31c 18.98 ± 0.67a

15:15 4.31 ± 0.13c 0.26 ± 0.05c 6.65 ± 0.15c 0.47 ± 0.02a 0.24 ± 0.02c 8.02 ± 0.29b 7.11 ± 0.14e

20:10 4.64 ± 0.19b 0.26 ± 0.03bc 6.78 ± 0.19bc 0.41 ± 0.04d 0.26 ± 0.04bc 8.11 ± 0.34ab 9.59 ± 0.53c

30:0 0.82 ± 0.08e 0.06 ± 0.005e 0.67 ± 0.05e 0.45 ± 0.06b 0.18 ± 0.06e 5.53 ± 0.17d 12.91 ± 0.47b

The data were collected after 30 days of culture in a 250 mL Erlenmeyer flask containing 100 mL medium. Mean ± standard error of three

replicates; mean followed by different letters within a column is significantly different at P \ 0.05 according to Duncan’s multiple range test
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Nitrogen source significantly affects the plant cell and

tissue growth and metabolite formation (Cui et al. 2010b).

Ammonium and nitrate as nitrogen source have different

effects on cell and tissue growth and active component

production (Zhang et al. 1996). It was apparent that nitrate

was more necessary than ammonium for root growth and

metabolites accumulation. Similar observations were also

reported by Nagella and Murthy (2011) who concluded that

biomass and withanolide-A were larger, when the NO3
-

was higher than that of NH4
? concentration in cell sus-

pension cultures of Withania somnifera (L.) Dunal. In

adventitious shoot cultures of Bacopa monnieri (L.), the

number of adventitious shoot biomass and bacoside A

content were optimum at a lower NH4
?/NO3

- ratio (Naik

et al. 2011). Pan et al. (2004) indicated that cell dry weight

was improved under lower NH4
?/NO3

- ratio in cell sus-

pension cultures of Camptotheca acuminate. Our results

were similar to the literatures. Therefore, we can draw a

conclusion that most of the plants need a lower NH4
?/

NO3
- ratio.

Effects of phosphate concentration on biomass

production and metabolites accumulation

The biomass accumulation of G. uralensis adventitious

roots was highly affected by phosphate concentration. In

the range of phosphate level from 0 mM to 1.875 mM,

the maximum root dry weight (0.34 g�flask) and the

highest growth rate (9.18) were observed in the culture

treated with 1.25 mM phosphate (Table 2). When phos-

phate concentration exceeded 1.25 mM, the biomass of

adventitious roots showed a drop in growth rate (7.52).

We can infer that higher phosphate over 1.25 mM phos-

phate concentration was detrimental to the root growth.

However, excessively lower phosphate was also harmful

to adventitious root growth which cannot absorb enough

phosphate to metabolite. According to Table 2, we

can see that it was unfavorable to adventitious root pro-

liferation in the phosphate-free medium (i.e., 0 mM

phosphate) whose growth ratio was only 2.49. We can

conclude that adventitious root growth was unfavorable in

the medium without phosphate source. The similar phe-

nomenon was also reported in rice cells (Wen and Zhong

1997). In terms of Catharanthus roseus (L.), Sakano et al.

(1995) reported that cells could not proliferate at all in

medium lacking phosphate source. Phosphate source plays

an important role in the production of biomass and

accumulation of metabolites. It also participates in various

kinds of energy metabolism and material biosynthesis

(Huang et al. 2010).

The results exhibited in the culture treated with

1.25 mM phosphate, the content of polysaccharide reached

the maximum i.e. 15.66 mg g-1. The highest amount

of flavonoid (7.54 mg g-1) and glycyrrhizic acid

(0.57 mg g-1) was accumulated with 0.625 mM phos-

phate. However, 0.3125 mM phosphate was optimum for

the accumulation of glycyrrhetinic acid (0.32 mg g-1). We

can see that the accumulation of polysaccharide required

higher phosphate (1.25 mM), however the accumulation of

flavonoid and saponin (glycyrrhizic and glycyrrhetinic

acid) required lower phosphate (0.625 and 0.3125 mM).

We can suppose that it may relate to the metabolic path-

ways of primary metabolites (polysaccharide) and sec-

ondary metabolites (flavonoid and saponin) (Table 3).

Phosphate is an essential nutrient which participates in

metabolite formation and energy metabolism and biosyn-

thesis. In adventitious root culture of P. ginseng CA (Hu-

ang et al. 2010), it was found that the root growth ratio

reached its peak at the concentration of 0.625 mM phos-

phate, however, the maximum ginsenoside content was

achieved at 1.25 mM. Zhong and Zhu (1995) concluded

that the highest production and yield of ginsenosides were

obtained at 1.25 mM of medium phosphate in suspension

cell culture of Panax notoginseng which was somewhat

similar with our results. This phenomenon showed that the

effect of phosphate concentration on adventitious root was

very complicated, which depended on both species and

kinds of secondary metabolites.

Table 2 Effects of phosphate concentration on biomass production and metabolites accumulation in adventitious root culture of G. uralensis

Phosphate

source

Fresh weight

(g/flask)

Dry weight

(g/flask)

Growth ratio Glycyrrhizic

content (mg/g)

Glycyrrhetinic

content (mg/g)

Flavonoid

content (mg/g)

Polysaccharide

content (mg/g)

0 1.58 ± 0.09e 0.12 ± 0.02e 2.49 ± 0.16e 0.43 ± 0.03d 0.27 ± 0.03de 4.71 ± 0.21e 10.90 ± 0.46d

0.3125 5.41 ± 0.19bc 0.29 ± 0.05bc 7.66 ± 0.15bc 0.50 ± 0.03bc 0.32 ± 0.02a 6.61 ± 0.33 cd 11.03 ± 0.33 cd

0.625 4.15 ± 0.12d 0.26 ± 0.05d 6.75 ± 0.15d 0.57 ± 0.05a 0.27 ± 0.02cde 7.54 ± 0.42a 9.68 ± 0.24e

1.25 5.95 ± 0.26a 0.34 ± 0.06a 9.18 ± 0.27a 0.49 ± 0.04c 0.28 ± 0.04bcd 6.83 ± 0.24bcd 15.66 ± 0.41a

1.875 5.34 ± 0.56c 0.28 ± 0.02c 7.52 ± 0.31c 0.40 ± 0.02e 0.26 ± 0.03e 6.52 ± 0.26d 13.01 ± 0.32b

The data were collected after 30 days of culture in a 250 mL Erlenmeyer flask containing 100 mL medium. Mean ± standard error of three

replicates; mean followed by different letters within a column is significantly different at P \ 0.05 according to Duncan’s multiple range test

918 Acta Physiol Plant (2014) 36:915–921

123



Scale-up of adventitious root in G. uralensis

The growth of adventitious root in Erlenmeyer flasks and

BTBB was shown in Fig. 1. Adventitious root growth

differed significantly between Erlenmeyer flasks and bio-

reactor cultures. Roots began to differentiate after 7 d and

12 d in the liquid cultures of Erlenmeyer flask and biore-

actor, respectively. The growth ratio of 25.95 and 22.44

was obtained in 3 L (53.9 g FW, 2.52 g DW) and 5 L

BTBB (90.22 g FW, 4.22 g DW) which were significantly

more than Erlenmeyer flasks cultures of 18.36 (9.68 g FW,

0.68 g FW). Gradually scale-up culture of adventitious

roots increased the root biomass as well as the contents of

polysaccharide and flavonoid. However, there was no sig-

nificant change in the content of glycyrrhizic and glyc-

yrrhetinic acid in bioreactor compared with the Erlenmeyer

flask.

The biomass increase might be attributed to the culture

conditions in bioreactor which can be optimized by real-

time manipulation of temperature, pH and oxygen in the

medium (Wang et al. 2012). We supposed that the culture

condition may have an influence on the active component

synthesis of G.uralensis. In adventitious root culture of

P. ginseng, Choi et al. (2000) demonstrated that the content

of total saponin in the pilot-scale culture was similar to that

obtained in the small-scale bioreactor. Our result regarding

the content of saponin was similar to the viewpoint.

The use of bioreactors has resulted in the development

of a technology for large-scale biomass of adventitious

roots culture (Cui et al. 2010a). Similar observation was

also reported in A. membranaceus adventitious root culture

(Wu et al. 2011). The maximum growth rate of A. mem-

branaceus in 5 L bioreactors was tenfold after 40 days of

culture higher than that cultivated in flasks. This is also

Table 3 The biomass and contents of active component in adventitious root of G. uralensis from 0.5 L shake flask to 5 L bioreactor

Culture

methods

FW

(g/vessel)

DW

(g/vessel)

Growth ratio Glycyrrhizic

content (mg/g)

Glycyrrhetinic

content (mg/g)

Flavonoid

content (mg/g)

Polysaccharide

content (mg/g)

0.5 L Shake flask 9.68 ± 0.23 0.68 ± 0.07 18.36 ± 0.21 0.49 ± 0.04 0.26 ± 0.02 5.03 ± 0.54 9.78 ± 0.23

3 L Bioreactor 53.90 ± 1.02 2.52 ± 0.19 25.95 ± 0.32 0.43 ± 0.02 0.25 ± 0.01 6.96 ± 0.29 15.09 ± 0.74

5 L Bioreactor 90.22 ± 1.21 4.22 ± 0.25 22.44 ± 0.45 0.45 ± 0.05 0.28 ± 0.03 7.60 ± 0.32 10.95 ± 0.91

Fig. 1 Scale-up cultures of adventitious roots in a 0.5 L conical flask (a), in 3 L (b) and 5 L (c) balloon-type bubble bioreactors, with harvests of

adventitious roots (d, e) after 30 days’ culture

Acta Physiol Plant (2014) 36:915–921 919

123



partially supported by Echinacea purpurea adventitious

roots (Jeong et al. 2009).

Conclusion

In conclusion, the adventitious root culture system of G.

uralensis was successfully established for the metabolites

accumulation. We investigated the effects of nitrogen

source and phosphate concentration on root growth and

metabolites accumulation. The optimal culture condition

we obtained in experiments was an ammonia/nitrate rate of

10:20 and 1.25 mM phosphate concentration. In scale-up

culture of adventitious root, the growth rate in 5 L BTBB

reached 22.44 which indicated a potential manner for the

large-scale production of biomass and bioactive com-

pounds of G. uralensis.
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