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Abstract Airlift bioreactors were programmed for con-

tinuous and temporary immersion culture to investigate

factors that affect the rhizome proliferation, shoot forma-

tion, and plantlet regeneration of Cymbidium sinense.

During rhizome proliferation, the continuous immersion

bioreactor system was used to explore the effects of acti-

vated charcoal (AC) in the culture medium, inoculation

density, and air volume on rhizome differentiation and

growth. The optimum conditions for obtaining massive

health rhizomes were 0.3 g l-1 AC in the culture medium,

7.5 g l-1 inoculation density, and 150 ml min-1 air. In

addition, the temporary immersion bioreactor system was

used for both shoot formation and plantlet regeneration.

Supplementing 4 mg l-1 6-benzylaminopurine and

0.2 mg l-1 naphthalene acetic acid (NAA) to the culture

medium promoted shoot induction from the rhizome.

Cutting the rhizome explants into 1 cm segments was

better for massive shoot formation than cutting into 0.25

and 0.5 cm explant segments. NAA promoted plantlet

regeneration and the rooting rate (94.7 %), with whole

plantlets growing well in culture medium containing

1.0 mg l-1 NAA. Therefore, applying bioreactors in C.

sinense micropropagation is an efficient way for scaling up

the production of propagules and whole plantlets for the

industrial production of high-quality seedlings.
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Abbreviations

PLBs Protocorm-like bodies

BA 6-Benzylaminopurine

NAA Naphthalene acetic acid

AC Activated charcoal

FW Fresh weight

pH Hydrogenion concentration

EC Electrical conductivity

Introduction

Cymbidium sinense is a traditional orchid in China that

has attracted attention because of its graceful leaves and

fragrant flowers (Weng et al. 2006). The species is

propagated mainly through the division of pseudobulbs

in vivo. However, one plant only generates three shoots

each year (Chang and Chang 2000). Hence, tissue culture

has been introduced to C. sinense for mass producing the

seedlings and shortening the breeding time to meet mar-

ket demand (Lee et al. 2011). The protocorm and rhizome

are used for organogenesis from asymbiotic seed and

shoot-tip culture of orchids (Chugh et al. 2009). C. sin-

ense organogenesis occurs via the rhizome; however,

rhizomes are recalcitrant to regeneration, and the shoots

grow slowly and inconsistently even if they regenerate

(Paek and Kozai 1998). To overcome these problems, a
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reliable culture method for efficient rhizome generation

and plantlet regeneration needs to be developed. Recently,

several studies have used bioreactors to micropropagate

protocorm-like bodies (PLBs) (Park et al. 2000; Yang

et al. 2010) and shoots (Wu et al. 2007; Yoon et al. 2007)

of orchid. These studies indicate that bioreactor applica-

tion is an efficient method for the rapid mass-propagation

of orchid propagules. Our previous study also found that

rhizome proliferation and shoot formation of C. niveo-

maginatum in a simple bioreactor are significantly better

than that in solid and flask suspension culture (Jin et al.

2007).

Numerous studies have applied bioreactors in plant cell

(Ahmed et al. 2008; Huang and McDonald 2012) and organ

(Wang and Qi 2010; Srivastava and Srivastava 2012) cul-

ture to obtain specific metabolites. In addition, a consid-

erable number of researchers have cultured plant

propagules in bioreactors to produce high-quality seedling

(Hessami and Babaei 2012; Wang et al. 2012; Zhao et al.

2012). It is clear from these studies that temporary

immersion bioreactor culture systems are appropriate for

shoot multiplication and regeneration (Snyman et al. 2007;

Watt 2012), and the continuous immersion system is suit-

able for the proliferation of propagules (without leaves)

such as bublets (Lian et al. 2003; Kim et al. 2004), PLBs

(Park et al. 2000; Yang et al. 2010) and rhizomes (Jin et al.

2007).

To our knowledge, no studies have investigated the

micropropagation of C. sinense in bioreactors. Therefore,

in the present study, continuous and temporary airlift bio-

reactor systems were used during different stages of C.

sinense culture to explore several factors that affect

rhizome proliferation, shoot formation, and plantlet

regeneration, as well as to establish an efficient bioreactor

culture protocol for mass-producing high-quality C. sin-

ense seedlings.

Materials and methods

Rhizome proliferation

In vitro rhizomes of C. sinense were maintained on culture

medium consisting modified Hyponex medium (Kano

1965), i.e., 2 g l-1 Hyponex I (N:P:K = 7:6:19, Jinan

Plant Bio-Tech Co., Ltd., Shandong, China) and 0.5 g l-1

Hyponex II (N:P:K = 20:20:20, Jinan Plant Bio-Tech Co.,

Ltd., Shandong, China) supplemented with 1 g l-1 pep-

tone ? 2 mg l-1 6-benzylaminopurine (BA) ? 0.2 mg l-1

naphthalene acetic acid (NAA) ? 0.2 mg l-1 activated

charcoal (AC) ? 30 g l-1 sucrose ? 7.0 g l-1 agar, and

pH was adjusted to 5.4. The cultures were maintained at

25 �C with a 16-h photoperiod under 30 lmol m-2 s-1

white fluorescent lights. After 50 days of culture, the rhi-

zomes were cut into 1 cm apical segments and used as

experimental materials during rhizome proliferation in

bioreactors.

For rhizome proliferation, different activated charcoal

concentrations, inoculation densities, and aeration volumes

were tested in the continuous immersion culture system

(Fig. 1) using 3-l airlift balloon-type bubble bioreactors

with working volumes of 2 l. In the first experiment, 0.1,

0.2, 0.3, 0.4, and 0.5 g l-1 of AC powder were added into

the culture medium [2 g l-1 Hyponex I ? 0.5 g l-1
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Fig. 1 The schematic diagram

of continuous immersion (left)

and temporary immersion

(right) bioreactor system. a Air

inlet, b air flow meter,

c membrane filter, d sparger,

e solenoid valve, f timer,

g supporter (net), h medium

reservoir, i air outlet
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Hyponex II ? 1 g l-1 peptone ? 2 mg l-1 BA ?

0.2 mg l-1 NAA ? 0.2 mg l-1 AC ? 30 g l-1 sucrose

(pH 5.4)]. Each bioreactor was inoculated with 5 g l-1

rhizome explants [fresh weight (FW), approximate 150

explants], and aerated at 100 ml min-1. In the inoculation

density experiment, 5, 7.5, and 10 g l-1 FW of rhizome

explants were transferred into separate bioreactors con-

taining 2 l of culture medium [2 g l-1 Hyponex

I ? 0.5 g l-1 Hyponex II ? 1 g l-1 peptone ? 2 mg l-1

BA ? 0.2 mg l-1 NAA ? 0.3 g l-1 AC ? 30 g l-1

sucrose (pH 5.4)] and aerated at 100 ml min-1. Finally, 50,

100, and 150 ml min-1 air volumes were separately

introduced into bioreactors with culture medium [2 g l-1

Hyponex I ? 0.5 g l-1 Hyponex II ? 1 g l-1 pep-

tone ? 2 mg l-1 BA ? 0.2 mg l-1 NAA ? 0.3 g l-1

AC ? 30 g l-1 sucrose (pH 5.4)] and inoculated with

7.5 g l-1 FW of explants. The rhizome numbers, length,

and biomass of the three experimental sets were investi-

gated after 50 days of culture.

To determine the kinetics of rhizome proliferation and

growth, as well as the changes in culture medium, during

bioreactor culture, a 3-l airlift bioreactor with a 2-l working

volume (2 g l-1 Hyponex I ? 0.5 g l-1 Hyponex II ?

1 g l-1 peptone ? 2 mg l-1 BA ? 0.2 mg l-1 NAA ?

0.3 g l-1 AC ? 30 g l-1 sucrose, pH 5.4) were inoculated

with 7.5 g l-1 FW of explants per bioreactor and cultured

at 25 �C under with a light intensity of 30 lmol m-2 s-1

(16 h day-1). The bioreactors were stopped at 5, 10, 15,

20, 25, 30, 35, 40, 45, and 50 days of culture, respectively.

The rhizome cultures were collected from the bioreactors

to investigate the biomass (fresh and dry weight) at every

term, and approximately 10 ml of medium sample was

simultaneously collected to determine its hydrogen ion

concentration (pH), electrical conductivity (EC), and sugar

content. The harvested rhizomes were patted dry with tis-

sue paper, and their fresh weight was recorded, then the dry

weight was determined after drying for 3 days at 55 �C.

The culture medium samples were filtered with 0.2-lm

membrane filters and their pH and EC were measured using

pH and EC meters, respectively.

Shoot formation

Temporary immersion bioreactors (Fig. 1) were used to

induce the shoots from the rhizome explants. First, the

effect of BA and NAA in the culture medium was inves-

tigated. The rhizomes (7.5 g l-1 FW) were cut into 1 cm

apical segments and transferred to 3 l bioreactor containing

2 l of medium (2 g l-1 Hyponex I ? 0.5 g l-1 Hyponex

II ? 1 g l-1 peptone ? 30 g l-1 sucrose) supplemented

with BA (4 mg l-1), with NAA (0.2 mg l-1), and a com-

bination of BA (4 mg l-1) and NAA (0.2 mg l-1). The pH

was adjusted to 5.4. In the second experiment, the rhizome

inocula were cut into apical segments with different lengths

(0.25, 0.5, and 1.0 cm). Then, the rhizome explants (225

explants per bioreactor) were inoculated into 3 l bioreac-

tors with a working volume of 2 l. The medium consisted

of 2 g l-1 Hyponex I ? 0.5 g l-1 Hyponex II ? 1 g l-1

peptone ? 4 mg l-1 BA ? 0.2 mg l-1 NAA ? 30 g l-1

sucrose (pH 5.4). In this shoot induction study, each tem-

porary immersion bioreactor system was programmed

using a timer and a solenoid valve to immerse the explants

in the medium for 1 h and to dry for 1 h. The air volume

was set to 150 ml min-1 and explants were cultured for

40 days.

Plantlet regeneration

The simplified culture method was used to obtain whole

plantlets from shoots and investigated the effect of NAA

concentration on plantlet growth. The bioreactors were

programmed for temporary immersion (the explants were

immersed in the medium for 1 h and allowed to dry for

1 h) to carry out the two-step culture in the same biore-

actor; the air volume was adjusted to 150 ml min-1. In the

first step, the rhizomes were cut into 0.5 cm apical seg-

ments to induce shoots from rhizomes. Then, 225 explants

were inoculated into a 3-l bioreactor containing 2 l of shoot

induction medium (2 g l-1 Hyponex I ? 0.5 g l-1 Hypo-

nex II ? 1 g l-1 peptone ? 4 mg l-1 BA ? 0.2 mg l-1

NAA ? 30 g l-1 sucrose, pH 5.4). After 40 days of cul-

ture, the medium was replaced with plantlet regeneration

medium containing different NAA concentrations [2 g l-1

Hyponex I ? 0.5 g l-1 Hyponex II ? 1 g l-1 pep-

tone ? 0.2 g l-1 AC ? 30 g l-1 sucrose ? NAA (0, 0.5,

1, 2 mg l-1), pH 5.4] to regenerate whole plantlets for

50 days.

Culture conditions and statistics

All of the bioreactor cultures were kept at 25 �C and 16-h

photoperiod under white fluorescent light with

30 lmol m-2 s-1 intensity. Each treatment was performed

three times, and all data were subjected to an analysis of

variance and Duncan’s multiple range test using the SAS

program (SAS Institute, Inc., USA), a probability of

p \ 0.05 was considered significant.

Results and discussions

Rhizome proliferation and growth

During rhizome proliferation in the bioreactor, the rhizome

explants released phenolic compounds into the culture

medium. The incised parts of the inocula turned brown
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after approximate 20 days of culture, and resulted in poor

growth and proliferation (data not shown). To solve this

problem, different amounts of AC were added to the cul-

ture medium to determine a suitable AC concentration. The

maximum number of rhizomes was achieved in the

0.2 g l-1 AC treatment group whereas the maximum

length was achieved in the 0.3 g l-1 AC treatment group.

The rhizome biomass in the 0.3 g l-1 AC group was higher

than that in the 0.2 g l-1 AC group. Rhizome differentia-

tion and growth were restricted when the AC concentra-

tions were less than 0.2 g l-1 or more than 0.3 g l-1

(Table 1; Fig. 2). Phenol is commonly exuded into the

medium during orchid tissue culture, which influences

cultures’ growth and differentiation. Hence, AC is often

added to the culture medium for seed germination and

growth (Shiau et al. 2005; Thompson et al. 2006), rhizome

proliferation (Paek and Yeung 1991), and rooting (Yan

et al. 2006) of orchids. Our results show that 0.3 g l-1 AC

is the most effective AC concentration for C. sinense rhi-

zome proliferation and growth in bioreactor cultures.

Inoculation density influences cultures’ growth during

micropropagation (Yang et al. 2010). The present study

also found that inoculation density affected the rhizome

proliferation and biomass of C. sinense in bioreactors, but

not during rhizome elongation (Table 2). The explants

exhibited the highest differentiation in the 5.0 and 7.5 g l-1

inoculation density groups, up to 24.8–27.6 rhizomes per

explant proliferated after 50 days of culture, but the total

number of rhizome per bioreactor in the 7.5 g l-1 group

was obviously more than that in the 5.0 g l-1 group.

Inoculation densities of 7.5 and 10.0 g l-1 resulted in

significantly higher rhizome biomass than with 5.0 g l-1.

The relationship between inoculation density and cultures

growth during in vitro culture has been studied repeatedly.

Hahn and Paek (2005) reported that 20 nodes per 1 l

medium was the best inoculation density for shoot multi-

plication during the bioreactor culture of Chrysanthemum.

Piao et al. (2003) indicated that the maximum responses

were recorded when 34 nodes per 1 l medium were

included in the bioreactor. Yang et al. (2010) also found

that an inoculation density of 6.6 g l-1 was optimal for

Oncidium PLB growth. Cui et al. (2011) observed the

greatest increase in Hypericum perforatum adventitious

root biomass at an inoculum density of 3 g l-1. These

Table 1 Effect of activated charcoal concentrations on rhizome proliferation and growth of C. sinense after 50 days of continuous immersion

bioreactor culture

Activated charcoal

(g l-1)

No. of rhizomes

explant-1
Rhizome length

(cm)

Fresh weight

(g bioreactor-1)

Dry weight

(g bioreactor-1)

0.1 18.7b 0.72b 80.8c 11.3c

0.2 22.6a 0.87a 96.1b 14.6b

0.3 25.0a 0.88a 121.2a 17.5a

0.4 18.2b 0.71b 85.2c 11.9c

0.5 18.3b 0.59c 75.5d 10.9c

Mean values within a column followed by the same letter are not significantly different by Duncan’s multiple range test (P C 0.05)

Fig. 2 Effect of activated

charcoal concentrations on

rhizome proliferation and

growth after 50 days of

continuous immersion

bioreactor culture
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results demonstrate that inoculation density affects culture

differentiation and growth. The appropriate initial explant

numbers depends on the plant species, organs, and culture

methods. Plant micropropagation is used to obtain the

maximum number of healthy cultures from a small quantity

of inocula. Therefore, an inoculation density of 7.5 g l-1

was suggested for C. sinense rhizome proliferation culture

in bioreactors.

The effect of air volume was also investigated in this

study. During the initial 25 days of culture, rhizome explants

were immersed in the culture medium and moved up and

down in all groups of air volume (50, 100, and

150 ml min-1). However, after 25 days of culture, partial

rhizomes dropped to the bottom of the bioreactor at air

volumes of 50 and 100 ml min-1, restricting the airflow to

the bioreactor. The less the air introduced into the bioreac-

tor, the more the rhizomes dropped to the bottom. All rhi-

zomes accumulated at the bottom of the bioreactor at

50 ml min-1 and partially at 100 ml min-1, whereas no

rhizomes accumulated in the 150 ml min-1 group. The

number, length, and biomass of the rhizome in the

150 ml min-1 group were significantly higher than in the 50

and 100 ml min-1 groups (Table 3). Aeration is an impor-

tant parameter for plant culture in airlift bioreactors (Sch-

latmann et al. 1994). Dissolved oxygen is closely related to

the air volume introduced into the culture medium in the

airlift bioreactor, which affected culture growth (Jeong et al.

2006). However, excess air had a negative effect because of

fluid dynamic stress (Zhang et al. 2007). A few studies were

done on Cymbidium proliferation using bioreactors, Jin et al.

(2007) found that the air volume of 100 ml min-1 promoted

rhizome proliferation of C. niveo-maginatum in a simple

bioreactor, this finding is a little different with our result.

Consequently, air volume should be tested for the culture of

every plant specials in the various kinds of bioreactor, and

150 ml min-1 was appropriate for rhizome proliferation of

C. sinense in an airlift bioreactor.

To understand the rhizome growth kinetics during bio-

reactor culture, the changes in rhizome biomass were

determined at regular intervals. Both the fresh weight and

dry weight exhibited a similar pattern, and typically

showed a lag phase (0–20 days), exponential phase

(20–45 days), and stationary phases (45–50 days). Rhi-

zome biomass increased sharply from 20 to 45 days, and

peaked at 151.1 g fresh weight and 25.7 g dry weight on

the 45th day, whereas no biomass changes were observed

on the 50th day. Therefore, 45 days was considered as the

optimum culture duration for rhizome proliferation culture

in bioreactors (Fig. 3). The pH and EC of the culture

medium are related to the inorganic salt concentrations,

and indirectly reflect plant growth trend and nutritional

needs. Figure 4 reveals that pH remained stable from day 0

to day 10, and then decreased rapidly from 5.3 to 4.3 from

day 10 to day 40, followed by an increase to 5.1 until day

50 during the bioreactor culture. The EC values decreased

with increasing culture duration, dropping from 2.6 to

2.0 mS cm-1 was observed during the initial 25 days of

culture, and then gently decreased from 2.0 mS cm-1 to

1.8 mS cm-1 in the following days. Significant negative

linear correlation was observed between EC and fresh

weight (R2 = 0.9602) or dry weight (R2 = 0.9186) during

the bioreactor culture (Fig. 5). The inverse correlation

between EC and rhizome growth may be the result of the

uptake of inorganic ions by plant cells (Hahlbrock and

Kuhlen 1972). The pH of the culture medium did not affect

rhizome biomass.

Shoot formation and growth

Continuous immersion culture system cannot induce

shoots; hence, a temporary immersion bioreactor system

Table 2 Effect of inoculation densities on rhizome proliferation and

growth of C. sinense after 50 days of continuous immersion biore-

actor culture

Inoculation

density (g l-1)

No. of rhizomes Rhizome

length

(cm)

Harvest

biomass

(g bioreactor-1)

Per

explant

Per

bioreactor

Fresh

weight

Dry

weight

5.0 24.8a 3720c 0.89a 92.2c 14.5c

7.5 27.6a 6210a 0.90a 145.5a 22.5a

10.0 18.9b 5670b 0.85a 120.3b 18.3b

Mean values within a column followed by the same letter are not

significantly different by Duncan’s multiple range test (P C 0.05)

Table 3 Effect of air volume on rhizome proliferation and growth of C. sinense after 50 days of continuous immersion bioreactor culture

Air volume

(ml min-1)

No. of rhizomes

explant-1
Rhizome

length (cm)

Fresh weight

(g bioreactor-1)

Dry weight

(g bioreactor-1)

50 17.7c 0.81b 120.3c 19.3b

100 19.5b 0.86b 130.6b 19.8b

150 26.4a 1.33a 150.9a 25.2a

Mean values within a column followed by the same letter are not significantly different by Duncan’s multiple range test (P C 0.05)
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was used for shoot induction from rhizomes in the present

study. Shoots formed when the culture medium was sup-

plemented with BA (with or without NAA); however, no

shoot was induced upon the addition of NAA alone

(Table 4). Compared with the medium containing BA

alone, the medium containing both BA and NAA was more

efficient for shoot proliferation and growth. The highest

number of shoots (7.2) and highest fresh biomass (97.6 g

explants-1) were observed in the group treated with

4 mg l-1 BA ? 0.2 mg l-1 NAA, in which the shooting

rate reached 89.2 %. The cytokinin to auxin ratio in the

culture medium is one of the important factors for plant

differentiation and growth during tissue culture (Kakani

et al. 2009). For Cymbidium, higher cytokinin to auxin

ratios stimulate shoot initiation (Lu et al. 2001). Cytokinins

are essential for shoot formation from rhizomes in C. faberi

(Hasegawa et al. 1985) and C. kanran (Shimasaki and

Uemoto 1990), which supports our results. However, the

types and concentrations of cytokinins and auxins need to

be reasonably optimized according to plant species.

To test the effect of inoculum length on shoot formation,

the rhizomes were cut into 0.25, 0.5, and 1.0 cm segments,

and then inoculated into the bioreactors. Inoculum length

affected shoot induction from the rhizomes, with more than

80 % of inocula forming shoots in the 0.5- and 1.0-cm

groups and only 20.5 % of inocula forming shoots in the

0.25-cm group (Table 5). The 1.0 cm inoculum length

favored the mass production of shoots, with 6.8 shoots per

rhizome, and only 2.2 shoots per rhizome in the 0.5 cm

group and 1.2 shoots per rhizome in the 0.25-cm group.

Although the shoots in the 0.5-cm group were less than

1.0 cm, the 0.5-cm inoculum was beneficial for subsequent

plantlet regeneration during the two-step bioreactor culture
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Table 4 Effect of BA and NAA on shoot formation from rhizome of

C. sinense after 40 days of temporary immersion bioreactor culture

BA

(mg l-1)

NAA

(mg l-1)

No. of shoots

explant-1
Fresh weight

(g explant-1)

Shoot

formation

rate (%)

0 0.2 0c 39.4b 0c

4 0.2 7.2a 97.6a 89.2a

4 0 4.3b 36.1b 68.6b

Mean values within a column followed by the same letter are not

significantly different by Duncan’s multiple range test (P C 0.05)
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because only 1–2 shoots could form a health plantlet. This

result suggests that rhizome explants need to be cut into

lengths appropriate for the purpose of the culture, with

1.0 cm rhizome explants optimal for obtaining massive

shoots and 0.5 cm rhizome explants suitable for obtaining

whole plantlets during the two-step bioreactor culture.

Plantlet regeneration

To obtain whole plantlets using the bioreactor, 0.5-cm

rhizomes were first inoculated into the bioreactors to

induce the shoots. The medium was then replaced with

medium containing different NAA concentrations and

sequentially cultured for 50 days. Table 6 shows that NAA

is a critical factor for shoot development and root forma-

tion, shoot length and fresh weight significantly differed

among the NAA treatments. The 1-mg l-1 NAA treatment

promoted shoot elongation and increased biomass, whereas

concentrations higher and lower than 1 mg l-1 inhibited

shoot development. NAA was more important for rooting.

No roots formed in the culture medium without NAA. The

highest rooting rate (94.7 %), root numbers (5.4), and root

length (2.3 cm) were observed in the 1 mg l-1 NAA

treatment. Although some shoots formed roots in the 0.5-

mg l-1 NAA treatment (69.2 %) and the 1.5-mg l-1 NAA

treatment (78.7 %), their root number and length were

significantly lower than in the 1-mg l-1 NAA treatment.

During plant micropropagation, indole-3-butyric acid

(IBA) was used for rooting in many studies (Singh et al.

1994; Aktar et al. 2007; Melekber and Aysun 2013).

However, some plant species also require NAA as rooting

promoter (Mohsen 2001; Christos et al. 2010). Our results

indicate that NAA promotes C. sinense rooting in biore-

actor cultures. However, the effect of IBA and other auxins

should be investigated in further studies.

In the present study, C. sinense rhizome proliferation,

shoot formation, and plantlet regeneration were success-

fully performed in airlift bioreactors. The bioreactor cul-

ture revealed that AC in the culture medium, inoculation

density, and air volume influence rhizome proliferation.

The optimum conditions for massive rhizome production

were 0.3 g l-1 AC, 7.5 g l-1 inoculation density, and

150 ml min-1 air volume. During shoot induction from

rhizomes, the culture medium was supplemented with

4 mg l-1 BA with 0.2 mg l-1 NAA and the rhizomes were

cut into 1 cm segments to maximize the number of shoots.

To obtain whole plantlets, 1.0 mg l-1 NAA in the culture

medium maximized plantlet growth, with 94.7 % of shoots

forming roots. Further studies should focus on optimizing

the two-step bioreactor culture for commercial Cymbidium

seedling production.
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