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Abstract The present study described the encapsulation

of nodal segments of Cassia angustifolia Vahl. excised

from 1-month-old in vitro raised cultures for short-term

conservation and propagation. Various concentrations and

combinations of gelling matrix (sodium alginate) and

complexing agents (calcium chloride) were tested to pre-

pare uniform beads. The ideal beads were obtained through

a combination of 3 % sodium alginate and 100 mM cal-

cium chloride. The maximum conversion response (94 %)

of encapsulated beads was obtained in Murashige and

Skoog’s medium (MS medium) supplemented with 2.5 lM

benzyladenine (BA) and 0.4 lM a-naphthalene acetic acid

(NAA) after 6 weeks of culture. The encapsulated and non-

encapsulated nodal segments were also stored at 4 �C for

different time periods (0, 1, 2, 4, 6 and 8 weeks). The

regenerated microshoots were best rooted in optimized

rooting medium that comprised half-strength

MS ? 1.0 lM indole-3-butyric acid (IBA) ? 5.0 lM

phloroglucinol (PG) for the production of complete plant-

lets. The regenerated plantlets were successfully hardened

and acclimatized in natural conditions with 70 % survival

rate.
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Abbreviations

CaCl2�2H2O Calcium chloride

BA Benzyladenine

IBA Indole-3-butyric acid

NAA a-naphthalene acetic acid

MS Murashige and Skoog medium

PG Phloroglucinol

PGR Plant growth regulator

Introduction

The encapsulation technique is an important application of

micropropagation that offers the potential of easy handling,

exchange of germplasm between laboratories, efficient

short- or long-term storage and improves delivery of

in vitro regenerated plantlets to the field or to the green

house (Piccioni and Standardi 1995; Chand and Singh

2004; Rai et al. 2009). Synseed technology provides a

means for the transportation of propagules to distant places

as well as to different laboratories without a loss in vigor

for shoot organogenesis in micropropagation programs

(Rihan et al. 2011; Hung and Trueman 2012; Lata et al.

2012; Reddy et al. 2012). Therefore, appropriate storage

conditions and a definite storage period are prerequisites to

maintain synseed viability during transportation that leads

to successful commercialization of synseed technology

(Sharma and Shahzad 2012; Sharma et al. 2013).

Cassia angustifolia Vahl. (commonly known as

‘‘senna’’) is a valuable medicinal legume, the leaves and

pods of the plant contain important alkaloids which are the

derivatives of anthraquinone glycosides and generally

referred to as ‘‘sennosides’’. It is employed in the treatment

of several diseases like anaemia, amoebic dysentery,
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bronchitis, cholera, jaundice, leprosy and typhoid, etc.

(Anonymous 1992). Due to its medicinal properties, this

plant is gaining commercial importance in pharmaceutical

industries. Thus, it is necessary to develop an alternative

source of propagation and efficient method for easy dis-

tribution of in vitro raised quality propagules in the form of

small beads to fulfill the demands of pharmaceutical

industry. During past years, several reports are available on

its in vitro regeneration exploiting different strategies of

micropropagation (Agrawal and Sardar 2003, 2006, 2007;

Siddique and Anis 2007; Siddique et al. 2010; Parveen and

Shahzad 2011; Parveen.et al. 2012). However, till date no

protocol has been developed for the production of synthetic

or artificial seeds in senna. Hence, the present study was

conducted to develop a method of short-term storage as

well as germplasm exchange and distribution of C. an-

gustifolia using encapsulation technique.

Materials and methods

Explant source

The certified seeds of C. angustifolia obtained from Prem

Nursery and Seed Store, Dehradun, India, were surface

sterilized through the procedure adopted by Parveen and

Shahzad (2011) and used to raise aseptic seedlings in seed

germination medium that comprised half-strength MS

(Murashige and Skoog 1962) containing GA3 (5.0 lM)

under controlled conditions of light, temperature and

humidity (Parveen et al. 2010). The cotyledonary nodes

excised from aseptic seedlings were cultured on optimal

medium containing MS ? BA (5.0 lM) ? NAA (0.6 lM)

for the establishment of in vitro cultures. Nodal segments

(NS) approximately 0.5 cm long were taken from in vitro

cultures of C. angustifolia and used as the source of

explants for the preparation of synseeds.

Encapsulation matrix and complexing agent

Sodium alginate (Qualigens, India) was used as gelling

agent and prepared in double distilled water (DDW) and

liquid MS medium (with 3 % sucrose) at different con-

centrations, i.e., 1, 2, 3, 4 and 5 % (w/v). For complexion,

25, 50, 75, 100 and 200 mM calcium chloride

(CaCl2�2H2O) solution was prepared in liquid MS medium.

The pH of the gel matrix and the complexing agent was

adjusted to 5.8 prior to autoclaving at 121 �C for 20 min.

Encapsulation of explants

Encapsulation was accomplished by mixing the NS

with sodium alginate solution and dropping them in

CaCl2�2H2O solution using a pipette. The droplets con-

taining the explants were held at least for 25–30 min to

achieve polymerization. The alginate beads containing the

NS were retrieved from the solution and rinsed twice with

sterilized DDW to remove the traces of CaCl2�2H2O and

transferred to sterile filter paper in Petri dishes for 5 min

under the laminar airflow cabinet to eliminate the excess of

water and thereafter transferred to culture vials containing

nutrient medium.

Planting media and culture conditions

The encapsulated NS (alginate beads) were transferred to

wide mouth culture flask (Borosil, India) containing MS

basal without plant growth regulator (PGR) and MS med-

ium supplemented with BA at various concentrations (1.0,

2.5, 5.0 and 10.0 lM) either singly or in combination of

NAA (0.2, 0.4 and 0.6 lM). The culture medium was

gelled with 0.8 % (w/v) agar and pH was adjusted to 5.8

prior to autoclaving at 121 �C for 20 min. Cultures were

maintained at 24 ± 2 �C under 16/8 h light–dark condi-

tions with a photosynthetic photon flux density (PPFD) of

50 lmol m-2 s-1 provided by cool white fluorescent tubes

(40 W, Philips, India).

Low temperature storage

Two sets of 50 each, encapsulated NS and non-encapsu-

lated NS were kept in two sterile beakers properly covered

with aluminium foil and stored in refrigerator at 4 �C. Six

different low temperature exposure times (0, 1, 2, 4, 6 and

8 weeks) were evaluated for conversion of synseeds into

plantlets. After each storage period, ten encapsulated and

ten non-encapsulated NS were transferred to MS medium

containing optimal concentration of PGRs for conversion

into plantlets. During storage period the beads were

sprayed with sterile DDW after every 2 weeks to ensure

the moist conditions so that the beads may not shrink by

losing water. The percentage of shoot regeneration of

encapsulated NS as well as of non-encapsulated NS was

recorded after 6 weeks of culture. The plantlets developed

from encapsulated NS were hardened off and acclimatized

as specified below.

Ex vitro conversion of synthetic seeds into plantlets

Encapsulated NS were also transferred to sterile soilrite for

ex vitro conversion and recovery of complete plantlets. The

soilrite was regularly moistened with quarter-strength MS

salt solution (without vitamins and sucrose) after every

4 days and kept under 16 h photoperiod with a PPFD of

50 lmol m-2 s-1 at 24 ± 2 �C for 6 weeks. The conver-

sion response (%) was recorded after 6 weeks of sowing.
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To ensure the humid condition, cups were covered with

transparent polythene bags with a few perforations for

ventilation. After conversion of beads into plantlets, poly-

thene bags were gradually removed in order to acclimatize

the plantlets.

Hardening and acclimatization

Plantlets with well-developed root and shoot system were

removed from the culture medium and washed gently

under running tap water to remove any adherent gel from

the roots and transferred to thermocol cups containing

sterile soilrite (Keltech Energies Limited, Bengaluru,

India). These were kept under similar culture conditions as

mentioned earlier and covered with transparent polythene

bags to ensure high humidity. These were irrigated after

every 3 days with one-fourth strength MS salt solution

(without vitamins) for 2 weeks. Polythene bags were

removed gradually after 2 weeks in order to acclimatize the

plantlets and after 4 weeks they were transferred in earthen

pots containing sterilized garden soil and garden manure

(1:1) and maintained in green house under normal day

length conditions.

Statistical analysis

The regeneration response (%) was calculated as the per-

cent of encapsulated NS showing development of shoots of

total number of encapsulated NS. All the experiments were

conducted with a minimum of ten replicates per treatment

and repeated three times. The data were analyzed statisti-

cally using software R (2013) version 3.0.1 (Package ‘ag-

ricolae’, version 1.1-4) and the results are expressed as a

mean ± SE of three repeated experiments

Results and discussion

The texture of beads is highly influenced by different

concentrations of gelling matrix and complexing agent.

Lower concentrations of Na2-alginate below 3 % resulted

in the formation of soft and fragile beads which were dif-

ficult to handle whereas, concentrations above 3 %, pro-

duced isodiametric beads which were hard enough to cause

considerable delay in germination. Lower concentrations of

CaCl2�2H2O produced soft and fragile beads whereas

higher concentrations produced hard beads and adversely

affected the bead quality. The optimal combination for the

production of uniform, easy to handle, firm and clear beads

was found to be 3 % sodium alginate with 100 mM

CaCl2�2H2O prepared in liquid MS exhibiting

74.06 ± 1.56 % regeneration response on MS basal med-

ium without any PGR (Table 1; Fig. 1a). Similar results

were also obtained in many other plant species such as

Tylophora indica (Faisal and Anis 2007); Psidium guajava

(Rai et al. 2008); Eclipta alba (Singh et al. 2010) and Vitex

negundo (Ahmad and Anis 2010). Nevertheless an encap-

sulation matrix of 5 % sodium alginate with 50 mM

CaCl2�2H2O was found most suitable for the formation of

ideal beads in Cannabis sativa (Lata et al. 2009) which is

contrary to our results. The synseeds prepared by dissolv-

ing sodium alginate in DDW failed to regenerate on all the

treatments applied.

The most desirable property of the encapsulated explants

is their ability to retain viability in terms of regrowth and

conversion abilities after encapsulation (Adriani et al. 2000;

Micheli et al. 2007). In the present study, the ideal beads

produced by encapsulating NS in 3 % sodium alginate and

100 mM CaCl2�2H2O were cultured on MS basal medium

without any PGR as well as with various concentrations of

BA either singly or in combination with NAA. Synseeds

cultured on MS basal medium exhibited 74.06 ± 1.56 %

regeneration response and this occurred after 3 weeks of

culture. Addition of BA enhanced the regeneration potential

of the beads and the shoots emerged out within 2 weeks of

inoculation onto the regeneration medium. An average of

2.16 ± 0.44 shoots/bead was produced in the medium con-

taining 2.5 lM of BA with 82.63 ± 1.22 % regeneration

response after 6 weeks of culture (Table 1; Fig. 1b). The

regenerated microshoots were failed to develop into com-

plete plantlets on the same medium. Addition of NAA

(0.4 lM) with optimal concentration of 2.5 lM BA also did

not help in the induction of roots from the microshoots,

conversely, further improved the regeneration response

(94.06 ± 1.56 %) with the production of maximum

Table 1 Effect of different plant growth regulators on regeneration

of encapsulated nodal segments of C. angustifolia

PGRs (lM) Regeneration
response (%)

No. of
shoots/bead

Shoot length
(cm)

MS 74.06 ± 1.56cd 1.63 ± 0.23cde 1.23 ± 0.14cd

MS ? BA (1.0) 77.60 ± 1.28c 1.93 ± 0.34cde 1.86 ± 0.20bc

MS ? BA (2.5) 82.63 ± 1.22b 2.16 ± 0.44bcd 2.10 ± 0.20b

MS ? BA (5.0) 72.26 ± 1.12d 1.43 ± 0.29de 1.10 ± 0.20d

MS ? BA (10.0) 57.56 ± 1.40f 1.23 ± 0.14e 0.90 ± 0.20d

MS ? BA
(2.5) ? NAA (0.2)

86.50 ± 1.53b 2.96 ± 0.27b 2.10 ± 0.20b

MS ? BA
(2.5) ? NAA (0.4)

94.06 ± 1.56a 5.06 ± 0.29a 3.06 ± 0.29a

MS ? BA
(2.5) ? NAA (0.6)

67.90 ± 1.53e 2.50 ± 0.28bc 1.93 ± 0.23b

LSD 4.23 0.90 0.65

Data recorded after 6 weeks

Values represent Mean ± SE of three repeated experiments with ten
replicates each. Means followed by the same letter within columns are not
significantly different (P = 0.05) using software R (2013) version 3.0.1
(Package ‘agricolae’, version 1.1-4)
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5.06 ± 0.29 shoots/bead attaining an average shoot length of

3.06 ± 0.29 cm after 6 weeks of culture (Table 1; Fig. 1c).

The synergistic influence of the combination of cytokinin

and auxin on synseed regeneration has also been demon-

strated in other plants like Dalbergia sissoo (Chand and

Singh 2004) and Withania somnifera (Singh et al. 2006).

Emergence of single or multiple shoots from the encapsu-

lated explants has also been reported earlier in other

medicinal plants (Mandal et al. 2000; Lata et al. 2009;

Shrivastava et al. 2009).

The regenerated shoots after attaining suitable length

were isolated and transferred to optimized rooting medium

that comprised half-strength MS ? IBA (1.0 lM) ? PG

(5.0 lM) for in vitro root induction and development of

complete plantlets (Fig. 1d). Similar to our results, Mishra

et al. (2011) also described that merely 21.43 % of

encapsulated explants of Picrorhiza kurroa exhibited

simultaneous production of shoots and roots while rest of

the non-rooted shoots were transferred to root induction

medium for the development of roots. Ex vitro root

induction by pulse treatment with IBA (200 lM) also

helped in the development of roots.

Ex vitro regeneration of synthetic seeds

Encapsulated NS were sown into the sterilized soilrite for

ex vitro regeneration of beads into the plantlets and soilrite

was moistened with quarter-strength MS salt solutions.

Sowing of synthetic seed directly into the soilrite facilitated

the development of shoot as well as roots and production of

complete plantlets with 20 % conversion rate after 6 weeks

(Fig. 1e). The regenerated plantlets showed 2–3 roots/

shoot. Ex vitro conversion of synthetic seeds has also been

performed previously in other plants (Mandal et al. 2000;

Soneji et al. 2002; Naik and Chand 2006).

Low temperature storage

To evaluate the regeneration of encapsulated NS after

storage, the beads were kept at 4 �C for different time

periods (0, 1, 2, 4, 6 and 8 weeks). The non-encapsulated

NS were also stored at the same temperature and time

period. The encapsulated and non-encapsulated NS without

cold storage (control) showed maximum regeneration into

microshoots on MS ? BA (2.5 lM) ? NAA (0.4 lM);

increasing the storage time, the regeneration response was

reduced. The control beads produced the maximum

5.06 ± 0.29 shoots/bead with 94.06 ± 1.56 % regenera-

tion response after 6 weeks of culture (Table 2). The

regeneration potential of the encapsulated explants reduced

gradually and after 4 weeks of cold storage dropped to

72.30 ± 1.21 % beads regeneration with an average

1.73 ± 0.14 shoots/bead after 6 weeks of culture. Beyond

4 weeks of cold storage, a sudden fall in regeneration

potential was observed as after 8 weeks of storage only

43.90 ± 1.79 % beads could show regeneration. However,

also the non-encapsulated NS showed a sharp decline in the

regeneration response, wherein the control explants

exhibited a 96.13 ± 1.38 % regeneration, producing a

maximum of 8.73 ± 0.90 shoots/explant on optimal

regeneration medium, while, after 4 weeks of cold storage

only 33.33 ± 1.35 % nodal explants exhibited shoot

regeneration producing merely 1.40 ± 0.30 shoots/explant

and remained only 12.80 ± 1.32 % at the end of 8 weeks

(Table 2). Our results are in corroboration with the earlier

findings of Faisal et al. (2006) who also reported the effi-

cient conversion of encapsulated NS of Rauwolfia tetra-

phylla up to 4 weeks of cold storage at 4 �C. Similarly

short-term storage of germplasm of Decalepis hamiltonii at

4 �C has also been reported by Sharma and Shahzad

(2012). Cold temperature (4 �C) is generally used for

storing encapsulated explants in several plant species like

Fig. 1 Encapsulation of in vitro raised NS of C. angustifolia and their

regeneration to produce multiple shoots. a 1-day-old culture showing

encapsulated NS on MS basal medium without PGR (bar = 1 cm).

b Emergence of microshoots from synseed on MS medium supple-

mented with 2.5 lM BA, 2 weeks old culture (bar = 0.43 cm).

c Production of multiple shoots from a single synseed on MS medium

containing BA (2.5 lM) ? NAA (0.4 lM), 3 weeks old culture

(bar = 0.40 cm). d In vitro rooting of regenerated microshoots in

half-strength MS ? IBA (1.0 lM) ? PG (5.0 lM), after 3 weeks of

transfer (bar = 1.13 cm). e Ex vitro conversion of synseed into

complete plantlet in sterile soilrite, after 6 weeks of sowing

(bar = 1.02 cm)
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Dalbergia sissoo, Quercus sp., Withania somnifera and

Eclipta alba (Chand and Singh 2004; Tsvetkov and

Hausman 2005; Singh et al. 2006; 2010). However, con-

trary to these reports, storage of Khaya senegalensis (Hung

and Trueman 2011) capsule was much less effective at

4 �C (28–84 %) compared to 25 �C (84–92 %).

In the present study, the major regeneration of encap-

sulated NS in respect to non-encapsulated NS after dif-

ferent periods of cold storage could be attributed to the

inclusion of MS salts in the gelling matrix (sodium algi-

nate) which serves as an artificial nutrient to the encapsu-

lated explants as reported by Lulsdorf et al. (1993) and Rao

and Bapat (1993). These findings suggested that storage of

encapsulated explants for a considerable period of time

allows the preservation of germplasm and could be used

efficiently for regeneration of plantlets.

Acclimatization

The in vitro regenerated plantlets require a period of

transition or acclimatization prior to transfer to the field or

green house conditions. The in vitro rooted plantlets of C.

angustifolia were carefully isolated from the rooting

medium and acclimatized through the process adopted by

Parveen et al. (2012) and exhibited 70 % survival in soil.

Conclusion

In conclusion, this is the first report of encapsulation of

axillary buds of C. angustifolia in sodium alginate matrix

for short-term conservation and regeneration of plantlets.

Although, simultaneous rooting was not achieved in

regenerated microshoots, yet the regrowth of multiple

shoots from the encapsulated beads after different storage

periods and subsequent rooting in either in vitro or ex vitro

conditions proved to be an efficient strategy for the short-

term storage and propagation of this valuable medicinal

legume. Further refinement of the protocol is needed to

increase the efficiency of conversion of encapsulated

propagules to produce complete plantlets in single step.
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