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Abstract NAC (no apical meristem, Arabidopsis tran-

scription activation factor 1 and 2, cup-shaped cotyledon 2)

transcription factors (TFs) play important roles in plant

growth, development, and responses to abiotic and biotic

stress. Two novel NAC TFs were isolated from Citrullus

colocynthis, a highly drought-tolerant cucurbit species:

CcNAC1 and CcNAC2 each with conserved A–E NAC

domains. Subcellular location of CcNAC1 and CcNAC2

investigated via transient expression of 35S::CcNAC1:

:GFP and 35S::CcNAC2::GFP fusion constructs in Arabi-

dopsis protoplasts, revealed nuclear localization. The

transactivation ability of CcNACs was examined in the

GAL4 yeast assay system, and showed that only the

C-terminal domain of CcNAC1 has the ability to activate

reporter genes LacZ and His3. The CcNAC genes accu-

mulated in a tissue-specific manner with expression levels

in male flowers of C. colocynthis higher than leaves,

hypocotyls or roots. Genome walking was used to isolate

the CcNAC1 and CcNAC2-promoter regions. A high

number of stress-related sequence motifs were detected,

especially in the CcNAC1 promoter. C. colocynthis seed-

lings were treated with PEG, abscisic acid, salicylic acid

(SA), jasmonic acid (JA), H2O2, ethylene, gibberellic acid

(GA), wounding or salt. High CcNAC1 expression levels

were detected following JA application, and wounding,

while high CcNAC2 levels followed treatment with GA,

JA, SA, and wounding, indicative of differential regulation

of these stress responsive TFs in this cucurbit species.
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Introduction

Plant responses to abiotic and biotic stresses involve

changes at the transcriptome, cellular and physiological

levels. The interaction between biotic and abiotic stress is

orchestrated by hormone signaling pathways (Atkinson and

Urwin 2012). Responses to stress require the production of

important functional proteins, such as those involved in the

synthesis of osmoprotectants, and regulatory proteins,

kinases, and transcription factors (TFs), operating in the

signal transduction pathways (Saibo et al. 2009). Several

different techniques can be used to study the transcriptome

during multiple stress responses. Affymetric ATH1

microarrays are commonly used to investigate universal

components of the plant’s response to different stress

conditions (Mongkolsiriwatana et al. 2009; Swindell 2006).

Quantitative trait analysis can be used for the identification

of useful regions of genomes (Ashraf 2010), and next-

generation high-throughput sequencing (Quail et al. 2012)

offers whole plant transcriptome surveys (Wang et al.

2010), but gene functional analyses are still needed to

study plant development and gain an understanding of

responses to biotic and abiotic stress conditions.

Transcription factors are DNA-binding proteins that

activate or repress transcription of downstream genes by

binding to a consensus sequence in their promoters. The
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NAC TF family is one of the largest TF families in plants,

with more than 100 members identified in both Arabidopsis

and rice (Wang and Dane 2013) and 80 in Citrullus lanatus

(Guo et al. 2013). The acronym NAC originates from the

no apical meristem (NAM), Arabidopsis transcription

activation factor 1 and 2 (ATAF), and cup-shaped cotyle-

don (CUC) genes. NAC proteins typically share a well

conserved N-terminal NAC domain, which is divided into

five conserved subdomains (A–E), and a diversified

C-terminal transcription regulatory domain (Puranik et al.

2012). NAC TFs are specific to plants and associated with

many biological functions during embryonic, floral and

vegetative development, and stress-related processes (Ol-

sen et al. 2005; Atkinson and Urwin 2012). A number of

NAC proteins interact with pathogens, the hormones

abscisic acid (ABA), JA, and salicylic acid (SA) and

exhibit interactions with both biotic and abiotic stress

responses. Signaling crosstalk among phytohormones in

NAC-associated pathways regulate the protective respon-

ses in plants via synergistic or antagonistic actions (Tuteja

and Sopory 2008). Different phytohormones, which can

bind to the NAC recognition sequence, can regulate dif-

ferent NACs and further regulate stress-related genes.

Many NAC genes are associated with stress, and some of

the NAC genes have multiple functions. OsNAC6 in rice,

for example, is involved in both abiotic and biotic stresses

(Nakashima et al. 2007). CsNAC1 is induced by salt stress,

cold and ABA (Oliveira et al. 2011). Overexpression of

ONAC045 results in enhanced drought and salt tolerance

(Zheng et al. 2009), while RD26 was induced by drought,

ABA, and high salinity (Fujita et al. 2004). NACs have

long been associated with stress signaling, and recent dis-

coveries suggest that they may make excellent targets for

improving broad-spectrum tolerance in crops through

genetic engineering (Nakashima et al. 2007; Xu et al.

2011). Although quite a few NACs have been functionally

characterized primarily in model plants like Arabidopsis,

the functions of the majority of the members of the large

NAC gene family remain unknown (Hu et al. 2010).

Citrullus colocynthis (L.) Schrad, closely related to

domesticated watermelon (C. lanatus var. lanatus), is a

non-hardy drought-tolerant perennial herbaceous species in

the Cucurbitaceae family (Jeffrey 2008; Al-Zahrani and

Al-Amer 2006). It can survive arid environments by

maintaining its water content without wilting of the leaves

or desiccation under severe stress conditions. C. colocyn-

this has a rich history as an important medicinal plant and

as a source of valuable oil (Dane et al. 2006). Its seeds

appear in several early Egyptian, Libyan, and Near Eastern

sites from about 4000 BC (Zohary and Hopf 2000). The

species grows in sandy areas throughout northern Africa,

southwestern Asia, and the Mediterrranean region (Zamir

et al. 1984; Burkill 1985; Jarret et al. 1997). Drought-

tolerance studies in C. colocynthis pointed to several

drought-inducible genes, including a partial NAC transcript

(GenBank accession number GH626169), with complex

adaptive transcriptional regulation (Si et al. 2009, 2010a, b).

To further characterize the function of stress-tolerant genes

in C. colocynthis, two novel plant-specific TFs, CcNAC1

(KC814686), and CcNAC2 (KC814687) and their pro-

moter regions, were cloned using 50RACE and the genome

walker kit. Here, we report the characterization of the

CcNAC1 and CcNAC2 genes to gain an understanding of

their function under stress conditions. Manipulation of TFs

represents a potential strategy for development of trans-

genic stress-tolerant plants. Results indicate that CcNAC1

and CcNAC2 may have multiple functions to regulate the

plant’s defense responses to abiotic stress.

Materials and methods

Plant materials

Citrullus colocynthis seeds (No. 34256) from Israel with

high tolerance to drought were sown in potting mix in the

greenhouse with a 14 h photoperiod and temperatures

ranging from 22 to 33 �C and ambient relative humidity

and light conditions (600–720 lmol m-2 s-1). Arabidopsis

seeds were planted for leaf protoplast isolation. Wild-type

Arabidopsis (A. thaliana, ecotype Columbia) was grown in

growth chambers for 5–6 weeks, as previously described

(Jensen et al. 2007).

NAC isolation and phylogenetic analysis

NAC domain proteins from more than ten different species

were used as query sequences for Blastx searches of the

GenBank database (http://www.ncbi.nlm.nih.gov/) for

analysis of the conserved domains of NAC proteins.

Primers were designed based on conserved domain

sequences for cloning of the CcNAC genes into T-easy-

vector (Promega, Madison, WI), followed by sequence

analysis and re-blasting into the NCBI database. The 50

RACE cloning technique (Clontech Lab Inc, Mountain

View, CA) was used to obtain full-length NAC sequences

from C. colocynthis. Vector sequences and low-quality

sequences were manually removed following sequencing.

The non-redundant C. colocynthis sequences with the

highest similarity to the query sequences were investigated

as putative NAC domain genes. Evaluation of putative

open reading frames (ORFs) of the identified sequences

was based on (1) the sequences near the translation start

site corresponding to the eukaryotic consensus sequence

GCC(AG)CCATGG, (2) the sequence length and homol-

ogy to the in vitro translated product, (3) the conserved

622 Acta Physiol Plant (2014) 36:621–634

123

http://www.ncbi.nlm.nih.gov/


eukaryotic polyadenylation signal 50-AATAAA-30 fol-

lowing the stop codon. The ORF Finder (http://www.ncbi.

nlm.nih.gov/gorf/gorf.html) was used to detect ORFs and

predict amino acid sequences. Primers described in Table 1

were used for cloning of the full length CcNAC1 and

CcNAC2 genes. Con-F and Con-R were used for obtaining

the conserved regions of CcNAC1 and CcNAC2; GSP1 and

GSP2 for the 50 region of CcNAC1; 2.1-GSP1 and 2.1-

GSP2 for 50 region of CcNAC2; CcNAC1R/F and

CcNAC2 F/R were used separately to clone the ORF of

CcNAC1 and ORF of CcNAC2.

Previously published plant NAC-like gene sequences

were retrieved from the GenBank database: ATAF1

(X74755), AtNAC2 (AB049071), AtNAM (AF123311),

CUC3 (AF54194), AtNAC3 (AB049070), ANAC

(AY11722), ANAC019 (At1g52890), NAC1 (AF198054),

CUC1 (AB049069), CUC2 (AB002560), TIP

(AF281062),NAP (At1g69490), BnNAC5-11 (AY245884),

BnNAC14 (AY245886), OsNAC19 (AY596808), OsNAC5

(AB028184), OsNAC4 (AB028183), OsNAC6

(AB028185), GmNAC8 (EU661911). Multiple sequence

alignment of NAC proteins was performed using ClustalW2

(http://www.ebi.ac.uk/Tools/msa/clustalw2/). Phylogenetic

analysis was based on neighbor-joining (NJ) using MEGA5

(Tamura et al. 2011) with 1,000 bootstrap replications. Jones

Taylor Thornton (JTT) model was used as substitution

model, while Gamma distribution with invariant sites

(G ? I) as range substitution pattern. Amino acid sequences

of NAC genes with high homology to CcNAC1 and

CcNAC2 (AEF80001, XP_004161162, AFY26893,

ACS94038, XP_004149802, XP_004172335, ACS94038)

were aligned to investigate conserved NAC domains.

Green fluorescent protein-conjugated plasmid

construction

The cDNA was amplified with primers CcNAC1F/R and

CcNAC2F/R (Table 1), and the resulting PCR product was

fused into the pCR8/GW/TOPO entry vector. After a

sequencing check, the insert was transferred into pMDC43

via the LR reaction (GatewayR Entry vector, Life Tech-

nologies). The resulting plasmids containing Pro35S:

CcNAC-green fluorescent protein (GFP) insert were used

in electroporation experiments to determine the subcellular

localization of CcNAC.

Protoplasts of Arabidopsis were isolated and trans-

formed essentially as previously described in Sheen et al.

(1999) with minor modifications. The tissues for protop-

lasts isolation were Arabidopsis leaves. The leaves were

collected before flowering, excised and cut into 1 mm

strips and immediately placed into an enzyme solution for

overnight digestion in the dark. The enzyme solution which

contained 2 % cellulose R10, 0.5 % macerozyme R10,

0.5 % driselase, 2.5 % KCl, 0.2 % CaCl2, pH 5.7, was

filter sterilized. After overnight incubation, leaf tissue was

gently shaken for 30 min at 40 rpm to release protoplasts,

followed by filtration through a 40 lm cell sifter to remove

debris and centrifugation at 150 g to pellet the protoplasts.

Protoplasts were washed twice with a washing solution

(0.5 M mannitol, 4 mM MES pH 5.7, and 20 mM KCl)

and re-centrifuged at 150g. The protoplasts were suspended

in washing solution on ice for electroporation.

Protoplasts were transformed in a manner essentially as

previously described (Sheen et al. 1999; Rashotte et al.

2006). Electroporation was typically carried out with

1–2 9 105 protoplasts in 200 ll of wash solution and about

1–2 ll 400 ng/ll of plasmid DNA. Protoplasts were elec-

troporated at 300 V in a 0.1 mm cuvette using an Eppen-

dorf Electroporator 2510 (Hauppauge, NY). After

overnight incubation in the dark, protoplasts were exam-

ined under Accu-scope 3025 phase fluorescence micro-

scope (New York Microscope Company, Inc.). A GFP filter

was used to block the chlorophyll autofluorescence and a

UV filter was used to detect Hoechst 33342 fluorescence

under UV light. All photographs were taken with a

Qimaging Fast 1394 digital camera (imaging).

Table 1 Oligonucleotide primer sequences for CcNAC1 cDNA cloning and CcNAC2 cDNA cloning

Primer Tm (�C) Length Aim Sequence (50–30)

Con-F 60 27 Conserved region TTCCATCCAACGGATGAGGAGCTCCGT

Con-R 60 27 Conserved region TCAAAACGGCTTCTGCAGGTGCATAAA

GSP1 64 29 50 region TGGCTTCTCCTCCTCCTCCTCATTTTCAA

GSP2 65 28 30 region AACGCCTTTGATTTTGCAGCTGGACGAT

ccNAC1 F 58 20 NAC1 CDS ATGGCCGCCGATTTGCAGTT

ccNAC1 R 56 30 NAC1 CDS TCAAAAAGGCTTGTGAATATACATGAACAT

2.1-GSP2 64 24 50 region TTTTACAGAACTGGCCTTGCACGGAGAGA

2.1-GSP1 63 23 30 region TTCGGCTTCTCGTCTTCTTCCTCTTCGTAG

ccNAC2F 56 24 NAC2 CDS ATGACCACCGAGTTGACTCAGCTG

ccNAC2R 58 21 NAC2 CDS TCAGAACGGCTTCGGCAGGTG
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Transcriptional activation activity

The yeast strain YPG-2 containing His3 and LacZ reporter

genes was used as an assay system (Stratagene, La Jolla,

CA, USA). The coding sequences of ccNAC1 and ccNAC2

and the ccNAC1 and ccNAC2 N-terminal and C-terminal

fragments were obtained by PCR using primers described

in Table 2. The PCR products were cloned into the vector

containing the GAL4 DNA binding domain to obtain

pBD-ccNAC1, pBD-ccNAC2, pBD-ccNAC1-N, pBD-

ccNAC1-C, pBD-ccNAC2-N, pBD-ccNAC2-C. According

to the protocol of the manufacturer (Stratagene), pBD-

ccNAC1, pBD-ccNAC2, pBD-ccNAC1-N, pBD-ccNAC1-

C, pBD-ccNAC2-N, pBD-ccNAC2-C and the positive

control pGAL4 and the negative control pBD vector were

all transformed into the yeast YPG-2 competent cells.

PCR products were inserted into the SalI-PstI site of pDB

vector containing CcNAC1/CcNAC2-F, -N, -C,

respectively.

The transformed strains were confirmed by PCR and

streaked on YPAD or SD/His-plates. The transcription

activation activities of each protein were evaluated

according to their growth status. The underlined nucleo-

tide bases in Table 2 indicate restriction enzyme digestion

sites.

Isolation of CcNAC1 and CcNAC2 promoters

and in silico promoter analysis of CcNAC1

and CcNAC2 promoters

The promoters (1,585 and 1,299 bp) of CcNAC1

(KC814688) and CcNAC2 (KC814689) were obtained

using the Genome walker universal kit (Clontech Cat

NO.638904). Plant CARE (http://bioinformatics.psb.ugent.

be/webtools/plantcare/html/), a database of plant cis-acting

regulatory elements and a portal of tools for in silico

analysis of promoter sequences (Lescot et al. 2002), was

used to identify consensus motifs in the promoter sequen-

ces of CcNAC1 and CcNAC2.

Abiotic treatments

Treatments were conducted on seedlings at the 5–6 leaf

stage. Seedlings were placed in 20 % PEG8000 solution

(-0.5 MPa osmotic potential) or 50 mM NaCl to induce

drought or salt treatment or water as the control treatment.

Hormone and hydrogen peroxide treatments were con-

ducted on 14-day-old seedlings. Seedlings were treated

with 100 lM MeJA, 200 lM ABA, 100 lM SA, 100 lm

ethephon (ET), 20 mM H2O2, or 40 lM gibberellic acid

(GA). The leaves were also wounded using a hemostat

(wounding). Leaves were harvested following each treat-

ment at specific time points: 0, 1, 2, 6, 12, and 24 h.

cDNA synthesis and relative quantitative (RQ)

real-time RT-PCR

RNA was extracted from leaf material using the Trizol

(Invitrogen Life Technologies, Grand Island, NY) method.

To eliminate the remaining genomic DNA, RNA was

treated with Dnase I (Ambion Life Technologies) accord-

ing to the manufacturer’s instruction. cDNA was synthe-

sized using RETROscriptTM (Ambion).

qRT-PCR was carried out using an Bio-Rad, iCycler

Real Time PCR (Hercules, CA) system and iCycler detec-

tion system software. The C. colocynthis-specific actin gene

(ccActin154F/R), used as the reference gene, was amplified

in parallel with the target gene, allowing normalization of

gene expression and providing quantification. Primers were

designed based on specific regions. Primers sequences of

the CcNAC1 (Q-NAC1F/R), CcNAC2 (Q-NAC2F/R) and

Actin (ccActin154F/R) are listed in Table 3. Detection of

RQ real-time RT-PCR products was conducted using the

SYBR� Green PCR Master mix kit (Applied Biosystems,

Life Technologies) following the manufacturer’s recom-

mendations. Quantification of the relative transcript

levels was performed using the comparative CT method.

The induction ratio was calculated as recommended by

the manufacturer and corresponds to 2-DDCT, where

DDCT = (CT, target gene,-CT, actin) treatment-(CT, Target-

Table 2 Primers used for transcription activation assay of CcNAC1 and CcNAC2

Primer Sequence (50–30) Product length (bp) Tm (�C)

ccNAC1-N-F CCGGAATCCATGGCCGCCGATTTGCAG 478 55

ccNAC1-N-R ACGCGTCGACCGCCCTTCTTGTTGTATATACGG 478

ccNAC1-C-F CCGGAATCC GTAATCGAGAAACAGCAACAGC 421 50

ccNAC1-C-R ACGCGTCGACATGACCACCGAGTTGACTCAGCTG 421

ccNAC2-N-F ACGCGTCGACATGACCACCGAGTTGACTCAGCTG 481 56

ccNAC2-N-R AAAACTGCAG CGCCTTTCTTGTTGTAAATCCGG 481

ccNAC2-C-F ACGCGTCGACGTAATCGAGAAGCGAAATCAGATAGC 408 55.8

ccNAC2-C-R AAAACTGCAG GAACGGCTTCTGCAGGTGCAT 408
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CT, actin)control. Relative quantification relies on the com-

parison between expression of a target gene versus a ref-

erence gene and the expression of same gene in the target

sample versus the reference sample (Pfaffl 2001).

Results

Cloning and sequence analysis of the CcNAC1

and CcNAC2 genes

Earlier research on gene expression changes in response to

drought in C. colocynthis had identified a partial NAC

transcript (GH626169), which showed high expression

levels in shoots following drought (PEG) treatment and in

response to different hormones such as ABA, JA, and SA

(Si et al. 2009, 2010a). Following primer design based on

conserved regions of NAC genes, two NAC genes from C.

colocynthis were sequenced and cloned and designated as

CcNAC1 and CcNAC2. CcNAC1 encodes a 900 bp (300

amino acids) long sequence. CcNAC2 encodes an 888 bp

(296 amino acids) long sequence. Amino acid alignment of

CcNAC1, CcNAC2, and other NAC proteins was used to

construct a phylogenetic tree (Fig. 1a). Phylogenetic ana-

lysis indicated that NAC proteins can be classified into

several subgroups based on similarities to published NACs

(Ooka et al. 2003). Major subgroups are shown in Fig. 1.

Both CcNAC1 and CcNAC2 align with proteins in the

ATAF subgroup composed of ATAF1, BnNAC5-11,

GmNAC8, OsNAC19, OsNAC5, OsNAC4, OsNAC6, and

BnNAC14. Amino acid alignment analysis (Fig. 1b) indi-

cated that CcNAC1 and CcNAC2 show high homology to

NACs with conserved A–E domains (five N-terminal sub-

domains). Even though the CcNACs are variable, espe-

cially at the C-terminal region, several conserved amino

acid domains were detected.

CcNAC1 and CcNAC2 are localized to the nucleus

To identify the subcellular localization of the CcNACs, the

following constructs were made: 35S::CcNAC1-GFP and

35S::CcNAC2-GFP. The constructs were used to transform

Arabidopsis leaf protoplasts. Analysis of more than 20

protoplasts showed nuclear localization of the fusion pro-

tein of CcNAC1 and CcNAC2 with GFP, as illustrated in

Fig. 2, whereas the GFP protein was distributed ubiqui-

tously in protoplasts transformed with vector plasmid

control, PMDC43 (Fig. 2a2). These results indicated that

both CcNAC1 and CcNAC2 are nuclear proteins.

CcNAC1-C terminal has transcription activation

function

CcNAC1, CcNAC2, their N-terminal domain and C-ter-

minal domain, and full length coding sequence were fused

to the GAL4 DNA binding domain to investigate their

transcription activation activity. The yeast strain YRG-2

was transformed with the fusion plasmids pBD-ccNAC1,

pBD-ccNAC2, pBD-ccNAC1-N, pBD-ccNAC1-C, pBD-

ccNAC2-N, pBD-ccNAC2-C, the positive control pGAL4

and the negative control pBD. As shown in Fig. 3, all

transformed cells can grow well on YPAD medium, but

only pBD-ccNAC1-C can grow on SD medium without

histidine. The filter lift assay showed that the yeast cells

that grew on the SD medium without histidine turned blue

in the presence of 5 bromo-4-chloro-3-indolyl-b-D-galac-

topyranoside (X-Gal) due to the activation of another

reporter gene LacZ. The results indicate that only the C

terminal region of CcNAC1 has transcription activation

activity, while the full length and N-terminal region of

CcNAC1 do not have this activity. This phenomenon was

also observed in GmNAC20 where the C-terminal has

transcriptional activation ability (Hao et al. 2010). CcNAC2

did not show transcriptional activation activity using yeast

assay, since blue color was not observed using the X-Gal

assay (data not shown).

CcNAC1 and CcNAC2 expression patterns

Expression analysis of CcNAC1 and CcNAC2 was con-

ducted using semi-quantitative real-time PCR. Actin, used

as an internal control for constitutive expression, was

Table 3 Q-RT PCR primers for detection of relative expression levels of CcNAC1 and CcNAC2

Primers Sequence (50–30) Tm (�C) Product length (bp)

ccActin 154F CACCATCACCAGAATCCAGCACGA 59 140

ccActin 154R GGCTCCACTCAACCCAAAGGCTAAC 59 140

Q-NAC1F GTCAACCGAGAATGAAAGAAGAGTA 59 132

Q-NAC1R TATACATGAACATATCCTGCAATGG 59 132

Q-NAC2F GTGCCGGATTTACAACAAGAA 59 106

Q-NAC2R AATCTTCGGCTTCTCGCTTC 59 106
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uniformly expressed in all organs. As shown in Fig. 4,

CcNAC1 and CcNAC2 are expressed in every tissue of C.

colocynthis. CcNAC1 and CcNAC2 showed the highest

level of expression in male flowers, and low expression

levels were detected in fruits. Comparisons between the

two genes also indicated that CcNAC2 is highly expressed

in the hypocotyl of C. colocynthis.

In silico identification of stress-related promoter motifs

CcNAC1 and CcNAC2 promoters were isolated using the

genome walking method. A 1,585 bp region upstream of

the CcNAC1 gene and a 1,298 bp region upstream of the

CcNAC2 gene were cloned, which should contain most of

the regulatory domains. For further analysis of stress-

related motifs in the two promoters, Plant CARE was used.

Table 4 shows the details of stress-related motifs detected

in the two promoters, with in the attachment the promoter

sequences and motifs in color (Fig. 5). The CcNAC1 pro-

moter contains the ABA-response element (ABRE)

(Yamaguchi-Shinozaka et al. 1989; Mundy et al. 1990;

Michel et al. 1993; Giraudat et al. 1994; Barker et al.

1994), ARE motif (Manjunath and Sachs 2005), CE-3

(coupling element 3) (Hubo et al. 1999), CGTCA motif,

TC-rich motif, TGA-box, and TGACG-motif, which are

correlated with ABA response, anaerobic induction, JA

response, and auxin response. The CcNAC2 promoter

contains an ABRE motif, ARE motif, HSE (heat stress

responsiveness), MBS (MYB-binding site), Box-W1, and

TC-rich repeats, which are correlated with ABA response,

drought stress, anaerobic stress, JA response, and auxin

response. Promoter motifs provide evidence for the

involvement of CcNAC1 and CcNAC2 in biotic and abiotic

stresses. The two promoters contain several identical

motifs, such as ABRE, ARE, TC-rich repeats, which

indicate that both promoters might have similar functions.

However, some key differences in the composition or

distribution of putative stress-related cis-acting elements

(Fig. 5) were observed. Five ABRE motifs are in the

CcNAC1 promoter, but only two ABRE in the CcNAC2

promoter. CcNAC2 promoter contains three TC-rich

repeats, while CcNAC1 promoter contains only one TC-

rich repeats. Both contain some special motifs, for exam-

ple, CcNAC1 contains CE3, CGTCA-motif and TGA-

motif, whereas the CcNAC2 promoter contains Box-W1,

HSE, and MBS motifs. These special characteristics indi-

cate that although both promoters have similar regulatory

domains, they might be regulated by different factors. It

can also be deduced that the CcNAC1 and CcNAC2 TFs

might have differential regulation.

Fig. 1 a Phylogenetic tree of

CcNAC1, CcNAC2 with other

NACs proteins in plants.

Numbers at the nodes of the

trees represent the bootstrap

vales for the node (100

replicates). CcNAC1and

CcNAC2 proteins are indicated

by arrows. b Analyses of amino

acid sequences of Cc NAC1 and

CcNAC2. The five sub-domains

(A–E) are underlined by dashes.

A–E domains are conservative

domains of NAC transcription

factors
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Fig. 1 continued
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CcNAC gene expression during stress and plant

hormone treatments

NAC TFs are known to play important roles in plant

growth and development, and can be induced by multiple

biotic and abiotic stresses (Wang and Dane 2013). The

complex regulatory and interaction network occurring

between hormone-signaling pathways allows the plant to

activate responses to different types of stimuli (Bari and

Jones 2009). CcNAC1 and CcNAC2 gene expression was

studied under different stress (drought, wounding, and salt)

and phytohormone (ABA, JA, SA, GA, ET) treatments as

shown in Fig. 6. Results indicated that both genes,

CcNAC1 and CcNAC2, show similar expression patterns

under hormonal and stress treatments. Both genes are

induced by stress factors and hormones, even though dif-

B1

A2

Bright light               GFP                       UV

35S-GFP

35S:CcNAC1:GFP

35S:CcNAC2:GFP

A1

B1

C1

B2

C2

A3

B3

C3

A2

Fig. 2 Subcellular localization

of the CcNAC1 and CcNAC2

protein in Arabidopsis

protoplasts. A representative

example of 35S:CcNAC1:GFP,

and 35S: CcNAC2:GFP fusion

in a leaf mesophyll protoplast of

Arabidopsis are (B1–B3 and

C1–C3). The control (A1, A2,

A3) protoplast was transformed

with vector pMDC43.

Protoplasts were visualized

under white light (A1, B1, C1),

GFP excitation (A2, B2, C2 with

filter blocking UV and other

wavelengths) and UV light (A3,

B3, C3)

A B C D

Fig. 3 Transactivation activity of CcNAC1. a Diagram of arrange-

ment of transformants. b pBD-ccNAC1-N, pBD-ccNAC1-C, pBD-

ccNAC1-F, and pBD transformants were streaked on YPAD medium.

c pBD-ccNAC1-N, pBD-ccNAC1-C, pBD-ccNAC1-F, and pBD

transformants were streaked on SD-His- medium. d Filter lift assay

results of pBD-ccNAC1-N, pBD-ccNAC1-C, pBD-ccNAC1-F, and

pBD transformants

Fig. 4 CcNAC1 and CcNAC2 relative expression in different plant

tissues and different stages as determined by qRT-PCR. Results are

relative to expression in fruits. Arrow bars show SE (n = 3).CcNAC1

expression was shown as solid black, and CcNAC2 was shown as

gray dashed lines
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ferences in the timing of induction and level of expression

were observed. Hormones can thus regulate CcNACs

expression levels. For example, treatment with GA resulted

in a 10-fold up-regulation of CcNAC1 at 2 h, while much

higher levels of CcNAC2, 40-fold increases, were observed

at a later time point, 24 h. Similarly treatment with JA

resulted in 30-fold up-regulation of CcNAC1 at 24 h, while

the highest levels of CcNAC2 (40-fold) were detected

following JA treatment at 12 h. Treatment with ET resulted

in higher expression levels of CcNAC2 than CcNAC1,

although both showed the highest level at 6 h. The highest

levels of CcNAC1 were detected 10 h following ABA

treatment, while CcNAC2 showed the highest levels

already at 2 h (40-fold). Treatment with SA resulted in

6–8-fold up-regulation of CcNAC1 from 6 to 24 h, while

CcNAC2 was expressed from 1 to 12 h, and reached very

high levels (409).

Abiotic stresses do regulate CcNACs expression. For

example, H2O2 treatment did result in high expression of

CcNAC1, more than 15-fold at 24 h, while it did result in

up-regulation of CcNAC2 more than 40-fold at 40 h. PEG

treatment did not induce changes in expression of CcNAC1,

but did cause high CcNAC2 expression, 15–25-fold. The

effect of salt treatment did effect the expression of

CcNAC2 more than CcNAC1; both showed similar pat-

terns. Wounding resulted in high (409) up-regulation of

CcNAC1 and CcNAC2 after 2 h, and 24 h and similar

expression patterns.

Discussion

In this study, two members of the NAC gene family in

C. colocynthis were identified and NAC gene expression

in different tissues and under different treatments was

examined. This is the first report of molecular character-

ization of NAC genes in C. colocynthis The Cucurbitaceae

is a large and diverse family containing several domesti-

cated species such as watermelon, melon and cucumber

(Cucumis species), squashes, pumpkins, and gourds

(Cucurbita species). C. colocynthis is a source of genetic

improvement for drought resistance, since this species is

widely distributed in the Sahara-Arabian desert areas and

well adapted to drought stress (Dane et al. 2006). Toler-

ance to drought stress is a complex phenomenon, com-

prising a number of physio-biochemical processes at both

the cellular and whole plant level which are activated

during different stages of plant development. Molecular

mechanisms involved in different stresses have been

revealed in other plant species, and TFs are one of the

promising players in stress signaling pathways (Fujita

et al. 2006).

Table 4 Details of stress-related elements in CcNAC1 promoter and CcNAC2 promoter

Name of cis

element

Sequence Number of cis

elements

Function Reference

CcNAC1 promoter

ABRE CCTACGTGGC/CGCACGTGTC/

GACACGTGGC/CACGTG/

5 ABA responsiveness Barker et al. (1994)

ARE TGGTTT 4 Anaerobic induction Walker et al. (1987)

CE-3 GACGCGTGTC 1 ABA and VP1 (seed-specific transcription

factor) responsiveness

Hubo et al. (1999)

CGTCA motifs CGTCA 3 MeJA-responsiveness Wang, et al. (2011)

TC-rich repeats ATTTTCTCCA 1 Defense and stress responsiveness Diaz-De Leon et al.

(1993)

TGA-box TGACGTAA 1 Auxin-responsive element

TGACG-motif TGACG 3 MeJA-responsiveness Rouster et al. (1997)

CcNAC2 promoter

ABRE CACGTG/ACGTGGC 2 ABA responsiveness Barker et al. (1994)

ARE TGGTTT 3 Anaerobic induction Walker et al. (1987)

Box-W1 TTGACC 1 Fungal elicitor responsive element Shi et al. (2011)

HSE AAAAAATTTC 1 Heat stress responsiveness Schramm et al. (2006)

MBS CAACTG 1 MYB binding site involved in drought-

inducibility

Mongkolsiriwatana

et al. (2009)

TC-rich repeats GTTTTCTTAC/ATTTTCTTCA 3 Defense and stress responsiveness Diaz-De Leon et al.

(1993)
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The plant-specific NAC proteins constitute a major TF

family implicated in many developmental processes

(Puranik et al. 2012). Like most NACs, CcNAC1, and

CcNAC2 contain conserved NAC domains. NAC domains

are N-terminal regions of NACs that can bind both DNA

and other proteins (Ernst et al. 2004). N-terminal amino

CcNAC2 Promoter 

CcNAC1 Promoter 

Fig. 5 Location of stress-

related cis-regulatory elements

in CcNAC1 and CcNAC2

promoters

0h 1h 2h 6h 12h 24h

NaCl

0h 1h 2h 6h 12h 24h

ABA

0h 1h 2h 6h 12h 24h

SA

0h 1h 2h 6h 12h 24h

H2O2

0h 1h 2h 6h 12h 24h

PEG

0h 1h 2h 6h 12h 24h

JA

0h 1h 2h 6h 12h 24h

ETH

0h 1h 2h 6h 12h 24h

GA

0h 1h 2h 6h 12h 24h

Wounding

Fig. 6 CcNAC1 and CcNAC2

expression profiles under

different treatments. The gray

figures are expression patterns

of CcNAC1, while the figures

with slanted lines show

expression patterns of CcNAC2.

Gene expression was

normalized by comparing

DDCT to control (0 h) (n = 3).

Y-axis shows the expression

level of CcNAC1 and CcNAC2
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acid substitutions can abolish NAC DNA-binding or

structural integrity (Olsen et al. 2005). CcNAC1 and

CcNAC2, like most other NACs, contain conserved NAC

N-terminal and variable C-terminal domains. Protoplast

transformation experiments indicated that both CcNAC1

and CcNAC2 are localized in the nucleus, which is where

most TFs function. Research has indicated that C-terminal

regions of many NACs possess trans-activation activity

(He et al. 2005; Peng et al. 2009). Yeast assay experiments

showed that CcNAC1 has trans-activation activity, while

CcNAC2 does not have that ability. Some NACs have been

reported to function as transcriptional repressors. Hao et al.

(2010) reported that NARD (NAC Repression domain)

contributed to the transcriptional repression function of

GmNAC20, with the LVFY motif essentially required for

suppression.

Examination of CcNAC1 and CcNAC2 expression in

different plant tissues pointed to similar expression pat-

terns, although both genes were expressed mainly in male

flowers and the hypocotyl. Tissue-specific expression of

members of the NAC gene family has also been studied in

other species. For example, ATAF2, which is a pathogen-

esis-related gene in Arabidopsis, showed expression

mainly in roots, leaves and mature flowers (Delessert et al.

2005). ANAC036 which caused a dwarf phenotype in

Arabidopsis thaliana, was expressed mainly in rosette

leaves (Kato et al. 2010). AtNAC2 was expressed mainly

in root tissues and involved in salt stress responses and

lateral root development (He et al. 2005). ATAF1 in

Arabidopsis showed expression in every tissue, but mainly

in stems, flowers and seedlings. Its overexpression resulted

in severe developmental defects in Arabidopsis (Kleinow

et al. 2009).

Phytohormone and stress treatments induced CcNAC1

and CcNAC2 expression to different levels. Since the

promoters of both genes contain the anaerobic related

motif ARE, this indicates that both genes might be cor-

related with oxidative stress. Salt and drought stress are

worldwide problems, effecting global crop production and

quality. Both genes were regulated by salt and drought

stress, and a drought related motif was also detected in the

CcNAC2 promoter. Elevated levels of ABA, JA and

anthocyanin are metabolic signatures of oxidative stress

(Steppuhn et al. 2010). While the impact of the different

treatments was similar on both genes, differences in gene

expression were detected. NAC TFs are candidate

0h 1h 2h 6h 12h 24h

H2O2

0h 1h 2h 6h 12h 24h

NaCl

0h 1h 2h 6h 12h 24h

GA

0h 1h 2h 6h 12h 24h

JA

0h 1h 2h 6h 12h 24h

ETH

0h 1h 2h 6h 12h 24h

ABA 

0h 1h 2h 6h 12h 24h

SA

0h 1h 2h 6h 12h 24h

PEG

0h 1h 2h 6h 12h 24h

Fig. 6 continued
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molecules that potentially regulate aspects of both biotic

and abiotic signaling (Fujita et al. 2006). In signaling

pathways, different hormones play different parts and

crosstalk with each other. Earlier experiments had indi-

cated that many NACs play a role in phytohormone

pathways (Kim et al. 2008). NTL8, a membrane-bound

NAC TF, plays a role in GA-mediated salt signaling in

Arabidopsis (Kim et al. 2008). Studies of gene expression

in wild-type and mutant Arabidopsis genotypes in

response to pathogens revealed interactions among SA,

JA, and ethylene (Maleck et al. 2000; Tao et al. 2003;

Salzman et al. 2005). It has been suggested that ethylene

produced during wounding can activate JA biosynthesis,

and ethylene can also interact with the JA pathway to

induce a number of pathogenesis-related and defense

genes (Laudert and Weiler 1998; Kunkel and Brooks

2002). JA operates in a distinct defense pathway, which

interacts with the SA pathway. JA is known to effectively

mediate the defense of necrotrophic pathogens, while SA

is effective against biotrophic fungi, bacteria and viruses

(Murphy and Carr 2002). SA is thought to be antagonistic

to JA, indicating that SA can block the JA induction

pathway (Doares et al. 1995). Ethylene and JA are also

associated with pathogen-induced wounding (Kunkel and

Brooks 2002). JA is one of the main components of the

wound repair signal in plant tissues, and the formation of

JA is activated by ABA, ethylene, hydrogen peroxide,

UV, whereas SA and nitric oxide inhibit the synthesis of

JA (Vasyukova et al. 2011). Both JA and wounding did

induce CcNAC1 and CcNAC2 expression, which indicates

that both genes might play a role in the signaling of

pathogen resistance and wounding response. Similar to

AtNAC2, CcNAC1, and CcNAC2 were also up-regulated

by ethylene. SA is a major component of the systemic

acquired resistance (SAR) response, which refers to

induced resistance to pathogens (Bostock 2005).

ANAC055, ANAC092, and GmNAC6 genes were identified

as SA signaling components (Delessert et al. 2005; Faria

et al. 2011). SA similarly induced changes in CcNAC1 and

CcNAC2 expression, especially to a large degree in

CcNAC2 expression. The fungal elicitor motif Box-W1

was detected in the CcNAC2 promoter, which is further

evidence that CcNAC2 has a function in biotic stress

responses. JAZ (JASMONATE-ZIM DOMAIN) family

proteins are JA co-receptors and transcriptional repressors

in JA signaling in Arabidopsis. Research has indicated

that JAZ orchestrates the crosstalk between JA and other

hormone signaling pathways such as ethylene, gibberellic

acid, SA and auxin (Kazan and Manners 2012). Both

CcNAC1 and CcNAC2 were regulated by GA as well. It

is known that some NACs act as regulators in several

phytohormone pathways. AtNAC2 is a TF downstream of

the ethylene and auxin signaling pathway (He et al. 2005).

In conclusion, two NAC TFs CcNAC1 and CcNAC2

were identified in C. colocynthis. Different stresses and

phytohormones did induce CcNAC1 and CcNAC2 gene

expression, which may provide clues for a better under-

standing of NAC gene family in this drought-tolerant

cucurbit species. The identification of novel TFs regulating

abiotic stress tolerance will enable further enhancement of

stress tolerance in cultivated cucurbit species.
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