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Abstract DNA methylation plays an important role in

gene expression regulation during biological development

in plants. To explore the mechanism of chemically induced

male sterility (CIMS) in wheat, using cDNA-amplified

fragment length polymorphism (cDNA-AFLP) and meth-

ylation-sensitive amplification polymorphism (MSAP)

approaches, 6.66 and 3.42 % of the sequences showed

changes in gene expression and DNA methylation in 1376-

CIMS as compared to its fertility line 1376. We sequenced

54 fragments that differed in cDNA-AFLP and 26 DNA

fragments which differentially displayed in MSAP com-

parisons of CIMS and 1376. Our results provided evidences

for genome-wide changes in gene expression and DNA

methylation occurring in the development of the

1376-CIMS system induced by chemical hybridizing agent

SQ-1, and its counterpart fertility line 1376. Moreover, this

study contributed to the elucidation of CIMS effects on

responses of transcriptome and methylome in the devel-

opment of the anther.

Keywords Chemical hybridizing agent � DNA

methylation � Male sterility � Wheat

Introduction

The intricate and precise regulation of gene expression in

space and time is fundamental for normal development in

all organisms. The spatial and temporal orchestration of

gene expression trajectories is primarily controlled genet-

ically by specific DNA sequences including cis- and trans-

acting elements. However, increasing evidence suggests

that many aspects of development also involve epigenetic

regulations. Epigenetics refers to a variety of processes

which have long-term effects on gene expression programs

without changes in DNA sequence. Key players in epige-

netic control are DNA methylation and histone modifica-

tions which, in concert with chromatin remodeling

complexes, nuclear architecture and microRNAs, define

the chromatin structure of a gene and its transcriptional

activity. It has been proposed that cytosine DNA methyl-

ation represents an important epigenetic modification of

eukaryotic chromatin, which plays an essential role in

orchestrating gene expression across plant development

(Ingelbrecht et al. 1994; Zhang et al. 2011). In addition,

DNA methylation is important in silencing transposons and

other repetitive (Cantu et al. 2010; Yan et al. 2010).

Moreover, it has been showed that the inheritance of epi-

genetic state in plants relies largely on the maintenance of

cytosine methylation (particularly CG methylation)

through sporophytic mitosis, meiosis and postmeiotic

mitosis, giving rise to gametophytes (Takeda and Pasz-

kowski 2006). Significant changes of cytosine methylation

have been observed in the processes of reproductive

development in species such as Arabidopsis (Finnegan
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et al. 1996; Saze et al. 2003), poplar (Song et al. 2012),

Malus domestica Borkh (Forino et al. 2003), and maize

(Garcia-Aguilar et al. 2010). Furthermore, abnormal DNA

methylation will lead to male sterility in species such as

Arabidopsis (Ronemus et al. 1996), maize (Lu et al. 2010),

and rice (Ding et al. 2012a, b; Zhou et al. 2012), which

implies that DNA methylation plays a vital role in plant

fertility.

Hybrid wheat has attracted considerable research effort

spanning several decades, and wheat hybrids have shown

significantly higher yields and better adaptation to adverse

environments than the best homozygous genotypes (Pickett

and Galwey 1997; Singh et al. 2010; Zhang et al. 2001).

Since the autogamous nature of wheat makes hybrid seed

production a challenging task, it continues to be a major

constraint in a wider application of hybrids. Although

several seed production systems (both genetic and chemi-

cal based) have been developed in wheat, chemical

hybridizing agents (CHAs) could provide an alternate,

workable system for inducing male sterility, which is rapid,

flexible and would not require fertility restoration, and the

major advantage of using CHAs is that almost any inbred

line may be used as a female parent. So, exploitation of

chemically induced male sterility (CIMS) is the best

available strategy to break the existing yield barriers in

wheat. However, how do CHAs cause male sterility in

wheat? Despite the some progress in cytoplasmic male

sterility (CMS) (Klindworth et al. 2002; Liu et al. 2002;

Sasakuma et al. 2001; Yu et al. 2011; Zhang et al. 2009,

2010b), little information on regulatory mechanism of

CIMS (Adugna et al. 2004; Chakraborty and Devakumar

2006; Parodi and Gaju 2009; Rao et al. 2000), in particular,

the epigenetic switch system for their concerted regulation

available is currently not known. Furthermore, we should

get more information on how CHAs (SQ-1) alter gene

expression and DNA methylation in the development of the

anther.

The first objective of the present work was to compare

changes in gene expression and DNA methylation between

a typical CIMS line, Xi’nong 1376-CIMS induced by SQ-1

(‘‘1376-CIMS’’ for short) and its fertile line, Xi’nong 1376

(‘‘1376’’ for short) in the development of the anther. An

additional objective was to shed light on how SQ-1

affected gene expression and DNA methylation changes

between CIMS and its fertile line 1376. Unbiased and

global cDNA-amplified fragment length polymorphism

(cDNA-AFLP) and methylation-sensitive amplification

polymorphism (MSAP) approaches were performed on

anthers during anther development in 1376-CIMS and

corresponding fertile line 1376. Thus, the fragments dis-

playing changes in gene expression and/or DNA methyla-

tion as a result of CIMS were cloned and characterized.

Materials and methods

Plant materials and microscopic observation

A typical CIMS line, Xi’nong CIMS-1376 induced by

chemical hybridization agents SQ-1 (‘‘1376-CIMS’’ for

short) and its fertile line, Xi’nong 1376 (‘‘1376’’ for

short), both of the two lines with common genetic

background, were grown in experimental fields of

Northwest A&F University in the summer from 2010 to

2012. SQ-1, at the rate of 5.0 kg ha-1, was sprayed

when wheat development on average was at the 8.5

stage (about 175 mm spikes) of the Feekes’ scale.

Anthers at three developmental stages were picked out

from the corresponding young spikes and collected for

experiments. To establish cytological controls, the

purity and developmental stage of pollen were checked

using acetic acid magenta staining of nuclei and

microscopy. The whole anther development in this

study was divided into three stages according to the

microsporogenesis progress by checking under the

microscope, i.e., (stage 1) uninucleate anther stage,

(stage 2) binucleate anther stage, and (stage 3) trinu-

cleate anther stage (anther obtained from spikelets

immediately on ice) (Fig. 1a–c). Pollen fertility was

tested with iodine-potassium iodide (KI-I2) assays

(Fig. 1d, e). In addition, the morphology of anther and

pollen was observed using a JSM-6360LV (Japan)

scanning electron microscope (SEM). And around 800

anthers were needed to obtain 100 mg anther material

for each sample.

DNA and RNA extraction and cDNA synthesis

Total genomic DNA was isolated from fresh anthers using

the method as described by Murray and Thompson (1980).

Total RNA was extracted using TRIzol reagent (Invitro-

gen). Before reverse transcription, total RNA was treated

with RNase-free DNase I (Takara) at 37 �C for 30 min to

avoid genomic DNA contamination. First-strand cDNA

was synthesized from total RNA using oligo-(dT)18 primer

and reverse transcriptase (RT) SuperScript (Takara)

according to the manufacturer’s specifications. Second-

strand cDNA was synthesized using 10 U DNA polymerase

I (Takara) and 3 U RNase H (Takara) according to standard

procedures. The resulted double-stranded cDNA was

purified by phenol–chloroform extraction and ethanol

precipitation, and then resuspended in a final volume of

40 ll ddH2O. Approximately a quarter of this volume was

checked on an agarose gel. If the expected smear between

100 and 4,000 bp was observed, the rest of the cDNA was

stored at -20 �C for future use.
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cDNA-AFLP analysis

The cDNA-AFLP technique was modified from pub-

lished methods (Bachem et al. 1996). Equal amounts of

cDNA from the same organ but different individuals of

the same plant material were mixed, respectively.

Approximately 500 ng of mixed cDNA was double-

digested with 5 U Mse I and 5 U EcoR I (Takara) at

37 �C for 5 h. The digestion was inactivated by heating

at 65 �C for 45 min. The digested fragments were liga-

ted to 10 pmol of EcoR I adaptor, 100 pmol of Mse I

adaptor, and 1 U T4 DNA ligase (Takara) at 22 �C for

6 h. The pre-amplification step was carried out using

50 ng of the ligation products as templates, with 0.2 lM

EcoR I and Mse I preselection primers, in a final volume

of 25 ll containing 19 polymerase chain reaction (PCR)

buffer, 1.5 mM MgCl2, 0.2 mM dNTP, and 2 U Taq

polymerase (Takara). The PCR reactions were performed

with the following program: 3 min at 94 �C, 26 cycles

consisting of 30 s at 94 �C, 45 s at 56 �C, 1 min at

72 �C, and a final extension step of 10 min at 72 �C. The

pre-amplification PCR product was diluted 1:50 with

ddH2O, and 2 ll was used as template for selective

amplification with 0.2 lM of the primers ‘‘EcoR I ? 2’’

(containing two selective bases) and ‘‘Mse I ? 2’’ (two

selective bases). The other components were the same as

in the pre-amplification reactions. Selective PCR reac-

tions were performed with the following procedure:

94 �C for 4 min, 30 cycles of 30 s denaturing at 94 �C,

30 s annealing and 60 s extensions at 72 �C, ending with

10 min at 72 �C to complete extension. Annealing was

initiated at a temperature of 65 �C, which was then

reduced by 1 �C for the next 10 cycles, and maintained

at 55 �C for the remaining 26 cycles. The sequences of

adaptors and primers are listed in Table 1.

5 ll selective PCR products were mixed with 5 ll of

formamide dye (98 % formamide, 10 mM EDTA, 0.05 %

w/v bromophenol blue and xylene cyanol), denatured at

94 �C for 5 min and separated by electrophoresis on 6 %

denaturing polyacrylamide (20:1 acrylamide: bisacryla-

mide, 7.5 M urea, and 19 Tris–borate-EDTA buffer, pH

7.8). The gels were pre-run at 100 W for about 30 min

before 10 ll of the mix was loaded, then run at 250 V for

about 2.5 h, and silver stained according to the DNA sil-

ver-staining system procedure.

Methylation-sensitive amplification polymorphism

assay

The MSAP technique was modified from published meth-

ods (Xiong et al. 1999). The protocol involved use of the

isoschizomers Hpa II and Msp I instead of Mse I as ‘fre-

quent cutter’ enzymes. The adapter and primer for the

‘rare-cutter’ enzyme EcoR I were the same as that used in

standard AFLP analysis, while the Hpa II/Msp I adapter

was designed as in Table 2.

Fig. 1 Microspore development and pollen fertility of 1376-CIMS as

compared to 1376. a–c Stained with acetocarmine. d, e Stained with

potassium iodide–starch. a Uninucleate microspore; b binucleate

microspore; c trinucleate pollen; d pollens from 1376. e Pollens from

1376-CIMS. Scanning electron microscopy analysis of the anther

surface (f, g) and of the pollen exine (h, i); f, h from 1376; g, i from

1376-CIMS. 1376-CIMS, chemically induced male sterility line;

1376, fertile line
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To detect MSAP, restriction and ligation were done

concurrently and two sets of digestion/ligation reactions

were carried out simultaneously. In the first reaction,

2 ll of the extracted DNA (120 ng DNA) was added to

18 ll buffer (10 mM Tris–HCl pH 7.5, 10 mM MgAc,

50 mM KAc) containing 6 units EcoR I, 5 units Hpa II

(Takara), 4 units T4 DNA ligase (Takara), 5 pmol EcoR

I adapter, 50 pmol Hpa II/Msp I adapter and 10 mM

ATP. The mixture was then incubated at 37 �C for 6 h.

The reaction was stopped by incubating at 65 �C for

10 min and diluting 10 times in 0.1 9 TE (1 mM Tris–

HCl, 0.1 mM EDTA, pH 8.0) for PCR amplification.

The second digestion/ligation reaction was carried out

in the same way, except that Msp I was used in place of

Hpa II.

We used two consecutive PCRs to selectively amplify

the EcoR I–Hpa II and EcoR I–Msp I DNA fragments. The

pre-selective amplification (first PCR) was performed using

5 ll of the above mentioned diluted mixture added to a

15 ll mixture giving a final concentration of 10 mM Tris–

HCl pH 8.3, 50 mM KCl, 1.5 mM MgCl2, 0.2 mM of each

dNTP, 50 ng of EcoR I and Hpa II/Msp I adapter-directed

primer, each possessing a single selective base (E ? 1;

HM ? 1) and 1 unit of Taq polymerase (Takara). PCR

reactions were performed with the following profile: 94 �C

for 60 s, 25 cycles of 30 s denaturing at 94 �C, 30 s

annealing at 55 �C and 60 s extension at 72 �C, ending

with 10 min at 72 �C to complete extension. After check-

ing for the presence of a smear of fragments (100–1,000 bp

in length) by agarose electrophoresis, the amplification

product was diluted 10 times in 0.1 9 TE.

Selective amplification (second PCR) of the diluted pre-

amplification products was carried out using a total of 30

primer combinations obtained with four EcoR I primers in

combination with three Hpa II/Msp I primers with three

selective bases each (E ? 3, HM ? 3). The EcoR I and

Hpa II/MspI adapters and primers were synthesized by

Invitrogen Life Technologies. Selective PCR reactions

were performed with the following procedure: 94 �C for

60 s, 36 cycles of 30 s denaturing at 94 �C, 30 s annealing

and 60 s extension at 72 �C, ending with 10 min at 72 �C

to complete extension. Annealing was initiated at a tem-

perature of 65 �C, which was then reduced by 0.7 �C for

the next 13 cycles and maintained at 56 �C for the sub-

sequent 23 cycles.

The second PCR products were mixed with 15 ll of

formamide dye (98 % formamide, 10 mM EDTA, 0.01 %

w/v bromophenol blue and 0.01 % w/v xylene cyanol),

denatured at 95 �C for 5 min and separated by electro-

phoresis on 6 % denaturing polyacrylamide sequencing

gels (6 % acrylamide 19:1, 7M Urea) in 19 TBE buffer.

The gels were pre-run at 150 W for about 30 min before

10 ll of the mix was loaded.

Gels were run at 250 V for about 2.5 h, and silver

stained. The gel was fixed in 10 % acetic acid for 10 min,

washed twice with a large quantity of ultrapure water for

Table 1 Sequences of adaptors and primers used for pre-amplifica-

tion and selective amplification in cDNA-AFLP analysis

Adaptors/primers Sequences (50–30)

EcoR I adapter CTCGTAGACTGCGTACC

AATTGGTACGCAGTCTAC

E ? 1 primer GACTGCGTACCAATTCA

E ? 2 primer GACTGCGTACCAATTCGA

GACTGCGTACCAATTCGC

GACTGCGTACCAATTCGG

GACTGCGTACCAATTCGT

GACTGCGTACCAATTCTA

GACTGCGTACCAATTCTC

Mse I adapter GACGATGAGTCCTGAG

TACTCAGGACTCAT

M ? 1 primer GATGAGTCCTGAGTAAC

M ? 2 primer GATGAGTCCFGAGTAACA

GATGAGTCCFGAGTAACG

GATGAGTCCFGAGTAACC

GATGAGTCCFGAGTAACT

GATGAGTCCFGAGTAATA

GATGAGTCCFGAGTAATG

Table 2 Sequences of MSAP primers and adapters

Primers/adapters Sequences (50–30)

EcoR I adapter 50-CTCGTAGACTGCGTACC-3

50-AATTGGTACGCAGTCTAC-3

E ? 1 primer 50-GACTGCGTACCAATTCA-3

E ? 3 primers 50-GACTGCGTACCAATTCAAG-30 (E1)

50-GACTGCGTACCAATTCAAC-30 (E2)

50-GACTGCGTACCAATTCACG-30 (E3)

50-GACTGCGTACCAATTCACT-30 (E4)

50-GACTGCGTACCAATTCAGG-30 (E5)

50-GACTGCGTACCAATTCAGT-30 (E6)

Hpa II/Msp I adapter 50-GATCATGAGTCCTGCT-30

50-CGAGCAGGACTCATGA-30

HM ? 1 primer 50-ATCATGAGTCCTGCTCGGT-3

HM ? 3 primers 50-ATCATGAGTCCTGCTCGGTCA-3

(HM1)

50-ATCATGAGTCCTGCTCGGTCC-3

(HM2)

50-ATCATGAGTCCTGCTCGGTTC-3

(HM3)

50-ATCATGAGTCCTGCTCGGTAA-3

(HM4)

50-ATCATGAGTCCTGCTCGGTAC-3

(HM5)
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1 min, transferred to a silver impregnation solution (1 g/l

AgNO3, 0.75 % formaldehyde) for 8 min and then rinsed

with ultrapure water for 20 s. All the above steps were

performed with slow agitation on a shaker. Image devel-

opment was carried out with manual agitation in developer

(30 g/l Na2CO3, 0.02 % formaldehyde). To stop develop-

ment and fix the gel, 10 % acetic acid was added directly to

the developing solution and incubated with shaking for

2–3 min.

Scoring of cDNA-AFLP and MSAP bands

Each cDNA-AFLP and MSAP gel was run twice. For the

cDNA-AFLP and MSAP analyses, the replicate gel was run

from the same cDNA and DNA sample but from a different

digestion–ligation-amplification reaction, only the reac-

tions showing full reproducible results between replicas

were used for data analysis. Moreover, with both cDNA-

AFLP and MSAP gels, the upper part and the lower part of

the gel, where the resolution is not satisfactory, were not

used for band scoring. The scored cDNA-AFLP and MSAP

bands were transformed into a binary character matrix,

using ‘‘1’’ and ‘‘0’’ to indicate the presence and absence,

respectively, of a band at a particular position.

Cloning and sequence analysis of differentially

displayed fragment

Bands that displayed DNA methylation differences during

the anther development were excised from the gel and re-

amplified using the selective amplification PCR conditions.

The amplified fragments were ligated into pGEM-T easy

vector (Takara) and sequenced. Homology search were

performed on the National Center Biotechnology Infor-

mation Server (http://www.ncbi.nlm.nih.gov/BLAST/).

Results

Changes in gene expression during the development

of anthers induced by SQ-1

In order to collect synchronous anther samples for analysis

of each discrete developmental stage and to establish

cytological controls, it was essential to confirm the precise

cytological stage of microspore development. Cytological

results of wheat microspore development using acetocar-

mine staining techniques are shown (Fig. 1a–c). We

observed the pollen fertility of 1376-CIMS and its fertile

line 1376 (Fig. 1d, e), suggesting that SQ-1 can induce

complete male sterility. The anther exine pattern in

1376-CIMS was further analyzed using scanning electron

microscopy (SEM). We observed an orderly linear-shaped

surface of the anther in 1376, and yet a confused and dis-

ordered surface of the CIMS anther (Fig. 1f, g). In the

meantime, pollens in 1376 exhibited characteristic round

and smooth surface, pollens from the 1376-CIMS showed a

complete misshapen and shrunken extine pattern (Fig. 1h,

i). These results implied SQ-1 had a major impact on the

development of the anthers.

To determine how SQ-1 causes the transcriptome of

1376-CIMS to diverge from that of its fertile line 1376,

cDNA-AFLP display was performed on the anther in the

development of 1376-CIMS and its fertile line 1376. The

band patterns were expected to be comparisons of the

cDNA-AFLP profiles of between 1376-CIMS and 1376,

and its fertile line 1376 was served as control, and all cases

of deviation from its fertile line 1376 were scored as gene

expression changes in this study. An example of this ana-

lysis was presented in Fig. 2. Thirty-two pairs of selective

primers were used in the cDNA-AFLP assay.

In anther at uninucleate stage, 896 transcripts were

obtained with 72 (8.04 %) transcripts showing expression

alterations in 1376-CIMS. Among these 72 transcripts, 23

transcripts (31.94 %) disappeared in 1376-CIMS, while 49

new transcripts (68.06 %) appeared. At binucleate stage,

Fig. 2 cDNA-AFLP patterns of 1376-CIMS as compared to their

corresponding fertility line 1376. B1, B2 and B3 are uninuclear pollen

stage, binuclear pollen stage and trinucleater pollen stage in 1376,

respectively. While A1, A2 and A3 are the corresponding stage in

1376-CIMS. 1, 2 and 3 bands detected in 1376-CIMS but disappeared

in 1376; 4, 5 and 6 bands detected in 1376 but disappeared in

1376-CIMS. M, DM10-100 bp ladder DNA marker; a 500 bp;

b 300 bp. 1376-CIMS, chemically induced male sterility line; 1376,

fertile line
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53 (5.52 %) of 960 cDNA fragments were altered in their

expression patterns in 1376-CIMS with 14 (26.42 %)

transcripts were suppressed, and 39 (73.58 %) were acti-

vated. At trinucleate stage, 55 upon 848 (6.49 %) cDNA

fragments were altered in their expression patterns in

1376-CIMS as compared to its fertile line 1376 with 19

(34.55 %) transcripts silenced and 36 (65.55 %) transcripts

activated (Table 3).

Combining data from the three stages, 180 of 2,704

transcripts 6.66 %) were altered in their expression in

1376-CIMS. About 2.07 % (56 of 2,704) of the transcripts

were silenced in 1376-CIMS, while 4.59 % (124 of 2,704)

of the transcripts were activated (Table 3). The proportion

of gene activating was significantly higher than that of gene

silencing.

Alterations of DNA methylation during the anther

development in 1376-CIMS

Isoschizomers Hpa II and Msp I recognize and digest 50-
CCGG-30 sites, but display differential sensitivity to DNA

methylation. Hpa II is inactive if either cytosine is fully

methylated (Methylation of both strands), even as it cleaves

the hemi-methylated sequence (only one strand methyla-

tion). Msp I is sensitive only to methylation at the external

cytosine. It cuts in the case of inner cytosine methylation

(CmCGG), but not in the case of outer cytosine methylation

(mCCGG). Therefore, different band patterns from PCR

amplification can reflect the methylation status and level at

the site.

To explore changes in DNA methylation induced by

SQ-1, we employed MSAP analysis to assess cytosine

methylation at specific restriction sites throughout the

genome (Fig. 3). Examples of some MSAP profiles were

shown in Fig. 4a–g. In the case of absence of methylation

changes, 1376-CIMS were expected to have the same

methylation patterns as 1376 which were generated due to

the DNA methylation at the CCGG sites and did not

switched during the anther development (Fig. 4a–c).

Polymorphic bands between 1376-CIMS and 1376 were

scored as methylation changes (Fig. 4d–g). A total of 24

pairs of EcoR I ? Hpa II/Msp I selective primer combi-

nations were used in MSAP analysis. Table 4 summarized

Table 3 Summary of cDNA-AFLP between 1376-CIMS and 1376 at

various stages of development of the anther

cDNA-AFLP

expression

pattern

Development stages Total

Uninucleate Binucleate Trinucleate

Total transcripts 896 960 848 2,704

Transcripts

absent in

1376-CIMS

23 14 19 56

New transcripts

in 1376-CIMS

49 39 36 124

Total changes

(%)

72 (8.04) 53 (5.52) 55 (6.49) 180

(6.66)

1376-CIMS, chemically induced male sterility line; 1376, fertility line

Fig. 3 Methylation polymorphism between the maintainer line and

its male sterility line shown in methylation-sensitive amplified

polymorphism (MSAP) analysis. Uni, Bi and Tri stand for uninucleate

phase, binucleate phase and trinucleate phase, respectively. And, H

and M refer to digestion with EcoR I ? Hpa II and EcoR I ? Msp I,

respectively. The polymorphism bands amplified by the primer

combination HM ? TGC/E ? ACT are shown. 1376-CIMS, chem-

ically induced male sterility line; 1376, fertile line

Fig. 4 Examples of MSAP profiles in 1376-CIMS and its fertility

line 1376. EcoR I-HpaII (H) and EcoR I–MspI (M) were used for

digestion in MSAP analysis. Example of additive pattern (a–c).

Examples of DNA methylation changes derived from 1376-CIMS (d–

g). 1376-CIMS, chemically induced male sterility line; 1376, fertile

line
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the methylation status in the 1376-CIMS relative to its

fertility line 1376.

In anther at uninucleate stage, comparisons of the MSAP

profiles revealed a total of 466 fragments which were detected

in 1376-CIMS and its fertility line 1376. Among them, 19

(4.08 %) showed methylation changes between 1376-CIMS

and its fertility line 1376. 11 bands were from pattern of

hypermethylation, 6 bands from pattern of demethylation. At

binucleate stage, 15 of 423 fragments (3.54 %) showed

methylation alterations between 1376-CIMS and their fertil-

ity line 1376. Of the altered bands, 11 cases were from pattern

of hypermethylation MSAP markers, and 4 cases from pattern

of demethylation. At trinucleate stage, 12 (2.63 %) out of 456

bands showed methylation changes between 1376-CIMS and

its fertility line 1376. 7 bands were hypermethylated, while 5

bands were demethylated.

Combining the data for these three stages, 46 of 1,342

bands (3.42 %) showed methylation alterations in

1376-CIMS as compared to its fertile line 1376. Among the

46 changed bands, 31 bands were from pattern of hyper-

methylation and 15 bands from pattern of demethylation.

Thus, the proportion of 1376-CIMS methylation alterations

was significantly different from that of 1376 methylation

alterations.

Characterization of fragments showing changes in gene

expression or methylation

Some of the fragments showing changes in gene expression

or methylation associated with anther development from

1376-CIMS and its fertile line 1376 were cloned and

sequenced. The homologies of these sequences to known

protein and gene sequences were detected using the

BLASTX suite of programs.

Fifty-four upon 168 cDNA-AFLP fragments showing

changes in gene expression from 1376-CIMS and its fertile

line 1376 were cloned and sequenced. Among the 31

candidate genes, 7 had no similarity to GenBank entries.

The other candidate genes had a variety of functions,

including metabolic enzymes, kinases, F-box proteins,

proteins of the proton-dependent oligopeptide transport

family, proteins involved in plant hormonal regulation,

proteins participating in signal transduction pathways,

transcription factors, anti-apoptotic proteins, and proteins

of unknown function (Supplementary Table 1).

Twenty-six upon 46 fragments showing changes in

methylation status in 1376-CIMS and its fertility line 1376

were randomly selected, cloned, and sequenced. About 9

sequences had no gene annotation in GenBank with

BLASTX. The candidate fragments encode a variety of

proteins, including metabolic enzymes, F-box proteins,

leucine-rich-like protein, hormonal regulation, and bHLH

proteins, retroelement, and proteins of unknown functions.

Notably, 15.4 % (4 of 26) of the sequenced fragments that

underwent methylation changes in 1376-CIMS showed

similarity to retroelement sequences (Supplementary

Table 2).

Discussion

Effects by SQ-1 in 1376-CIMS on gene expression

and DNA methylation

As more plant transcriptomes and methylomes become

available, it shall be a major priority for future research to

elucidate the molecular and cellular control of cytosine

methylation dynamics and inheritance, and to relate the

Table 4 Patterns of cytosine methylation between 1376-CIMS and its fertility line 1376

Band display pattern in MSAP gel Number of sites Total

1376 1376-CIMS Development stages

Hpa II Msp I Hpa II Msp I Uninucleate Binucleate Trinucleate

Total bands 466 423 456 1,342

Total methylation changes (%) 19 (4.08) 15 (3.54) 12 (2.63) 46 (3.42)

Methylation additive ? ? ? ? 302 298 356 955

- ? - ? 118 93 73 284

? - ? - 26 17 15 58

Methylation changes ? ? ? - 8 7 2 17

? ? - ? 5 4 5 14

? - ? ? 4 3 1 8

- ? ? ? 2 1 4 7

1376-CIMS, chemically induced male sterility line; 1376, fertile line

HpaII and MspI indicate the enzyme combinations of EcoR I/Hpa II and EcoR I/Msp I; -, band absent, ?, band present
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contributions of this epigenetic modification to gene

expression as well as its role in controlling plant

development.

The cDNA-AFLP provides the expression profile of

whole genomes, allowing the monitoring of transcriptional

changes related to outside stimuli (Wang et al. 2011). And

the advantage of not requiring previous genome knowledge

makes this technique a powerful tool for identifying novel

genes in non-model organisms. In addition, cDNA-AFLP

has high sensitivity and specificity, comparable to micro-

arrays (Levterova et al. 2010). Several studies have dem-

onstrated the effectiveness of cDNA-AFLP to analyze gene

expression (Aubry et al. 2003; Baisakh et al. 2006; Durrant

et al. 2000; Hsu et al. 2008; Mondego et al. 2003; Paris

et al. 2012). And many previous studies also have con-

firmed that the MSAP technique is highly efficient for

large-scale detection of cytosine methylation in plant

genomes (Baurens et al. 2008; Chen et al. 2009; Hanai

et al. 2010; Portis et al. 2004; Shan et al. 2012; Wu et al.

2000; Xiong et al. 1999). Thus, these technological

improvements have the potential of unlocking the com-

plexity of epigenetic modifications just as profoundly as

whole genome sequencing has impacted genetics.

In flowering plants, the male gametophyte (or pollen

grain) plays a pivotal role in plant fertility and crop pro-

duction through the generation and delivery of the male

gametes to the embryo sac for double fertilization. Male

gametophyte development in higher plants is a complex

process that requires the coordinated participation of vari-

ous cell and tissue types and their associated specific gene

expression patterns. Our data indicated that the expression

and DNA methylation of the anthers in 1376-CIMS differed

in their ability to be modified in gene expression and

methylome. Although the underlying mechanisms for these

phenomena are yet to be not determined, we supposed that

genome-biased alterations in gene expression and DNA

methylation might be a way to overcome incompatibilities

after CHA treated, thus might contribute to rapidly adapt to

adversity. Our result showed that in individual stages the

number of transcripts varied from 896 (uninucleate mi-

crospores, UNM) through 960 (bicellular pollen, BCP) to

848 (tricellular pollen, TCP) (Table 3), whose trend was

consistent with that in Arabidopsis (Honys and Twell 2004),

but there’s a great gulf between the number of transcripts of

both, and that may be due in part to different analysis

technique. And our data also revealed that in individual

stages a net new number of transcripts (new transcripts in

1376-CIMS minus transcripts absent in 1376-CIMS) varied

from 26 (UNM) through 25 (BCP) to 17 (TCP), which

suggested that SQ-1 should have increased the net number

of the transcripts in the development of the anther.

Moreover, MSAP analysis also revealed that

1376-CIMS and 1376 have distinct methylation alteration

patterns (Table 4). About 4.92 % of the methylation

changes occurred in Hpa II lanes (hemi-methylated at
mCHG), and 21.68 % occurred in Msp I lanes (methylated

at mCG), while 73.47 % occurred in both Msp I and Hpa II

lanes in 1376-CIMS. In 1376, 5.59 % of the DNA meth-

ylation changes occurred in Hpa II lanes, and 22.21 %

occurred in Msp I lanes, while 72.28 % occurred in both

Msp I and Hpa II lanes. The results suggested that there

were different effects on DNA methylation pattern between

1376-CIMS and 1376. The most striking observation

revealed that the relative methylation level of mCG and

total (mCG ? mCHG) in 1376-CIMS was lower than that

of 1376, which, implied more extensive demethylation

(mCG ? mCHG) in 1376-CIMS was than that in 1376.

However, the tissues assayed in maize included seed-

lings and tassels of C-type cytoplasmic male sterility line

were more methylated than their corresponding maintain-

ers not only on MSAP ratios but also on the full methyl-

ation levels (Lu et al. 2010), which are inconsistent with

our data. The possible cause of this gap is that the pattern

of DNA cytosine methylation has tissue-, organ-, devel-

opmental stage- and species-specific gene expression

across plant development. In especial, it is not the same

that the regulation mechanism between the CIMS and CMS

(cytoplasmic male sterility).

Combining the data between cDNA-AFLP and MSAP

analyses demonstrated up to 6.66 % of the transcripts in the

1376-CIMS showed changes in expression, and 3.42 % of

the sequences in the 1376-CIMS showed changes in DNA

methylation as compared to its fertile line 1376. Moreover,

SQ-1 decreased the number of the methylated fragments

and increased the net number of the transcripts in the

development of anther in 1376-CIMS, which were con-

sistent with previous work that genome demethylation

causes increased the rates of transcription (Zilberman et al.

2007). Since methylation-demethylation switches can

control regulated gene expression, our results also indi-

cated that extent and pattern of gene expression and DNA

methylation alteration took place during anther develop-

ment induced by SQ-1. Therefore, we infer that the vari-

ation in the extent of methylation and characterization of

molecular epigenetic events such as demethylation and

hypermethylation in male sterility lines relative to its fertile

line may help explain the phenotypic variation/deviation

observed in 1376-CIMS as compared to 1376, and thereby

may help in understanding the relationship between DNA

methylation and CIMS.

Sequences affected by SQ-1 in 1376-CIMS

Despite just part of the sequences showing changes in gene

expression or methylation were sequenced, the results

provided valuable information about types of sequences
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affected in 1376-CIMS, In 1376-CIMS, the spectrum of

genes whose expression affected by CHA was broad. And

the DNA methylation changes were found in various types

of sequences including retrotransposons, functional genes,

and non-coding DNA. In any case, the sequencing results

indicated CHA might affect changes in gene expression

and DNA methylation in genome-wide scale.

Approximately 8.70 % of the sequenced fragments that

underwent methylation changes in 1376-CIMS showed

similarity to retrotransposons. This result indicated that

male sterility is accompanied by frequent epigenetically

modification of retrotransposons. Retrotransposons can

generate mutations by inserting within or near functional

genes, and these elements may provide regulatory

sequences for gene expression and then alter the expression

of the adjacent genes (Fedoroff 2000). All these data sug-

gested that retrotransposons might have played an impor-

tant role in anther development. Besides, our results also

indicated some differentially methylated DNA fragments

including ethylene receptor and lipid transfer protein could

play an important role in anther development (Supple-

mentary Table 2). It was also confirmed that the abnormal

expression of ethylene receptor genes could induce stable

male sterility in Nicotiana tabacum (Ishimaru et al. 2006).

As is well-known that synthesis of lipidic components in

anthers, including the pollen exine, is essential for plant

male reproductive development and that plant lipid transfer

proteins (LTPs) are small, abundant lipid-binding proteins

have the ability to exchange lipids between membranes.

OsC6, encoding a LTPs and positively regulated by a basic

helix-loop-helix transcription factor, plays a crucial role in

the development of lipidic orbicules and pollen exine

during anther development, and silencing of OsC6 could

reduce pollen fertility in rice (Zhang et al. 2010a).

As is well-known, in the development of pollen, meiosis

in the anthers yields haploid unicellular microspores, sub-

sequently, pollen mitosis I (PM I) yields a larger vegetative

cell and a smaller generative cell (GC), and the GC

undergoes PM II, a symmetric division that yields two

sperm cells. In this process, our data showed that the pat-

terns of gene expression and DNA methylation alterations

induced by SQ-1 can occur. And, the results also demon-

strated that the rapid and numerous changes in gene

expression and DNA methylation of the anthers observed

here may be programmed responses to SQ-1, and may be

disadvantageous for formation and development of the

pollen. To promote a better understanding of the male

sterility induced by CHA, an important question needed to

be clarified is whether the observed epigenetic and gene

expression changes in CIMS are stochastic or non-random

(or part of the changes are stochastic and part of the

changes are non-random). Answer to this question should

come from analyzing a large amount of mutational

analysis, which is a powerful approach to identify struc-

tural and regulatory components that participate in a par-

ticular developmental pathway.
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