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� Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2013

Abstract Photosynthetic gas exchange in the leaves of

wheat plants growing in a nutrient solution containing 0 or

2 mM silicon (Si) and inoculated with Pyricularia oryzae

was investigated. The blast severity, the gas exchange

parameters such as net carbon assimilation rate (A), stomatal

conductance to water vapor (gs), internal CO2 concentration

(Ci) and transpiration rate (E) and the concentration of pig-

ments (chlorophyll a, chlorophyll b and carotenoids) were

determined. The blast severity was reduced by 67.66 % on

?Si plants compared with the -Si plants. There were sig-

nificant increases of 29.3, 17.7 and 45 % for A at 48, 72 and

96 h after inoculation (hai); 26.7 and 49 % for gs at 48 and 96

hai; and 25.2 and 31.4 % for E at 48 and 96 hai, respectively,

for ?Si inoculated plants when compared with the -Si

inoculated plants. The Ci was significantly lower for ?Si

inoculated plants than for -Si inoculated plants at 48, 72 and

96 hai. For inoculated plants, the concentrations of chloro-

phyll a and chlorophyll b were significantly higher for the

?Si plants compared with the -Si plants at 72 and 96 hai.

The results of this study clearly demonstrated that the supply

of Si to the wheat plants was associated with lower blast

severity in parallel with improved gas exchange perfor-

mance, resulting in higher energy for mounting successful

defense strategies against P. oryzae infection.
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Introduction

Blast, caused by the fungus Pyricularia oryzae Sacc. (tel-

eomorph: Magnaporthe grisea (Hebert) Barr), has become

one of the most important disease of wheat (Triticum

aestivum L.) in Brazil, considering that it can decrease

yield by up to 70 %. On the leaves, the symptoms of this

disease include gray–green and water-soaked lesions with

dark green borders. Indeed, the fungus causes seedling

blight, spike tip death and bright black spots on the rachis.

The occurrence of gray–brown lesions on the spikes and

spikelets significantly contributes to yield reduction due to

low levels of nutrient translocation to the grains. Blast

epidemics mainly occur during the rainy season, with

temperatures ranging from 21 to 27 �C and high relative

humidity (Goulart et al. 2007). The spraying of fungicides

has demonstrated low efficiency for disease control

(Goulart and Paiva 1993; Goulart et al. 2007), and few

cultivars with desirable level of blast resistance are avail-

able (Urashima et al. 2004).

Although silicon (Si) is not considered to be an essential

nutrient for plants, its beneficial effects on disease control

have been very well documented (Datnoff et al. 2007).

Plants absorb Si from the soil solution in the form of

monosilicic acid, but differences in their ability to accu-

mulate Si in their shoots differ among plant species (Dat-

noff et al. 2007). Dallagnol et al. (2009) demonstrated that

low Si concentration in the tissues of the lsi1 mutant plants,

which were defective in active Si uptake ability, affected

the basal level of resistance to brown spot, suggesting that

a minimum foliar Si concentration is necessary for

increasing the resistance of rice to the disease. Sorghum

plants supplied with Si and infected with Colletotrichum

sublineolum were able to maintain carbon fixation and keep

an efficient antioxidant system (Resende et al. 2012).
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When plants are attacked by pathogens, several physio-

logical processes, such as respiration, water and nutrient

translocation, photosynthesis and transpiration are nega-

tively impaired (Lucas 1998). Some studies have shown that

attacks by pathogens reduce photosynthesis due to damage

to the photosynthetic machinery (Bassanezi et al. 2002; Petit

et al. 2006; Dallagnol et al. 2011). Bassanezi et al. (2002)

measured gas exchange in the leaves of bean plants infected

with Uromyces appendiculatus, Pseudocercospora griseola

and Colletotrichum lindemuthianum and observed that

reductions in photosynthesis caused by U. appendiculatus

and P. griseola were due to a lower carboxylation capacity.

In contrast, the reductions in internal CO2 concentrations

were due to increased stomatal resistance, which was the

main factor associated with decreases in photosynthesis due

to infection by C. lindemuthianum. Symptoms of esca dis-

ease on the leaves of vines were associated with stomatal

closure and alterations in the photosynthetic apparatus due

to decreases in the assimilation of CO2 and a reduction in the

concentration of chlorophyll (Petit et al. 2006).

Considering the lack of information on physiological

changes on wheat leaves of plants supplied with Si during

the infection process for P. oryzae, this study investigated

the potential for this element to minimize the negative

effects of P. oryzae infection on leaf gas exchange

parameters and photosynthetic pigments concentration.

Materials and methods

Nutrient solution preparation

A nutrient solution was prepared based on Clark (1975), with

some modifications. It included the following macronutri-

ents: 1.04 mM Ca(NO3)2�4H2O, 1 mM NH4NO3, 0.8 mM

KNO3, 0.069 mM KH2PO4, 0.931 mM KCl and 0.6 mM

MgSO4�7H2O. It also included the following micronutrients:

19 lM H3BO3, 2 lM ZnSO4�7H2O, 0.5 lM CuSO4�5H2O,

7 lM MnCl2�4H2O, 0.6 lM Na2MoO4�4H2O, 90 lM FeS-

O4�7H2O and 90 lM EDTA bisodium. Silicon (2 mM) was

supplied to plants in the form of silicic acid, which was

prepared by passing potassium silicate through a cation

exchange resin (Amberlite IR-120B; H? form; Sigma-

Aldrich). The pH of the nutrient solution was 5.6 and was not

affected by the addition of silicic acid.

Plant growth

Wheat seeds from cv. BR-18 were germinated on distilled

water-soaked germitest paper (Fisher Scientific Co., Pitts-

burgh, PA, USA) in a germination chamber at 25 �C for

6 days. Germinated seedlings were transferred to plastic pots

with one-half strength nutrient solution without the presence

of Si for 2 days. After this period, the plants were transferred

to new plastic pots with 5 dm3 of nutrient solution prepared

with or without Si. The nutrient solution, with aeration, was

changed every 4 days. The electrical conductivity and the

pH of the nutrient solution were checked daily. The pH was

kept at &5.6 by using NaOH or HCl (1 M) as needed.

Inoculation of plants with P. oryzae

A pathogenic isolate of P. oryzae (UFV/DFP-01), obtained

from ears of wheat plants (cv. BR-18), was used to inoculate

the leaves of the wheat plants. Pieces of filter paper with

fungal mycelia were transferred to Petri dishes containing

oatmeal agar medium. After 3 days, plugs of oatmeal agar

medium containing fungal mycelia were transferred to new

Petri dishes containing the same medium. These Petri dishes

were kept in a growth chamber at 25 �C with a 12-h pho-

toperiod for 10 days. After this period, conidia were care-

fully removed from the Petri dishes with a rubber policeman

to obtain a suspension of conidia. Plants were inoculated

with a conidial suspension of P. oryzae (105 conidia cm-3)

at 60 days after emergence (growth stage 65) (Zadoks et al.

1974). Twenty-five cm3 of suspension was applied as a fine

mist to the adaxial leaf blades of each plant until runoff

using a VL Airbrush atomizer (Paasche Airbrush Co., Chi-

cago, IL, USA). Gelatin (1 %, wt vol-1) was added to the

suspension to aid in conidial adhesion to the leaf blades.

Immediately after inoculation, the plants were transferred to

a growth chamber with a temperature of 25 ± 2 �C and a

relative humidity of 90 ± 5 % and were subjected to an

initial 24 h dark period. After this period, the plants were

transferred to a plastic mist growth chamber (MGC) inside a

greenhouse for the duration of the experiments. The MGC

was made of wood (2 m wide, 1.5 m high and 5 m long) and

was covered with 100-lm-thick transparent plastic. The

temperature inside the MGC ranged from 25 ± 2 �C (day)

to 20 ± 2 �C (night). The relative humidity was maintained

at 92 ± 3 % using a misting system in which the nozzles

(model NEB-100; KGF Company, São Paulo, Brazil)

sprayed mist every 30 min above the plant canopy. The

relative humidity and temperature were measured with a

thermo-hygrograph (TH-508, Impac, Brazil). The maximum

natural photon flux density at plant canopy height was

approximately 900 lmol m-2 s-1.

Assessment of blast severity

The blast severity was assessed on the fourth, fifth and

sixth leaves, from the base to the apex, of each plant, 96 h

after inoculation (hai) using a standard area diagram sets

(SADs) proposed by Rios et al. (2013). The SADs pro-

posed by these authors has ten levels of blast diseased

wheat leaves with a range of severity from 0.1 to 72 %.
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Determination of the leaf gas exchange parameters

Gas exchange parameters were measured on the fifth leaf,

from the base to the apex, of non-inoculated and inoculated

plants at 48, 72 and 96 hai. The net carbon assimilation rate

(A), stomatal conductance to water vapor (gs), internal CO2

concentration (Ci) and transpiration rate (E) were estimated

from 09:00 to 12:00 h under artificial and saturating photon

irradiance (1,000 lmol m-2 s-1) and an external CO2

concentration of 400 lmol mol-1 using a portable open-

system infrared gas analyzer (LI-6400, LI-COR Inc., Lin-

coln, NE, USA).

Determination of pigments concentration

The fourth and fifth leaves, from the base to the apex, of

non-inoculated and inoculated plants were collected at 24,

48, 72 and 96 hai. Samples were kept in liquid nitrogen

during sampling and were then stored at -80 �C until

further analysis. A total of 200 mg of leaves was ground

into a fine powder with liquid nitrogen using a mortar and

pestle with the addition of 1 mg of calcium carbonate.

Next, the fine powder was homogenized with 2 mL of

80 % acetone (v/v) for 1 min in a room with reduced light

intensity. The suspension was filtered through a Whatman

Number 1 filter paper and the residue was washed four

times with 80 % acetone. The volume was increased to

25 ml with the same solvent in a volumetric flask. The

absorbance of the samples was recorded at 470, 646.8 and

663.2 nm and the concentrations of photosynthetic pig-

ments (chlorophyll a, chlorophyll b and carotenoids) were

estimated according to Lichtenthaler (1987) and expressed

in mg per gram of fresh matter.

Determination of foliar Si concentration

After the termination of the experiments, fourth and fifth

leaves were collected from plants from each replication of

each treatment, washed in deionized water, dried for 72 h

at 65 �C and ground with a Thomas Wiley mill (Thomas

Scientific, Swedesboro, NJ, USA) until they could pass

through a 40-mesh screen. The foliar Si concentration was

determined by colorimetric analysis of 0.1 g of dried and

alkali-digested tissue (Resende et al. 2012) and was

expressed in g kg-1.

Experimental design and data analysis

A 2 9 2 factorial experiment was performed consisting of

two Si concentrations (0 and 2 mM, hereafter referred to as

the -Si and ?Si treatments, respectively) and plant inoc-

ulation was arranged in a completely randomized design

with four replications. Each experimental unit

corresponded to a plastic pot containing five wheat plants.

The experiment was repeated once. Data from blast

severity, foliar Si concentration, leaf gas exchange

parameters and pigments concentration were combined for

statistical analysis after determining the homogeneity of

variance and the mean squares (Gomes and Garcia 2002).

For leaf gas exchange parameters, the analysis of variance

was considered to be a 2 9 2 9 3 factorial experiment

consisting of two Si concentrations, plant inoculation and

three evaluation times. The analysis of variance for pig-

ments concentration was considered to be a 2 9 2 9 4

factorial experiment consisting of two Si concentrations,

plant inoculation and four evaluation times. Data for all

variables were subjected to analysis of variance and the

mean from the treatments were compared using a t test

(P B 0.05) using SAS software (SAS Institute Inc., Cary,

NC, USA). The Pearson correlation was used to determine

the relationships among the gas exchange parameters,

foliar Si concentration and blast severity.

Results

Foliar Si concentration and blast severity

The foliar Si concentration was significantly higher for the

?Si plants compared with the -Si plants (4.30 and

45.8 g kg-1, respectively). The blast severity was signifi-

cantly lower on the leaves of the ?Si plants than on the

leaves of the -Si plants (9.22 and 28.53 %, respectively).

Leaf gas exchange parameters

At least one of the factors Si concentrations, plant inocu-

lation and evaluation times and some of their interactions

was significant for the parameters A, gs, Ci and E (Table 1).

Table 1 Analysis of variance of the effects of silicon concentrations,

plant inoculation and evaluation times for net carbon assimilation rate

(A), internal CO2 concentration (Ci), stomatal conductance to water

vapor (gs) and transpiration rate (E)

Sources of variation df F valuesa

A Ci gs E

Silicon (Si) 1 76.84* 13.15* 19.80* 39.59*

Plant inoculation (PI) 1 679.84* 15.27* 227.41* 26.57*

Evaluation times (ET) 2 24.49* 58.22** 33.96* 65.05*

Si 9 PI 1 9.78* 9.39** 0.19ns 0.24ns

Si 9 ET 2 2.42ns 1.54ns 2.65ns 1.68ns

PI 9 ET 2 46.71* 25.55ns 7.20* 2.26ns

Si 9 PI 9 ET 2 0.57ns 0.02ns 2.93ns 3.99ns

a, ns, and * Indicates non-significant and significant at 0.05 level of

probability, respectively
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Fig. 1 Leaf gas exchange parameters net carbon assimilation rate

(A) (a, b), stomatal conductance to water vapor (gs) (c, d), internal

CO2 concentration (Ci) (e, f) and transpiration rate (E) (g, h) deter-

mined on the leaves of wheat plants grown in hydroponic culture

containing 0 mM (-Si) or 2 mM (?Si) of silicon and non-inoculated

(NI) or inoculated (I) with Pyricularia oryzae. The mean for the -Si

and ?Si treatments followed by an asterisk at each evaluation time

are significantly different using Student’s t test (P C 0.05). Bars

represent the standard errors of the mean. n = 8
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For the non-inoculated plants at 96 hai, A was significantly

higher for the ?Si plants than for the -Si plants (Fig. 1).

For the inoculated plants supplied with Si, A significantly

increased by 29.3, 17.7 and 45 % at 48, 72 and 96 hai,

respectively, compared with the -Si plants (Fig. 1). For

the non-inoculated plants, the gs was significantly higher

for the ?Si plants in comparison to the -Si plants at 48 hai

(Fig. 1). For the inoculated plants supplied with Si, the gs

significantly increased by 26.7 and 49 % at 48 and 96 hai,

respectively, compared with the -Si plants. For Ci on the

non-inoculated plants, there was no significant difference

between the -Si and ?Si treatments (Fig. 1). For the

inoculated plants supplied with Si, the Ci was significantly

lower than for the -Si plants at 48, 72 and 96 hai (Fig. 1).

The E was significantly higher for non-inoculated ?Si

plants than for the -Si plants at 48 hai. For the inoculated

plants, the E was significantly higher at 48 and 96 hai for

the ?Si plants than for the -Si plants (Fig. 1).

Pigments concentration

At least one of the factors Si concentrations, plant inocu-

lation and evaluation times and some of their interactions

was significant for the concentrations of chlorophyll a,

chlorophyll b and carotenoids (Table 2). For non-inocu-

lated plants, the concentration of chlorophyll a was sig-

nificantly higher at 24, 48 and 96 hai for the ?Si plants

when compared with the -Si plants (Fig. 2). There was no

significant difference between the -Si and ?Si treatments

regardless of plant inoculation for the concentrations of

chlorophyll b and the carotenoids (Fig. 2). For the inocu-

lated plants, the concentrations of chlorophyll a and chlo-

rophyll b were significantly higher at 72 and 96 hai for the

?Si plants in comparison to the -Si plants (Fig. 2). The

concentration of carotenoids was significantly higher at 48

and 96 hai for the -Si plants compared with the ?Si plants

(Fig. 2).

Pearson correlation

The correlation between blast severity and foliar Si con-

centration was negatively significant (Table 3). Parameter

A was negatively correlated with the Ci and blast severity,

but positively correlated with the gs, E and foliar Si con-

centration (Table 3). The gs parameter correlated signifi-

cantly and positively with the E but significantly and

negatively with the Ci (Table 3). The correlation of the Ci

with the E was significantly negative (Table 3). Parameter

E was positively correlated with the foliar Si concentration

and negatively correlated with blast severity.

Discussion

In support of previous findings that Si can improve the

resistance of several monocots against foliar pathogens

(Datnoff et al. 2007), including the wheat-P. oryzae

pathosystem (Xavier Filha et al. 2011), the present study

describes the first physiological features associated with

the increase in resistance to P. oryzae infection of wheat

plants supplied with Si. Several studies have demonstrated

the efficiency of Si in reducing the negative effects of

pathogen infections on plant photosynthesis (Fortunato

et al. 2012; Resende et al. 2012). However, to the best of

our knowledge, the effects of Si on enhancing the resis-

tance of wheat to P. oryzae infection, specifically at the

level of photosynthesis, have never been investigated.

The high Si concentration in the wheat leaves contrib-

uted to decreased blast severity. Supplying Si to plants has

become an important strategy for reducing the intensity of

diseases in many economically important crops, such as

bananas, barley, beans, cucumbers, oats, rice and wheat

(Dallagnol et al. 2009; Xavier Filha et al. 2011; Polanco

et al. 2012; Fortunato et al. 2012). The mechanisms,

however, are not completely understood. Originally, it was

proposed that Si increased plant disease resistance by the

deposition of silica in the leaves, which was believed to act

as a physical barrier that hampers pathogen penetration into

epidermis (Jones and Handreck 1967). Indeed, Kim et al.

(2002) suggested that Si-induced cell wall fortification of

rice leaves was closely associated with enhanced resistance

to blast. Although important recent evidences suggest that

the passive role of Si is not solely determinant for the Si-

mediated resistance to pathogens. Therefore, some studies

have demonstrated that Si potentiates inducible defense

responses. Wheat plants supplied with Si produced phyto-

alexins in response Blumeria graminis f.sp. tritici infection

(Rémus-Borel et al. 2005). According to Xavier Filha et al.

(2011), the wheat resistance to blast was reduced by Si

primarily due to an increase in the concentration of lignin-

thioglycolic acid derivatives and higher activities of the

Table 2 Analysis of variance of the effects of silicon concentrations,

plant inoculation and evaluation times for the concentrations of

chlorophyll a (Chl a), chlorophyll b (Chl b) and carotenoids (Car)

Sources of variation df F valuesa

Chl a Chl b Car

Silicon (Si) 1 30.31** 6.62** 0.49ns

Plant inoculation (PI) 1 80.58** 40.30** 3.76*

Evaluation times (ET) 3 13.59** 7.85** 0.41ns

Si 9 PI 1 1.65ns 0.75ns 2.34ns

Si 9 ET 3 4.42* 4.05* 2.51ns

PI 9 ET 3 4.42* 2.40ns 2.09ns

Si 9 PI 9 ET 3 8.16* 4.41* 6.36*

a, ns, * and ** Indicates non-significant, significant at 0.05 and 0.01

levels of probability, respectively
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defense enzymes chitinase and peroxidase. The production

of two diterpenoids phytoalexins in response to P. grisea

infection has been potentiated in rice plants supplied with

Si (Rodrigues et al. 2004).

As reported by several authors, photosynthesis in several

crops is impaired by foliar diseases (Scholes and Rolfe

1996; Chou et al. 2000; Berger et al. 2007; Dallagnol et al.

2011; Resende et al. 2012). In the present study, infection
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d) and carotenoids (e, f) in the leaves of wheat plants grown in

hydroponic culture containing 0 mM (-Si) or 2 mM (?Si) of silicon

and non-inoculated (NI) or inoculated (I) with Pyricularia oryzae.

The mean for the -Si and ?Si treatments followed by an asterisk at

each evaluation time are significantly different using Student’s t test

(P C 0.05). Bars represent the standard errors of the mean. FM fresh

matter. n = 8
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by P. oryzae on wheat leaves caused devastating effects on

photosynthetic gas exchange in the plants not supplied with

Si. As the wheat blast progressed, the A values dramatically

decreased, but they decreased more slowly in the ?Si

plants. The reduction of A due to an increase in the severity

of diseases has been demonstrated in other studies (Godoy

et al. 2001; Meyer et al. 2001). One cause by which

pathogens reduce photosynthesis is related to the stomatal

closure impeding CO2 inflow, in addition to directly

affecting the chloroplasts (Erickson et al. 2003). Stomatal

closure due to low water availability in diseased tissues

compromises the electron transport chain and reduces the

entry of CO2 into the Calvin cycle in chloroplasts,

increasing the photo-oxidation of photosystem antennae

(Bacelar et al. 2006). Even at 48 hai, when the incubation

period for blast had not yet occurred, there was some

reduction of A in the -Si plants, which might be explained

by lower photosynthetic efficiency in the asymptomatic

tissues due to stomatal resistance. Meyer et al. (2001)

showed that the infection of bean leaves with C. lindem-

uthianum caused stomatal closure in areas of apparently

healthy tissues, thus reducing photosynthesis, even when

the anthracnose severity remained at low levels. The

reduction in the gs is a major factor affecting photosyn-

thesis in diseased plants because of the reduction in CO2

influx (Erickson et al. 2003). The gs values were dramati-

cally lower in the -Si plants upon infection by P. oryzae.

However, the higher Ci values suggest that the reduced

CO2 influx was not the main factor associated with the

reduction in the A, in contrast to some limitations at the

chloroplast level. Decreases in the A might be due to the

low activities of photosynthetic enzymes such as the Ru-

bisco (Guo et al. 2005), carbonic anhydrase, which con-

verts CO2 to HCO3 or enzymes involved in the degradation

of photoassimilates (Baker et al. 1997). In soybean plants

subjected to an abiotic stress, it was showed Si increased

the photosynthesis due to higher activities of photosyn-

thetic enzymes (Shen et al. 2010) and this may explain the

higher A values observed in the present study for the

inoculated ?Si plants relative to their -Si counterparts. A

recent study showed that Si increased the mesophyll con-

ductance in rice plants (Detmann et al. 2012), which also

may have occurred in the present study explaining the

higher values of A for the ?Si plants.

Reductions in the E for the -Si plants infected with P.

oryzae can be linked to reductions in the gs values and,

therefore, can be associated with stomatal closure. Some

studies have also demonstrated concomitant reductions in

both E and gs for the pathosystems wheat-Puccinia triticina

(McGrath and Pennypacker 1990), common bean–Uromy-

ces appendiculatus, common bean–Phaeoisariopsis grise-

ola and common bean–Colletotrichum lindemuthianum

(Duniway and Durbin 1971; Bassanezi et al. 2002), euca-

lyptus–Puccinia psidii (Alves et al. 2011) and rice–Bipo-

laris oryzae (Dallagnol et al. 2011). Moreover, the

reductions in the E might be the result of the symptoms of

wilting and drying observed in the leaves due to the mas-

sive colonization of the leaf tissue by P. oryzae. According

to Resende et al. (2012), in sorghum plants not supplied

with Si and infected by C. sublineolum, there were

decreases of 60 % for the A, 61 % for the gs and 57 % for

the E in comparison to plants supplied with Si at 8 days

after inoculation. Those authors showed that the reduction

in the leaf gas exchange parameters caused by the C.

sublineolum infection was attenuated in the ?Si plants

which was associated to the increased activity of some

antioxidant enzymes such as superoxide dismutase, cata-

lase, ascorbate peroxidase and glutathione reductase, lim-

iting, therefore, the cellular damage in those plants

compared to the -Si ones.

Infection with P. oryzae negatively affected the con-

centration of pigments, especially in the -Si plants. This

finding can be linked to the actions of lytic enzymes or to

non-selective toxins released by the pathogen during tissue

colonization. Reductions in pigments concentration are

typical features of the oxidative stresses caused by patho-

gen infections and might be a consequence of accelerated

chlorophyll degradation or reductions in its synthesis due

Table 3 Correlation coefficients (below diagonal) and their respective t values (above diagonal) among the net carbon assimilation rate (A),

stomatal conductance to water vapor (gs), internal CO2 concentration (Ci), transpiration rate (E), foliar Si concentration (Si) and blast severity

(Sev)

Variablesa A gs Ci E Si Sev

A – 17.24* -5.41* 47.37* 3.70* -2.35*

gs 0.91 – -12.58* 17.21* 1.52ns -1.45ns

Ci -0.85 -0.57 – -5.53* 0.42ns -0.40ns

E 0.91 0.98 -0.58 – 3.19* -2.98*

Si 0.19 0.38 0.05 0.38 – -21.56*

Sev -0.18 -0.36 -0.05 -0.36 -0.94 –

a, ns, and * Indicates non-significant and significant at 0.05 level of probability, respectively
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to changes in the composition of the thylakoid membrane

(Smirnoff 1995). The higher concentration of carotenoids

in the -Si plants infected by P. oryzae might be interpreted

as a strategy to protect the photosynthetic apparatus against

damage by photoinhibitory singlet oxygen produced by the

excited triplet state of chlorophyll (Bacelar et al. 2006).

In conclusion, the results of this study clearly demon-

strated that Si supplied to the wheat plants was associated

with lower blast severity in parallel with improved gas

exchange performance, giving the plants more energy for

mounting successful defense strategies against P. oryzae

infection.
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