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Modulation of nutrient acquisition and polyamine pool
in salt-stressed wheat (Triticum aestivum L.) plants inoculated
with arbuscular mycorrhizal fungi
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Abstract Two wheat (Triticum aestivum L.) cultivars,

Sids 1 and Giza 168, were grown under non-saline or saline

conditions (4.7 and 9.4 dS m-1) with and without arbus-

cular mycorrhizal fungi (AMF) inoculation. Salt stress

considerably decreased root colonization, plant productiv-

ity and N, P, K?, Fe, Zn and Cu concentrations, while it

increased Na? level, particularly in Giza 168. Mycorrhizal

colonization significantly enhanced plant productivity and

N, P, K?, Fe, Zn and Cu acquisition, while it diminished

Na? uptake, especially in Sids 1. Salinity increased

putrescine level in Giza 168, however, values of spermi-

dine and spermine increased in Sids 1 and decreased in

Giza 168. Mycorrhization changed the polyamine balance

under saline conditions, an increase in putrescine level

associated with low contents of spermidine and spermine in

Giza 168 was observed, while Sids 1 showed a decrease in

putrescine and high increase in spermidine and spermine.

Moreover, mycorrhizal inoculation significantly reduced

the activities of diamine oxidase and polyamine oxidase in

salt-stressed wheat plants. Modulation of nutrient acquisi-

tion and polyamine pool can be one of the mechanisms

used by AMF to improve wheat adaptation to saline soils.

This is the first report dealing with mycorrhization effect

on diamine oxidase and polyamine oxidase activities under

salt stress.
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Introduction

Soil salinization is considered to be one of the most

important abiotic stresses that adversely affects crop pro-

ductivity. High salt depositions in the soil generate a low

water potential zone in the soil, making it increasingly

difficult for the plant to acquire both water as well as

nutrients, moreover elevated Na? in soil solution inhibits

and disrupts the uptake of other nutrients (P, K, Fe, Cu and

Zn) by interfering with various transporters in the root

plasma membrane (Marschner 1995). Salinity also changes

polyamines (PAs) composition (El-Bassiouny and Bekheta

2005). Polyamines, namely diamine putrescine (Put), tri-

amine spermidine (Spd) and tetraamine spermine (Spm),

are low molecular weight, aliphatic polycations found in

the cells of all living organisms (Pang et al. 2007; Kusano

et al. 2008). Plant PAs are involved in a variety of diver-

gent processes, such as gene expression, protein and DNA

synthesis, cellular homeostasis, cell division and differen-

tiation, growth and developmental processes such as

embryogenesis, organogenesis, senescence, and also

responses to abiotic and biotic stresses (Moschou et al.

2008). Diamine oxidase (DAO; EC 1.4.3.6) and polyamine

oxidase (PAO; EC 1.4.3.4) are thought to play a major role

in production of H2O2, which is toxic and lead to oxidative

stress (Goyal and Asthir 2010).

Exploitation of soil microbes for utilizing salt-stressed

lands is of great importance. Arbuscular mycorrhizal fungi
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(AMF), obligate biotrophs of higher plants, constitute one

of the most widespread groups of these soil microorgan-

isms. They colonize the root cortex of the most plant species

and develop an extraradical mycelium which spreads

through the soil surrounding plant roots (Ruiz-Lozano and

Azcon 2000). By increasing the interface between plants

and the soil environment, they enhance plant uptake of low

mobile ions, improve quality of soil structure, enhance plant

community diversity, improve rooting and plant establish-

ment, improve soil nutrient cycling and enhance plant tol-

erance to biotic and abiotic stress (Smith and Read 2008).

Although salinity negatively affects mycorrhizal coloniza-

tion, many reports show improved growth and productivity

of mycorrhized plants under saline conditions (Wu et al.

2010b; Shekoofeh et al. 2012; Talaat and Shawky 2012).

This positive effect was explained by improved host plant

nutrition (Wu et al. 2010b; Hajiboland et al. 2010; Abdel-

Fattah and Asrar 2012; Shekoofeh et al. 2012). Under saline

conditions, AMF may discriminate against Na? as Na? was

found at moderate levels in AMF, and in contrast, dispro-

portionally accumulate mineral ions capable of osmoregu-

lation, such as K? and Ca2?, in their tissues (Hammer et al.

2011). The external hyphae of AMF can deliver up to 80 %

of plant P, 25 % of plant N, 10 % of plant K, 25 % of plant

Zn and 60 % of plant Cu (Marschner and Dell 1994).

Change in polyamines balance is a frequent response of

plant metabolism to the mycorrhizal colonization influ-

encing many physiological aspects including stress resis-

tance (Smith and Read 2008). However, the information

regarding PAs in plant–fungal symbiotic interactions is very

limited; they may take part in the molecular signalling

events between the symbiotic partners (El Ghachtouli et al.

1995). Similar pathways for Put synthesis to those described

in plants and bacteria have been found in an AM fungus

(Sannazzaro et al. 2004). Role of PAs in the mycorrhizal

symbiosis was first shown by El Ghachtouli et al. (1995),

who detected that exogenously applied PAs increased col-

onization frequency in pea. According to Wu et al. (2010a),

exogenous Spm, Spd, and Put significantly increased the

number of arbuscules and vesicles, moreover, in the three

PAs species, the stimulated effects were highest in Put-

applied seedlings, which might be explained in two ways:

that Put is a precursor in the Spd and Spm biosynthesis, or

that Put is the most abundant PA in un-germinated spores of

Glomus mosseae. In addition, mycorrhization may change

the PA balance of plants. Sannazzaro et al. (2007) showed

higher content of total free polyamines in mycorrhized

plants compared to non-AM ones. They suggested that since

PAs have been proposed as candidates for the regulation of

root development under saline situations, it is possible that

AM plants (which contained higher PA levels and showed

improved root growth) were better shaped to cope with salt

stress. However, the roles of PAs in plant-AM fungus

interactions, especially wheat mycorrhizal interactions, are

not well understood.

Although there are some evidences for a positive

involvement of PAs in plant response to salt stress, there is

poor information regarding the influence of mycorrhizal

symbiosis on PAs pool in plants under saline conditions.

Thus, our goal was to evaluate the contribution of

mycorrhizae to PAs balance in two wheat cultivars exposed

to saline conditions. Moreover, the ability of AMF to

improve food nutritional value through enhanced uptake of

macro- and micro-nutrients currently merits more attention.

So, the other goal was to evaluate the efficacy of mycor-

rhizal colonization on the nutrient acquisition by myco-

rrhized plants grown in saline soils. The hypothesis tested

is that AMF application may make an important contri-

bution to ameliorate the deleterious effects generated by

salinity on plant productivity, confirm the modulation of

stress management by AMF via regulating the nutrient

acquisition and the PA pool resulting in better performance

of plants under stress conditions.

Materials and methods

Plant material and experimental design

Two pot experiments were performed in the greenhouse of

the National Research Center at Giza, Egypt, during the two

successive seasons of 2010/2011 and 2011/2012. Each

experiment included 12 treatments (two cultivars 9 three

salinity levels 9 two mycorrhizal treatments). Treatments

in each experiment were replicated four times and arranged

in a complete randomized design. Two wheat cultivars (T.

aestivum L. cv. Sids 1 and cv. Giza 168) were used. For each

cultivar, three levels of salinity [0.1 dS m-1 (non-saline),

4.7 and 9.4 dS m-1] were used; saline conditions were

obtained by adding to the soil a mixture of NaCl, CaCl2 and

MgSO4 at the molar ratio of 2:2:1, respectively. Plants from

each salinity level were either grown with (AM?) or without

mycorrhizal fungi (AM-).The spores of arbuscular

mycorrhizae were collected from the rhizosphere soil of

maize plants by the wet sieving and decanting technique

(Gerdemann and Nicolson 1963). The mycorrhizal spores

were identified as a mixture of Glomus spp. according to

their morphological characteristics including color, size,

surface, number of spore wall layers, hyphae, and hyphal

attachments as described by Schenck and Perez (1990). In all

mycorrhizal treatments, the inocula were standardized by

previous estimation of total spores in the prepared spore

suspension using a haemocytometer. The inoculated dosage

was 3.5 ml of the inoculum per pot, corresponding to

approximately 550 spores. Propagule infectivity was tested

according to the method of Sharma et al. (1996). The
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inoculum was placed 2–3 cm below the planting hole. Non-

mycorrhizal treatments received 3.5 ml of filtered spore-free

suspension to provide the same microflora without mycor-

rhizal fungi. Chemical analysis of the soil under investiga-

tion is presented in Table 1 and was determined according to

Cottenie et al. (1982). The soil used was a clay loam (sand

37 %, silt 28 %, clay 35 %), collected from the National

Research Center Experimental Station, sieved (pore size

2 mm), diluted with quartz sand (particle diameter\1 mm;

2:1, soil to sand, v/v), and sterilized by steaming the mixture

at 100 �C for 1 h on three consecutive days. Fertilization

was carried out by adding ammonium sulfate (20.5 % N),

calcium superphosphate (15.5 % P2O5), and potassium

sulfate (48 % K2O) at the rate of 2.0, 2.2, and 1.1 g pot-1,

respectively, before planting, as well as 2.0 g pot-1

ammonium sulfate 30 days after planting. For each pot

(containing 10 kg of the soil mixture), ten grains thinned to

six after germination were planted on November 18 in both

seasons. Grains were obtained from the Wheat Research

Department, Agriculture Research Center, Ministry of

Agriculture, Giza. All pots were irrigated to soil saturation

before planting. After planting, irrigation was applied at the

appropriate times with tap water to maintain soil moisture

near maximum water-holding capacity. The plants were

sampled after 70 days of mycorrhizal inoculation to assess

the following parameters.

Estimation of mycorrhizal colonization

Representative samples of the fresh roots were taken

immediately after harvest, washed, cut into 1 cm pieces,

and fixed by formalin acetic-acid alcohol solution. Root

samples were cleared with 10 % KOH solution and stained

with 0.05 % trypan blue in lactophenol (Phillips and

Hayman 1970), and microscopically examined for root

colonization. The mycorrhizal colonization was evaluated

by the method of Giovanetti and Mosse (1980). Data are

given as percentage of root length colonized.

Plant productivity analysis

At maturity, number of grains plant-1, grain yield plant-1

and weight grain-1, were recorded.

Determination of nutrient status

Dried ground shoots and grains (1 g) were digested in a

mixture of boiling perchloric acid and hydrogen peroxide

for 8 h. When the fumes were white and the solution was

completely clear, it was cooled to room temperature and

filled up to 10 ml with deionized water. Reagent blanks

were prepared by carrying out the whole extraction pro-

cedure but in the absence of sample. Nitrogen was deter-

mined by the modified micro-Kjeldahl method following

Pregl (1945), and P was determined by the ammonium

molybdate blue method (Allen 1989). Potassium and Na

were determined using a flame photometer (ELE UK).

Iron, Zn and Cu were measured with an atomic-absorption

spectrophotometer (Unicam 989-AA Spectrometer-UK).

Extraction and estimation of polyamines

Polyamines were extracted, separated and detected after

dansylation as described by Reggiani et al. (1990) using

silica plates (60 F254, Merck, Germany) with cyclohexane–

ethylacetate (3:2 v/v) as the solvent. Spots, demarcated

under UV light, were scraped from the plates and extracted

with ethylacetate. Fluorescence was measured in an LS

30-Luminescence Spectrofluorimeter (Perkin-Elmer, UK)

at an excitation wave length of 360 nm and emission wave

length of 506 nm and the results were compared with

dansylated standards. Polyamine content was expressed as

nmol g-1 FW.

Extraction and assay of diamine oxidase and polyamine

oxidase

Leaf samples were homogenized in 100 mM K-phosphate

buffer (pH 6.5) containing 5 mM dithiothreitol and the

extract was centrifuged at 16,0009g for 20 min at 4 �C. The

supernatant was used as source of enzyme. Diamine oxidase

(DAO; EC 1.4.3.6) and polyamine oxidase (PAO; EC

1.4.3.4) activities were assayed as per Asthir et al. (2002)

using Put (for DAO) and Spd (for PAO) as substrates. The

reaction mixture of 2.0 ml consisted of 0.1 ml of enzyme

extract, 50 U of CAT, 0.1 % o-aminobenzaldehyde and the

reaction started with one of the two different buffer and

Table 1 Chemical analysis of the used soil under different salinity levels

Salinity

levels EC

(dS m-1)

pH HCO3
- ? CO3

2-

(mg kg-1)

Cl-

(mg kg-1)

SO4
2-

(mg kg-1)

Ca2?

(mg kg-1)

Mg2?

(mg kg-1)

Na?

(mg kg-1)

K?

(mg kg-1)

N

(mg kg-1)

P

(mg kg-1)

0.1 7.20 204.3 315.9 434.2 91.0 40.1 3.8 30.8 19.2 3.1

4.7 7.50 270.5 998.1 908.6 377.2 155.6 275.0 37.0 16.0 2.8

9.4 7.64 244.6 1,599.0 1,399.3 558.8 203.7 503.2 41.0 12.3 2.4
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substrate combinations i.e., 10 mM Put in 50 mM K-phos-

phate buffer (pH 7.5) for DAO; 10 mM Spd in 50 mM

K-phosphate buffer (pH 6.0) for PAO. The reaction was

incubated at 30 �C for 3 h, and then stopped with 2.0 ml of

10 % (v/v) perchloric acid and the tubes were centrifuged at

6,5009g for 15 min. Formation of the D-pyrroline product

was determined by reading the absorbance at 430 nm in

spectrophotometer. Control reactions were carried out with

inactivated enzyme prepared by heating for 20 min in a

boiling water bath. Activities are expressed as nmol D-pyr-

roline g-1 FW h-1 for DAO and PAO.

Statistical analysis

All data were statistically analyzed using a three-factorial

completely randomized design (Snedecor and Cochran

1980). Combined analysis was made for the two growing

seasons, since the results of the two seasons followed a

similar trend. All values are means of four replicates.

Significant differences were calculated using the least-

significant-difference (LSD) test at p \ 5 % level.

Results

Uninoculated plants did not show any colonization.

Structures characteristic of AMF were detected in the roots

after inoculation. Sids 1 inoculated plants cultivated under

different salinity levels showed 83 to 62 % of mycorrhizal

root length while Giza 168 plants colonized by AMF

showed a percentage of root colonization ranging from 71

to 42 % of root length (Fig. 1).

Salt stress markedly reduced number of grains plant-1 and

grain yield plant-1 (Fig. 2). Interestingly, these attributes

were significantly higher in mycorrhizal than non-mycor-

rhizal plants in presence as well as in absence of salt stress.

Mycorrhization significantly (p \ 0.05) increased grain yield

plant-1 by 75.0, 85.1 and 96.1 % in Sids 1 and by 47.6, 58.6

and 73.3 % in Giza 168 at 0.1, 4.7 and 9.4 dS m-1 salinity

level, respectively, when compared with uninoculated plants.

Nitrogen, P and K? concentrations were markedly

decreased in shoots and grains of non-mycorrhizal plants in

response to salt exposure, but the reduction was much less

in Sids 1 compared to Giza 168 plants (Fig. 3). Mycor-

rhizal inoculation alleviated the adverse effect of salt stress

and significantly (p \ 0.05) enhanced N, P, and K? accu-

mulation, particularly in Sids 1. Nitrogen level was

increased in shoots of Sids 1 inoculated plants by 31.3, 46.5

and 53.9 %, that of P by 48.6, 56.7 and 62.5 % and that of

K by 28.4, 41.6 and 46.2 % at 0.1, 4.7 and 9.4 dS m-1

salinity level, respectively, when compared with non-my-

corrhized plants. An increase in shoot and grain sodium

concentration of non-mycorrhized plants was observed

*
*

*

*

0

10

20

30

40

50

60

70

80

90

100

0.1 4.7 9.4

T
h

e 
A

M
-f

u
n

g
al

-c
o

lo
n

iz
ed

 r
o

o
t 

le
n

g
th

(i
n

 %
 o

f 
th

e 
to

ta
l r

o
o

t 
le

n
g

th
) 

Salinity levels dS m-1

Sids 1 Giza 168

Fig. 1 Percentage of total root length infected by arbuscular

mycorrhizae under different salinity levels. The column value

represents the mean (±SE) of four replicates. Asterisks indicate

significant differences at the 0.05 level compared with the non-saline

plant (0.1 dS m-1 salinity level)

* *
*

*

*

*

0

50

100

150

200

250

300
N

u
m

b
er

 o
f 

g
ra

in
s 

p
la

n
t-1

AM- AM+

*

*

*

*
*

*

0

2

4

6

8

G
ra

in
 y

ie
ld

 p
la

n
t-1

 (
g

)
G

ra
in

 w
ei

g
h

t 
(g

)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Sids 1 Giza 168
0.1 4.7 9.4 0.1 4.7 9.4

Salinity levels dS m-1 of cultivars

Fig. 2 Changes in the grains number plant-1, grain yield plant-1

(g) and grain weight (g) of two wheat cultivars as affected by

mycorrhizal inoculation under different salinity levels. Every column

in each graph represents the mean (±SE) of four replicates. Asterisks

indicate significant differences at the 0.05 level compared with the

uninoculated plant

2604 Acta Physiol Plant (2013) 35:2601–2610

123



under salinity, particularly in Giza 168 (Fig. 3). Mycorrh-

ization significantly (p \ 0.05) decreased its concentration

by 23.5, 34.9 and 42.3 % in Sids 1 shoots and by 12.2, 20.5

and 26.0 % in Giza 168 shoots compared to values of

uninoculated plants at 0.1, 4.7 and 9.4 dS m-1 salinity

level, respectively, indicating lower absorption by the roots

and lesser translocation to the shoots. Lower concentrations

of Fe, Zn and Cu were detected in shoots and grains of

stressed non-mycorrhized plants, especially in Giza 168

(Fig. 4). Mycorrhizal symbiosis protected wheat against

the detrimental effect of salinity and significantly

(p \ 0.05) improved Fe, Zn and Cu acquisition, particu-

larly in Sids 1. The level of Fe was increased in shoots of

Sids 1 mycorrhized plants by 29.8, 39.0 and 54.1 %, that of

Zn by 25.1, 33.8 and 57.2 % and that of Cu by 28.2, 35.8

and 50.9 % at 0.1, 4.7 and 9.4 dS m-1 salinity level,

respectively, when compared with non-mycorrhized plants.

Salt stress increased Put level in Giza 168 (Fig. 5). Values

of Spd and Spm were increased in Sids 1 and decreased in

Giza 168 by salinity (Fig. 5). Mycorrhization changed the

PAs balance; it increased Spd and Spm contents in Sids 1

plants under non-saline condition. Furthermore, the accu-

mulation pattern of PAs was not consistent in both cultivars

due to mycorrhizal inoculation under saline conditions.

Mycorrhizal salt-stressed Sids 1 plants showed higher levels

of Spd and Spm as compared to non-mycorrhizal plants.
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Mycorrhizal salt-stressed Giza 168 plants showed higher Put

and lower Spd and Spm levels than the corresponding non-

mycorrhizal plants. The maximum increase was observed in

Sids 1 mycorrhized plants exposed to 9.4 dS m-1 salinity

level that had 40.8 and 45.9 % higher levels of Spd and Spm,

respectively, over uninoculated plants.

Salinization increased DAO and PAO activities, the

effect was more pronounced in Sids 1 (for DAO) and in

Giza 168 (for PAO) (Fig. 5). Mycorrhization significantly

(p \ 0.05) decreased their activities, particularly in Giza

168 (for DAO) and in Sids 1 (for PAO). Mycorrhizal

colonization reduced the values of DAO in Giza 168 by

7.0, 17.5 and 19.0 % and that of PAO in Sids 1 by 10.3,

20.8 and 25.0 % at 0.1, 4.7 and 9.4 dS m-1 salinity level

than non-mycorrhized plants, respectively.

Discussion

Mycorrhizal symbiosis is an essential component of most

plants and the challenge for agriculture today lies in the

possibility to take advantage of the numerous ecosystem

services of soil stabilization, biofertilization, bioprotection,

bioregulation offered by this natural resource.

As expected, the extent of AM-fungal root colonization

was lower when roots grew in saline conditions; this effect

could be explained by the direct effect of salt stress on the

fungi. Salinity can hamper colonization capacity not only

by inhibiting spores germination, hyphae growth in soil, or

hyphal spreading after initial infection (Hajiboland et al.

2010; Wu et al. 2010b; Abdel-Fattah and Asrar 2012;

Shekoofeh et al. 2012) but also by increasing H2O2 accu-

mulation in the mycorrhized roots; H2O2 could diffuse

across the thin hyphal wall of arbuscular branches and

might be able to initiate the fungal programme for senes-

cence, thus, the accumulation of ROS in the cytoplasm of

arbuscule-containing cells might ultimately lead to arbus-

cular degradation (Fester and Hause 2005).

Soil salinity poses a severe threat to wheat productivity,

which has been attributed to toxicity of excessive Na? and

Cl-, disturbance in the accumulation of nutrients, distur-

bance in water and osmotic potential, disruption in the
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structure of enzymes, damage in cell organelles and

plasma membrane, disruption in photosynthesis, respira-

tion and protein synthesis, reduction in assimilates trans-

location to the sink and increasing in the production of

ROS in the chloroplast (Hajiboland et al. 2010; Wu et al.

2010b; Shekoofeh et al. 2012). Salinity-induced suppres-

sion of wheat grain yield has been attributed to a decline

in grain weight in Sids 1, but in Giza 168 it was due to a

decline in grain number. This result may support the

finding that the decrease in grain number of salt-sensitive

genotypes could be due to the lack of photo-assimilates

accumulation before anthesis; however, in salt-tolerant

genotypes, reduction in grain weight might be attributed

to the lack of assimilate availability in grain filling period

(Rahnama et al. 2011). Interestingly, we found that my-

corrhization increased the fitness of wheat plant to salt

stress and enhanced its productivity by improving host

plant nutrient status (it increased N, P, K?, Fe, Zn and Cu

acquisition, while it diminished Na? uptake) and by

altering polyamine balance (it changed Put, Spd and Spm

content as well as reduced the activities of diamine oxi-

dase and polyamine oxidase). This is consistent with other

findings (Giri and Mukerji 2004; Sannazzaro et al. 2007;

Daei et al. 2009; Hajiboland et al. 2010; Wu et al. 2010b;

Abdel-Fattah and Asrar 2012).

Salt stress affected plant physiological traits through

changes in ionic status in the plant cells; it interfered with

nitrogen uptake and reduced its accumulation, which might

be attributed to a direct competition of chloride with nitrate

at the membrane level and/or an effect on the membrane

proteins and change plasmalemma integrity (Köhler and

Raschke 2000). Deviating from the response generated by
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Fig. 5 Changes in the

endogenous polyamine contents

(Put, Spd, Spm) (nmol g-1 FW)

and the diamine oxidase (DAO)

and polyamine oxidase (PAO)

activities (nmol D-pyrroline

g-1 FW h-1) in leaves of two

wheat cultivars as affected by

mycorrhizal inoculation under

different salinity levels. Every

column in each graph represents

the mean (±SE) of four

replicates. Asterisks indicate

significant differences at the

0.05 level compared with the

uninoculated plant
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salt, AMF had a favorable impact on nitrogen acquisition.

Our results are consistent with previous reports (Giri and

Mukerji 2004; Abdel-Fattah and Asrar 2012). Indeed, the

extraradical mycelia take up inorganic nitrogen from the

soil in the form of nitrate and assimilate it via nitrate

reductase, located in the arbuscule-containing cells (Kal-

dorf et al. 1998). Improved N nutrition by mycorrhiza may

reduce the toxic effects of Na ions by reducing its uptake

and this may indirectly help in maintaining the chlorophyll

content (Giri and Mukerji 2004). Salinization reduced

phosphorus absorption, because phosphate ions precipitate

with Ca2?, Mg2? and Zn2? ions and become unavailable to

plants (Azcon-Aguilar et al. 1979). In this study, we found

that mycorrhiza significantly enhanced P uptake facilitated

by the extensive hyphae of the fungus; which extend

beyond the depletion zone around roots and acquire

nutrients that are several centimeters away from the root

surface, as described by Ruiz-Lozano and Azcon (2000).

The effective P acquisition by the external hyphae is

related to the (a) formation of polyphosphates within the

hyphae, resulting in maintenance of low internal phosphate

(Pi) concentrations, (b) production of extracellular acid

phosphatases, which catalyze the release of P from organic

complexes in the soil and (c) encoding of a phosphate-

transporters genes such as GvPT, GiPT and GmosPT in

AMF (Marschner and Dell 1994; Selvaraj and Chellappan

2006). Enhanced P uptake by mycorrhiza may reduce the

negative effects of Na? and Cl- ions by maintaining vac-

uolar membrane integrity, which facilitates compartmen-

talization within vacuoles and selective ion intake

(Rinaldelli and Mancuso 1996).

Increasing Na? concentration in saline soils led to a

substantial reduction of potassium accumulation in wheat

tissues, which could be attributed to the competition

between Na? and K? at the level of absorption sites

(Epstein and Rains 1987). Mycorrhizal colonization sig-

nificantly enhanced K? absorption, which is accomplished

by regulating the expression and activity of K? and Na?

transporters and of H? pumps that generate the driving

force to transport ions (Parida and Das 2005). This positive

effect of mycorrhization on K? acquisition was also

reported by (Daei et al. 2009; Hajiboland et al. 2010; Wu

et al. 2010b; Abdel-Fattah and Asrar 2012). Increased K?

accumulation in stressed mycorrhized plants may maintain

a high K?/Na? ratio which (a) prevents the disruption of

various K-mediated enzymatic processes and inhibition of

protein synthesis (Evelin et al. 2009) and (b) is beneficial in

the ionic balance of the cytoplasm or Na? efflux from plants

(Giri and Mukerji 2004). Salinization enhanced Na? accu-

mulation in wheat tissues; however, mycorrhizal coloniza-

tion significantly reduced its uptake. Our results corroborate

the findings of Giri and Mukerji (2004), Daei et al. (2009),

Hajiboland et al. (2010), Wu et al. (2010b) and Abdel-

Fattah and Asrar (2012). Indeed, mycorrhization reduced

Na? acquisition via improving membrane integrity and,

therefore, facilitate compartmentalization within vacuoles

and selective ion uptake (Rinaldelli and Mancuso 1996),

stimulating plant growth, which have dilution effect on Na?

level (Al-Karaki 2006), discriminating against Na?; as Na?

was found at moderate levels in AMF, AM-fungal myce-

lium might have the possibility to pre-select nutrients for

the plants (Hammer et al. 2011), preventing Na? allocation

to the shoots by keeping it inside root cell vacuoles and

intraradical fungal hyphae (Cantrell and Linderman 2001),

inducing overexpression of Na?/H? antiporters and low-

ering expression of LsLea gene; late embryogenesis abun-

dant protein act as stress markers, which suggest that

mycorrhized plants suffer less stress than non-mycorrhized

plants and able to avoid Na? accumulation (Evelin et al.

2009). Prevention of Na? accumulation and enhancement

of K? concentration could be a part of the general mecha-

nism of salt stress alleviation in wheat by AMF.

Salt stress markedly reduced Zn, Cu and Fe acquisition;

however, mycorrhizal symbiosis improved their mobiliza-

tion, uptake and transfer to the shoot especially in the

stressed plants. This positive effect might be attributed to

the extensive root development and hyphae that reduce the

distance for diffusion of nutrients (Subramanian et al.

2009), the binding of the metal to the fungal mycelium, or

possibly due to fungal-induced changes in rhizosphere pH,

which could alter the solubility and, therefore, availability

of the metal (Li and Christie 2001), the increased shoot P

content that could increase Cu and Zn sink size, which

might induce uptake and translocation of Cu and Zn to

plant shoots (Liu et al. 2000) and the enhanced expression

of Zn transporter gene; the gene MtZIP2 that encodes a

plasma membrane-localized Zn transporter (Burleigh et al.

2003). Trace elements such as Cu, Fe and Zn are essential

for normal growth and development of plants. Thus,

modulation of nutrient acquisition can be one of the

mechanisms used by AMF to improve wheat productivity

under saline conditions.

Polyamines are considered as growth regulators impli-

cated in a wide range of plant growth and developmental

processes (Moschou et al. 2008). They can play a role in

stress reactions and resistance by its ability to (a) associate

with anionic components of the membrane such as phos-

pholipids thereby stabilizing the bilayer surface and

retarding membrane deterioration, (b) stabilize the con-

formation of nucleic acids, resulting in improved transla-

tion and protein synthesis, (c) prevent chlorophyll loss and

the inhibition of photochemical reactions of photosynthe-

sis, (d) maintain cellular pH and ion homeostasis,

(e) improve water and nutrient uptake like phosphorus,

nitrogen and micronutrients, (f) scavenge free radicals and

(g) modify expression of some stress-related genes (Pang
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et al. 2007; Smith and Read 2008) and thus improve crop

productivity. Polyamines might also enhance mycorrhizal

symbiosis by involvement in signalling events in the plant-

fungus interaction (El Ghachtouli et al. 1995). Variations in

PAs level were observed in wheat cultivars under soil

salinization, Sids 1 accumulated more Spd and Spm than

Giza 168; however, greater Put accumulation was detected

in Giza 168 than in Sids 1. This observation indicates that

the individual PAs may have different roles during the

response of plants to salt stress. This corresponds with the

findings of El-Bassiouny and Bekheta (2005), who reported

that the excessive accumulation of Put in the saline-sensi-

tive cultivars could be explained as a result of (a) the

starvation for K? under saline conditions; Put was formed

in leaves to replace K?, the major inorganic cation,

reflecting a homostatic mechanism for controlling cellular

pH in higher plants and/or (b) the inhibition of Spd and

Spm synthesis by the inhibition of the activity of the

enzyme S-adenosylmethionine decarboxylase. Likewise,

the high level of Spd and Spm induced by salinity in salt-

tolerant cultivars suggested stimulation of Spd and Spm

synthesis or inhibition of polyamine oxidase. Furthermore,

variations in individual PAs in response to salinity and

mycorrhization depending on the plant genotypes were

detected. In mycorrhized salt-stressed Sids 1 plants, the

increased Spm content might be due to increased ABA

content (Sannazzaro et al. 2007), while the decreased Put

level might result from Put conversion into different amino

acids, based on the fact that amino acids and PAs are

related in their metabolic pathways and affected by alter-

ation in enzymatic levels caused by salinity (Flores and

Filner 1985). In mycorrhized stressed Giza 168 plants,

higher Put accumulation could play a protective role in the

plant cell. Interestingly, our results showed that mycor-

rhizal inoculation significantly reduced the activities of

diamine oxidase and polyamine oxidase in salt-stressed

wheat plants. In mycorrhized salt-stressed Sids 1 plants,

decreased PAO activity corresponded to increased Spm and

Spd content. However, in mycorrhized stressed Giza 168

plants, decreased DAO activity corresponded to increased

Put level. Differences in free PAs and PA catabolizing

enzymes could play a vital role on antioxidative defense

mechanism in inoculated plants under saline conditions.

Conclusions

The outcome of the present study clearly illustrates the

importance of mycorrhizal symbiosis in altering the plant

physiology in salt-stressed wheat plants by reducing Na?

uptake and by increasing the absorption of N, P, K?, Fe, Zn

and Cu as well as the content of PAs, which indicates that

beneficial mechanisms are operating and suggests that the

promotion of this symbiotic association could aid wheat

plants to cope with saline conditions. It is interesting to

note that this is the first study, which has shed light on the

effect of mycorrhizal colonization on DAO and PAO

activities in salt-stressed plants. Moreover, the present

results show that mycorrhization might be a promising and

an environmentally friendly approach to obtain higher

wheat grain yield in saline croplands.
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