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Abstract Epimedium is well-known in China and East

Asia due to high content of flavonoid derivatives, including

icariin, epimedin A, epimedin B, and epimedin C, hereafter

designated as bioactive components, which have been

extensively utilized to cure many diseases. So far, the

molecular mechanism of the bioactive components bio-

synthesis remains unclear. In the present study, the effect

of light stress (24 h illumination) on the accumulation of

bioactive components and the expression of flavonoid

genes in Epimedium was investigated. Under light stress,

the structural genes CHS1, CHI1, F3H, FLS, DFR1, DFR2,

and ANS were remarkably up-regulated while CHS2 and

F30H were significantly down-regulated. For transcription

factors, the expression of Epimedium MYB7 and TT8 were

increased while Epimedium GL3, MYBF, and TTG1

expression were depressed. Additionally, the content of

bioactive components was significantly decreased under

light stress. Our results suggested that the decrease of

bioactive compounds may be attributed to transcripts of

late genes (DFRs and ANS) increased to a higher level than

that of early genes (FLS and CHS1).
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Abbreviations

ANS Anthocyanin synthase

CHI Chalcone isomerase

CHS Chalcone synthase

DFR Dihydroflavonol 4-reductase

F30H Flavanone 30 hydroxylase

F3H Flavanone 3 hydroxylase

FLS Flavonol synthase

HPLC High performance liquid chromatography

PCR Polymerase chain reaction

qRT-PCR Quantitative real-time PCR

Introduction

Epimedium, named as Yin Yang Huo in Chinese, has been

extensively utilized in China and East Asia because of its

health-promoting prenyl-flavonoids components (Ma et al.

2011), such as icariin, epimedin A, epimedin B, and

epimedin C, hereafter designated as bioactive components.

Epimedium extracts are also well known to nourish the

kidney, reinforce the Yang, regulate bone remodeling

(Ming et al. 2013), promote sexual performance, cure

cardiovascular diseases, possess anti-cancer (Tong et al.

2011) and anti-aging benefits (Cai et al. 2011). In the last

decades, scientists focused on identifying the phenolic

components (Zhao et al. 2008; Zhang et al. 2008; Islam

et al. 2008) in Epimedium plants. However, little is known

about the biosynthesis of prenyl-flavonoids in Epimedium
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(Fig. 1a). In addition, the wild resource of Epimedium is

endangered because of commercial over-exploitation.

Therefore, effective methods, including phytohormones or

light treatments, to improve the content of bioactive com-

ponents in Epimedium are alternative (Zeng et al. 2013).

So far, flavonoid biosynthesis has been considered as the

well-dissected secondary metabolic pathway (Dixon and

Steele 1999). As shown in Fig. 1a, structural genes

involved in flavonoid biosynthesis have been isolated and

characterized in Arabidopsis and other species. Also, these

genes have been isolated and characterized in Epimedium

species (Zeng et al. 2010, 2013, submitted). Many tran-

scription factors, including bHLH, R2R3-MYB, and WD-

repeat forming a BMW tricomplex to regulate anthocyanin

(GL3/PAP1/TTG1) and proanthocyanin (TT8/TT2/TTG1)

biosynthesis, are well studied in Arabidopsis (Gonzalez

et al. 2008; Baudry et al. 2004). In addition, a flavonol-

specific regulator AtMYB12, upregulating AtCHS and At-

FLS, was isolated and characterized (Mehrtens et al. 2005).

Although the biosynthetic and regulatory genes in model

species such as Arabidopsis, tomato, and grape have been

well-dissected, those in medicinal plants such as Epime-

dium remain unclear. So far, thirteen Epimedium MYB

members have been isolated and characterized, among

which Epimedium MYB7 and MYB9 are homologous to

AtTT2 and VvMYB5b, respectively (Huang et al. 2012).

Furthermore, transgenic tobacco plant over-expressing

MYB9 accumulate higher level of anthocyanin in flowers

than in control (Huang et al. 2012).

In the present study, gene expression detected by real-

time PCR and the content of bioactive compound revealed

by HPLC in leaves responding to light stress were inves-

tigated. Finally, the coordinated relationship of gene

expression and phytochemical accumulation is discussed.

Materials and methods

Plant materials and light stress treatment

E. pubescens plants were cultivated in Wuhan Botanical

Garden, Chinese Academy of Science, P. R. China before

growing to florescence stage. E. pubescens plants with

approximate 50 % inflorescences flowering were trans-

ferred to hydroponic culture and used for light stress

treatment. For the light stress treatment, the E. pubescens

plants were lighted by incandescent lamp at 63 lmol/m2/s

light intensity at room temperature in a light bin and

divided into two sets. One set, denoted as control (CT), was

lighted under a normal day/night (8 h/16 h) photoperiod.

Another set, denoted as light stress (LS), was continuously

lighted for 24 h. After treated for 1 day, leathery mature

leaves were harvested for investigating gene expression

and bioactive components content. Both gene expression

and bioactive components content analyses were investi-

gated in three biological specimens and data were pre-

sented in a mean value.

RNA isolation and quantitative real-time PCR (qRT-

PCR)

Leaves were harvested and powdered in liquid nitrogen.

RNA isolation was performed using TRIzol kit (Invitrogen,

USA) following the manufacturer’s instructions. For qRT-

PCR, total RNA was reverse-transcribed with a PrimeScript

RT Reagent Kit with gDNA Eraser (DDR047, TaKaRa,

Japan), which digested the residual DNA in the RNA

samples and reverse-transcribed in a one-step process. Gene

transcripts were amplified with a SYBR Premix Ex TaqTM

II (DDR081S, TaKaRa, Japan) and detected by an ABI

7500 Real-Time PCR system. The PCR program was as

followed: stage 1: sufficient denaturation at 95 �C for 30 s;

stage 2: PCR reaction with 40 cycles at 95 �C for 5 s and

60 �C for 34 s; and stage 3: dissociation at 95 �C for 15 s,

60 �C for 1 min, and 95 �C for 15 s. The qRT-PCR

experiments were performed in triplicate. The expression

level of Epimedium actin (EsActin) was used to standardize

the RNA sample for each qRT-PCR. The expression level

of the genes relative to EsActin was presented as a fold

change. The primers for the qRT-PCR are listed in Table 1.

Bioactive components determination

To analyze bioactive components content, about 50 mg of

dry leaves were powdered with liquid nitrogen, soaked in

5 mL of 70 % ethanol, and ultrasonicated for 30 min. The

extract was filtered through 0.45 lm poly filters for high

performance liquid chromatography (HPLC) analysis. The

HPLC analysis at a 272 nm wavelength was carried out

using an Agilent Technologies Series 1100 (Agilent

Technologies, Palo Alto, CA, USA) at a flow rate of

1.0 mL/min. The chromatographic column used was a

Zorbax SB-C18 (250 9 4.6 mm I.D., 5 lm; Agilent

Technologies, Palo Alto, CA, USA) operated at a constant

temperature of 25 �C. The detailed HPLC program was

performed as previous study (Xu et al. 2013). Epimedin A,

epimedin B, epimedin C, and icariin standards were pur-

chased from the ChromaDex Company (Santa Ana, USA).

Data analysis was performed using the Agilent ChemSta-

tion software, version A.10.02.

Results and discussion

Previous studies demonstrate that transcription factors

homologous to Arabidopsis AtTT8, AtGL3, AtTTG1 are
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involved in anthocyanin biosynthesis in other plants (Spelt

et al. 2000; deVetten et al. 1997; Chiu and Li 2012).

Furthermore, both tomato SlMYB12 (Ballester et al. 2010;

Adato et al. 2009) and grape VvMYBF1 (Czemmel et al.

2009) conserve with Arabidopsis AtMYB12 in regulating

flavonol biosynthesis. These studies showed that tran-

scription factors mentioned above are functionally con-

served among plants. In this study, several EST fragments,

representing Epimedium MYBF, TT8, GL3, and TTG1

homologous to Arabidopsis AtMYB12, AtTT8, AtGL3, and

AtTTG1, were retrieved from the Epimedium EST database

(Zeng et al. 2010). In addition, flavonoid structural genes

had been isolated and characterized in Epimedium (Zeng

et al. submitted). Together, all structural genes and several

transcription factors involved in flavonoid biosynthesis

were used to evaluate their effects on the accumulation of

bioactive components.

To investigate the effect of light stress on the gene

expression of structural genes and regulatory genes

involved in Epimedium flavonoid biosynthesis, the tran-

scripts of these genes were evaluated by real-time PCR. As

presented in Fig. 1b, CHS1, CHI1, F3H, FLS, DFR1,

DFR2, and ANS expression were significantly up-regulated

in LS samples when compared to CT samples. CHS2 and

F30H transcripts were remarkably decreased in LS sample

when compared to CT sample. CHI2 transcripts were

increased slightly, but not in a significant level. As shown

in Fig. 1c, Epimedium MYBF was down-regulated in LS

samples, suggesting that CHS1 expression was upregulated

by light stress but not MYBF homologous to flavonol-

specific transcription factor AtMYB12 regulating the

Fig. 1 Biosynthesis of bioactive components in Epimedium. a Sim-

plified and predicted biosynthetic pathway of the bioactive compo-

nents of Epimedium. Enzyme abbreviations: CHS chalcone synthase,

CHI chalcone isomerase, F3H flavanone 3 hydroxylase, FLS flavonol

synthase, F30H flavanone 30 hydroxylase, DFR dihydroflavonol

4-reductase, ANS anthocyanin synthase, ANR anthocyanidin reduc-

tase. DHQ dihydroquercetin, DHK dihydrokaempferol. The dotted

arrow indicate a predicted step committed by enzyme(s) while black

arrows indicate a step committed by a known enzyme. The dashed

arrows indicated that the transcription factor(s) putatively regulate

corresponding structural genes. Effects of light stress on flavonoid

structural genes (b) and regulatory genes (c) in leaves. Mean ± SD

determined from three independent samples are shown. Double stars

and single star respectively indicate significant differences in the

amount of gene transcripts at the level of P \ 0.01 and P \ 0.05,

calculated by Duncan statistical analysis, when compared to CT

samples. d Light stress impairs the accumulation of bioactive

components in leaves. Mean ± SD determined from three indepen-

dent samples are shown. Double stars and single star respectively

indicate significant differences in the content of bioactive components

at the level of P \ 0.01 and P \ 0.05, calculated by Duncan

statistical analysis, when compared to CT samples

b
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expression of AtCHS and AtFLS (Mehrtens et al. 2005).

The transcripts of Epimedium GL3 and TTG1 were also

decreased under light stress. In contrast, Epimedium MYB7

and TT8 were up-regulated significantly. Results indicated

that expression of Epimedium MYB9 was not affected by

light stress under present experimental conditions. To

investigate the effect of light stress on the accumulation of

bioactive compounds in leaves, the content of bioactive

compounds was assayed. As shown in Fig. 1d, the content

of epimedin A, B, C, and icariin were significantly

decreased in LS sample when compared to CT sample.

The bioactive components content was decreased under

light stress, which might be partially attributed to light

stress promoting flavonoid degradation (Fahlman et al.

2009) and/or altering the metabolic distribution (Davis

et al. 2013). Alternatively, the trade-off of the up-regulated

transcripts of DFR1 and DFR2 competing with FLS for the

same substrate (dihydrokaempferol) contribute partially to

the decreased bioactive components (Fig. 1). In detail, up-

regulated Epimedium TT8 and MYB7 promote the high

expression of late genes such as DFRs and ANS although

the transcripts of Epimedium TTG1 was decreased. In

Arabidopsis and other plants, MYB (PAP1), bHLH (TT8

and GL3), and WD40 (TTG1) transcription factors form

tricomplex BMW to regulate the expression of structural

genes, including DFR and ANS, and further modulate

anthocyanin and proanthocyanin biosynthesis (Schaart

et al. 2012; Gonzalez et al. 2008; Baudry et al. 2004).

Additionally, the increased Epimedium FLS transcripts

might be only attributed to light stress induction rather than

Epimedium MYBF because Epimedium MYBF, the poten-

tial positive regulator of FLS, is decreased (Fig. 1c). Pre-

vious study documents that F30H is possibly regulated

dually by WD-dependent (such as BMW model) and WD-

independent (such as flavonol-specific regulator At-

MYB12) mechanisms, consisting with its function for

producing both quercetin-derivative flavonol and cyanid-

ing-derivative anthocyanin (Gonzalez et al. 2008). The

decreased F30H transcripts might be attributed to a large

extent to the depressed Epimedium MYBF and TTG1 under

light stress even though Epemidium MYB7 and TT8 were

up-regulated (Fig. 1c). These results suggested that

metabolites might be introduced to a large extent into pe-

largonidin branch. Consequently, the increase in higher

level of the DFRs and ANS transcripts than FLS transcripts

resulted in funneling more metabolites into anthocyanin/

proanthocyanin branches rather than the bioactive compo-

nents branch.

In conclusion, the expression of genes involved in fla-

vonoid biosynthesis and the content of bioactive com-

pounds were investigated under light stress. Our results

suggested that the decrease of bioactive compounds may be

attributed to transcripts of DFRs and ANS increased to a

higher level than that of FLS and CHS1, which led to more

metabolites introduced into anthocyanin/proanthocyanin

branch than bioactive compounds.
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Table 1 List of primers used in this study

Primer name Sequence (50–30)

CHS1-RT-F GGAAGTCTGAGGAGGAAG

CHS1-RT-R CACATGAACACATACACAATC

CHS2-RT-F GTGACGGTGCTATTGATG

CHS2-RT-R AGGCTCTTCTGGATGTTC

CHI1-RT-F GGAAAGGAAAGTCCGCCGAGGAGT

CHI1-RT-R AAAATGTGGAGCATACAGTGTAAA

CHI2-RT-F AGGTTTTCGCTATTCTCGGTGTGA

CHI2-RT-R ACTCTCTGAAGCAAGCAATGGACA

F3H-RT-F TCGTGACCTACTTCTCATAC

F3H-RT-R TTGCCTCAGATAAGACCTC

FLS-RT-F GGATTGGACTTGAACCTAAC

FLS-RT-R CCTTGAACACTTGAAGACC

F30H-RT-F GCTTGGTGAGTGAGTCTG

F30H-RT-R TTCTTTGGGATGTGGTAAC

DFR1-RT-F CTGCTGGAACTGTTGATG

DFR1-RT-R CTAGTGTTGGTATGATACTGATG

DFR2-RT-F TCCATCCGTTACTGTCAC

DFR2-RT-R TTCACCTTCTTCATGTTAGC

ANS-RT-F ACTGGAAGAAAACAGACTAGAAAC

ANS-RT-R CAAGAAGAAGACAATACACAAAGA

MYBF-RT-F CGAAGAGGGGTCATCTCCTAC

MYBF-RT-R CCTTTGCCACGAATAAGATGT

MYB9-RT-F CTTCCACTGCTTCAGCTACCACTA

MYB9-RT-R GCCACCTACCTTCTCCTTCTCTTT

MYB7-RT-F CAGGTCTTTTTCACTCCACCGCAG

MYB7-RT-R ACAGCATCCCTTCACAGGATTCCG

TT8-RT-F TAATGGGGTTTTTGTGGCTGAGTT

TT8-RT-R TGATTTGGTGTATTGCCCTTTTCA

GL3-RT-F TATCGGATGGAACAATCAAACGAG

GL3-RT-R GCAAAGGTAGAAGACAAAGAAGAA

TTG1-RT-F ATTCGCTTCCCAACTCTACCTGTG

TTG1-RT-R AATCAATGCTTGTGAATCATCCCC

Actin-RT-F TACGAACAGGAGCTGGAGACTT

Actin-RT-R GATGGTCCAGACTCGTCATACTC
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