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Aeromonas punctata PNS-1: a promising candidate to change
the root morphogenesis of Arabidopsis thaliana in MS
and sand system
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Abstract A model system of sand, comprising Arabid-

opsis plants inoculated with Aeromonas punctata PNS-1

strain, was used to evaluate the bacterial effect in modu-

lation of plant root structure at second-order lateral root

level. In MS media, the root morphogenesis was changed

only at first-order lateral root level when inoculated with

PNS-1 strain. Inoculation with PNS-1 strain was subjected

to significant (P \ 0.01) increase in primary root length

and lateral root density in both MS and sand system.

However, this strain modulated the root structure in the

sand environment in a complex manner that may be helpful

for incitation of the plant–microbe interaction close to

natural environment. In order to determine whether this

change in root morphology was due to bacterial auxin,

Arabidopsis transgenic line (DR5:GUS) was used to reveal

the change in homeostasis of endogenous auxin. In PNS-1

inoculated transgenic seedlings of Arabidopsis plant

(DR5:GUS), endogenous auxin in primary root apices and

lateral roots was enhanced. For confirmation, PNS-1 was

evaluated for auxin production in vitro, showed an increase

in auxin production after supplementation of L-tryptophan.

The presence of ACC deaminase activity in PNS-1 showed

its possible involvement in primary root elongation. In the

present study Aeromonas punctata PNS-1 is the potential

candidate for triggering the change in root morphogenesis

of Arabidopsis thaliana with the involvement of auxin and

ACC deaminase production.
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Introduction

Lateral root formation is the main determinant of root

morphogenesis (Malamy 2005; Lucas et al. 2008). Plant

roots interact with variety of bacteria which reside in the

soil and are influenced by root exudates. Root exudates,

rich in organic compounds, are utilized by some microor-

ganisms (Jones et al. 2003). In response, these microbes

exert beneficial effects on root development of the plant by

producing different kinds of metabolites (Larcher et al.

2003; Ryu et al. 2004; Pare et al. 2005). Persello-Cartieaux

et al. (2003) extracted the plant growth hormones from the

supernatant of soil bacterial culture. Among these metab-

olites, IAA is the widely studied hormone and plays a

crucial role in plant productivity by enhancing the root

length, elongation of lateral roots and proliferation of root

hairs (Vessey 2003; Taghavi et al. 2009). IAA is proved to

be a key signal for initiation and proliferation of lateral

roots (Casimiro et al. 2003; Laskowski et al. 2006). Plant-

exuded tryptophan enters the IAA biosynthesis pathways of

bacteria living in the rhizosphere and used in the biosyn-

thesis of IAA. In return, a significant part of the bacterial

IAA is delivered to the plant root (Spaepen et al. 2007). It

can be synthesized via tryptophan-dependent and trypto-

phan-independent pathways, although the importance of

tryptophan-independent pathways continues to be debated

(Cohen et al. 2003). Plant growth promoting rhizobacteria

(PGPR) have been shown to release IAA and are assumed
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to modify plant auxin content resulting in an elongated and

highly branched root system (Barbieri and Galli 1993;

Lambrecht et al. 2000; Dobbelaere et al. 2001; Patten and

Glick 2002). Azospirillum brasilense, Aeromonas veronii,

Agrobacterium spp., Alcaligenes piechaudii, Bradyrhizo-

bium spp., Comamonas acidovorans, Enterobacter spp. and

Rhizobium leguminosarum are the studied bacteria for IAA

production and their effect on plant growth promotion

(Saharan and Nehra, 2011). For the evaluation of in situ

auxin responses, DR5:GUS transgenic line of Arabidopsis

thaliana (L.) has been used that contains a highly active

synthetic auxin-response element (DR5), a minimum pro-

moter and a b-glucuronidase (GUS) reporter gene. The

GUS activity in reporter line is correlated with concentra-

tion of auxin and therefore, can be used to examine the

plant response to auxin (Ulmasov et al. 1997). Another

important phytohormone, ethylene, plays an important role

in different plant developmental processes, i.e. germination

of seeds, induction of flowers, morphogenesis and ripening

of fruits up to senescence. Further investigation showed its

involvement in inhibition of root elongation, lateral root

growth and proliferation of root hairs (Mayak et al. 2004).

If the level of ethylene after germination is very high, root

elongation is inhibited (Glick et al. 1998). Therefore, low

level of ethylene indirectly enhances the root length.

Bacteria are involved in lowering of ethylene concentration

in plants using two mechanisms (Mastretta et al. 2006): (1)

producing auxin or (2) 1-aminocyclopropane-1-carboxylate

(ACC) deaminase enzyme. ACC deaminase enzyme

decreases the level of ACC which is the precursor for

ethylene and successively the ethylene production is

reduced, which leads to plant growth promotion by pro-

liferating the plant root system (Penrose et al. 2001; Gri-

chko and Glick 2001; Glick et al. 2007). The occurrence of

ACC deaminase is pretty common among soil microor-

ganisms, including Rhizobium, Agrobacterium, Achromo-

bacter, Enterobacter Burkholderia, Ralstonia, Azospirillum

and Pseudomonas (Wang et al. 2001; Blaha et al. 2006;

Duan et al. 2006). The objectives of the present study were

to (1) explore the bacterial potential in changing the root

morphogenesis of the model plant, (2) design the sand

system for better depiction of root structure modulation of

Arabidopsis thaliana, and (3) evaluate the PGPR traits of

isolated Aeromonas punctata PNS-1 that are mainly

involved in root morphogenesis.

Materials and methods

Isolation and identification

The strain PNS-1 was isolated from wheat plant by fol-

lowing the method of Ali et al. (2009). The strain was

identified by 16S rRNA gene sequencing. Bacterial culture

was incubated at 37 �C for 24 h. Genomic DNA was iso-

lated with the help of QIAamp DNA mini kit according to

instructions (QIAGEN). DNA fragment 1.5 kb was ampli-

fied using forward primer 27f (50-AGAGTTTGATCCTG

GCTCAG-30) and reverse primer 1522r (50-AAGGAGGTG

ATCCA(AG)CCGCA-30). Total PCR reaction mixture was

50 ll, containing 5 ll 109 buffer, 4 ll (5 mM) dNTPs,

0.1 ll (0.62 units) Taq polymerase, 2 ll (10–20 ng/ll)

DNA template, 1 ll of each of the primers (5 pmol) and

36.5 ll water. The PCR program was set on the thermal

cycler (Eppendorf, USA) with the following conditions,

2 min at 94 �C, 35 cycles of 1 min at 94 �C, 30 s at 55 �C,

1.5 min at 72 �C, and a final step of 10 min elongation at

72 �C. PCR product was analyzed in 1 % agarose gel,

purified by PCR purification kit (QIAGEN) and sent to

Cancer Research Centre for sequence facility, University of

the Chicago, USA. The resulted sequence was edited and

checked for the similarity with already submitted entries

using basic sequence alignment BLAST program in NCBI

data libraries (http://blast.ncbi.nlm.nih.gov/Blast.cgi).

Experimental setup of plant microbe interaction

Autoclaved LB broth was inoculated with bacterial culture

in 100 ml flask and incubated for 24 h at 37 �C. After

incubation, LB broth was centrifuged (Sigma 2-5; Sigma

Laborzentrifugen, Osterode, Germany) at 10,000g for

10 min. Pellet was washed with 1 ml of phosphate-buf-

fered saline and suspended in the same buffer. Bacterial

cells were adjusted to the cell density of 107 CFU ml-1.

Arabidopsis Col-0 and DR5:GUS seeds were surface ster-

ilised with 100 % commercial bleach having two drops of

Tween 20 for 2 min and then washed with autoclaved

distilled water (three times). Sterilized seeds were dipped

in bacterial suspension for 30 min, planted in the petri-

plates containing autoclaved standard Murashige and

Skoog media. The MS plates were sealed with Micro-

poreTM tap. Similar procedure was repeated for sand sys-

tem. Sand system was designed by cutting the 25 ml

disposable pipette from one end and filled half of it with

quartz sand (Sigma). The MS media was poured on sand to

provide nutrients for Arabidopsis growth. This system that

contains an opening at the end, filled with cotton, was fitted

onto the falcon tube (25 ml) that contains water to keep the

environment moist. The whole system was autoclaved.

After autoclaving, the seeds incubated in bacterial culture

were implanted in the system. The seeds were germinated

in the dark at 22 �C and transferred to the environment

having 16:8 day:light (200 lE m-2 s-1) regime. Root

architecture was analyzed after 15 days of seedlings

growth. These experiments were repeated three times to

check the validity of the results.
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Root architecture analysis

For root structure analysis, Arabidopsis plants were

removed from MS media plates and the sand system, sand

was rinsed away very carefully. The root systems were

spread and allowed to dry on the surface of glass plates.

After arranging the roots, image was captured by Camera

(Olympus). Fifteen plants were selected from MS media

and the same from sand system for root measurements. Due

to complexity of the root morphology of Arabidopsis

thaliana grown in sand system, root structure was analyzed

using five parameters: the primary root length, total lateral

root length, average lateral root length and lateral root

density by using the image J software. Root system was

divided into first-order lateral root and second-order lateral

root and calculated the total lateral root length, average

lateral root length and lateral root density for both orders

(Lima et al. 2010). Root hairs of inoculated and non-

inoculated seedlings in the sand system was observed under

dissecting microscope and captured by camera (Olympus).

Histochemical analysis of GUS activity

In order to evaluate the change in endogenous auxin by

GUS histochemical staining, 15-days-old non-inoculated

PNS-1, inoculated transgenic seedlings from MS media

and 3-week-old seedlings from sand system were incubated

overnight at 37 �C in a GUS reaction buffer (Malamy and

Benfey 1997). The stained seedlings were rinsed in 70 %

ethanol for 5 min and then observed under the microscope.

In vitro auxin production

PNS-1 was evaluated for auxin production in the presence

and absence of supplemented L-Tryptophan (Sigma

Chemical Co., St. Louis MO, USA). For this purpose,

L-tryptophan was filter sterilized (Millipore filter, 0.45 lm)

and was added in 250-ml Erlenmeyer flasks, containing

100 ml autoclaved LB broth separately. All flasks were

inoculated by equal inoculum and incubated for 72 h at

37 �C at 120 rev/min. After incubation, bacterial cells were

centrifuged at stationary phase for 15 min. One ml super-

natant was added to Salkowski’s reagent (2 ml 0.5 M

FeCl3 and 98 ml 35 % perchloric acid) and incubated in

darkness for 45 min for color development. The intensity

of color was measured at 535 nm with the spectropho-

tometer. Standard solution of synthetic auxin (Oxoid) with

different concentrations (lg/ml) was prepared and pro-

cessed in the same way, and curve of standards was drawn

for comparison to determine auxin production (lg/ml) in

the bacterial culture supernatant (Akhtar and Ali 2011).

ACC deaminase production

Production of ACC deaminase was determined as descri-

bed by Glick et al. (1998). LB broth was inoculated with

Fig. 1 Effect of PNS-1 inoculation on root architecture of Arabid-
opsis thaliana (Col-0) in MS media

Table 1 ACC and IAA

production (with and without

L-tryptophan) by PNS-1 strain

in in vitro conditions

Bacterial strain ACC deaminase production

(nanomoles of a-ketobutyrate

mg protein-1 h-1)

Auxin production (lg/l)

L-Trp-1 L-Trp

Negative Control – 1.03 ± 0.05 1.4 ± 0.07

PNS-1 137.92 ± 2.16 13.1 ± 0.233 90.3 ± 0.208
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bacterial strains at 37 �C for 24 h at 120 rev/min. Bacterial

culture was centrifuged at 12,000 g for 10 min at 4 �C.

Cells were washed with 5 ml DF salt minimal media

(Dworkin and Foster, 1958) and centrifuged at 12,000g for

10 min. Then, cultures were incubated in DF salt minimal

media containing 3 mM ACC at 28 �C for 24 h at

120 rpm. After incubation, harvested cells were washed

again with 5 ml DF salt minimal media and suspended in

7.5 ml DF salt minimal media containing 0.5 M ACC and

incubated for 1 h at 28 �C at 120 rev/min shaking condi-

tion. After 1 h, media was centrifuged at 12,000g for

10 min and liberated ammonia was measured following the

method of Nagatsu and Yagi (1966). All the above

experiments were repeated three times for the validity of

the results.

Statistical analysis

The values were analyzed as the mean of replicates

(mean ± SE). The data obtained were statistically evalu-

ated using Student’s t test.

Results

Isolation and identification

On the basis of 16s rRNA sequence comparison, the iso-

lated PNS-1 strain showed 99 % homology with Aeromo-

nas punctata. Sequence was submitted to the GENBANK

and was assigned the accession number JF320797.

a

b

Fig. 2 a Effect of PNS-1 inoculation on primary and lateral root

length (total and average) of Arabidopsis thaliana (Col-0) (n = 15) in

MS media. Data were expressed as mean values ± standard error of

the mean. Asterisks designate Student’s t test (P \ 0.01). b Effect of

PNS-1 inoculation on lateral root density of Arabidopsis thaliana
(Col-0) (n = 15) in MS media. Data were expressed as mean

values ± standard error of the mean. Asterisks designate Student’s

t test (P \ 0.01)

Fig. 3 a Effect of PNS-1 inoculation on primary and first-order

lateral root length (total and average) of Arabidopsis thaliana (Col-0)

(n = 15) in sand system. Data were expressed as mean values ± stan-

dard error of the mean. Asterisks designate Student’s t test (P \ 0.01).

b Effect of PNS-1 inoculation on second-order lateral root length

(total and average) of Arabidopsis thaliana (Col-0) (n = 15) in sand

system. Data were expressed as mean values ± standard error of the

mean. Asterisks designate Student’s t test (P \ 0.01). c Effect of

PNS-1 inoculation on first and second-order lateral root density of

Arabidopsis thaliana (Col-0) (n = 15) in sand system. Data were

expressed as mean values ± standard error of the mean. Asterisks
designate t test (P \ 0.01)
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Effect of PNS-1 inoculation on root morphogenesis

in MS media

PNS-1 inoculation changed the root morphogenesis of

Arabidopsis plant (Col-0) by increasing the primary root

length (Fig. 1), (Table 1). Figure 2a shows that PNS-1

strain exhibited 53 % increase in primary root length as

compared to the non-inoculated plant. On the other hand,

the total length of lateral roots was decreased non signifi-

cantly over control. PNS-1 inoculation led significant

decrease in average root length rather than increasing it.

While lateral root density increased 34.53 % upon inocu-

lation when compared to the non-inoculated plant, con-

firming that PNS-1 had a positive effect on increasing

lateral root density (Fig. 2b).

Effect of bacterial inoculation on root morphogenesis

in sand system

The inoculation with PNS-1 led a significant increase

(P \ 0.01) in the primary root length as compared to

control whereas decrease in the first-order total root length

was observed with PNS-1 inoculation over non-inoculated

plant. Any significant change in the first-order average root

length of the both inoculated and non-inoculated plants was

not observed (Fig. 3a). A clear-cut increase in second-order

total lateral root length was observed in PNS-1 inoculated

plant over non-inoculated plant while there was no change

in the second-order average root length of both PNS-1

inoculated and the control plants (Fig. 3b). PNS-1 inocu-

lation caused the significant decrease in the first-order lat-

eral root density over non-inoculated plant but on the other

hand, significant increase (48.36 %) in second-order lateral

root density was observed in PNS-1 inoculated plant

(Fig. 3c). These results showed that PNS-1 inoculation had

the potential to change the root morphogenesis positively by

increasing the lateral root density at second-order lateral

root. PNS-1 inoculations showed a tremendous proliferation

of root hairs in inoculated plant under the microscope

(Fig. 4).

Histochemical GUS analysis

Microscopic observations showed that the GUS staining

was stronger in the pericycle region of the roots and apices

of the lateral roots of PNS-1 inoculated transgenic seedlings

as compared to non-inoculated control plant (Fig. 5a, b).

PNS-1 inoculated seedlings, grown in sand system, also

showed the increased level of GUS staining in primary root

apices and vasculatures of the lateral roots as well over non-

inoculated seedlings (Fig. 5c, d).

In vitro auxin and ACC deaminase production

The amount of auxin production was 13.1 lg/l, which

increased up to 90.3 lg/l by the amendment of the

L-tryptophan. Calorimetric determination of ACC deami-

nase showed the deep blue color for PNS-1 strain and

showed 137.92 nmol of a-ketobutyrate mg protein-1 h-1

ACC deaminase activity.

Discussion

The use of soil in growing plants under laboratory condi-

tions does not depict the true structure of roots due to soil’s

opacity and problems in extricating the root that damages

the root structure (Contesto et al. 2010). Gamalero et al.

(2002, 2004) used the system comprising mixture of soil

and sand or sand alone for analyzing the root architecture

of tomato plant inoculated with fluorescent pseudomona-

des. Similarly, Chapman et al. (2011) studied the root

morphogenesis of Arabidopsis thaliana by using the sand

system. We also aimed to develop a system which might

give the true picture of root modulation without damaging

roots and close to natural environment. In this work, we

Fig. 4 Root hair proliferation of Arabidopsis thaliana (Col-0) in sand system caused by PNS-1 strain inoculation
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showed how the change in root morphogenesis of Ara-

bidopsis thaliana induced by PNS-1 in sand system is

different from MS medium.

The amount of auxin produced by PNS-1 strain varied

greatly with the addition of L-tryptophan ranging from

13.1 to 90.3 lg/ml. Bacterial IAA production was

Fig. 5 a Effect of PNS-1 inoculation in increasing the GUS staining

in the pericycle region of the roots in MS media. b Effect of PNS-1

inoculation in increasing the GUS staining on the tips of lateral roots

in MS media c Expression of DR5:GUS marker in lateral root tip

when transgenic seedling Arabidopsis thaliana (DR5:GUS) was

inoculated with PNS-1 strain in the sand system. d Expression of

DR5:GUS marker in primary root tip when transgenic seedling

Arabidopsis thaliana (DR5:GUS) was inoculated with PNS-1 strain in

sand system. There is an increase in vascular auxin of Arabidopsis

plant
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comprehensively reviewed recently by Spaepen et al.

(2007) with at least five independent identified pathways.

Usually, PGPR produce IAA through the indole-3-pyruvate

pathway, exploiting the enzyme indole-3-pyruvate decar-

boxylase encoded by ipdC. The ipdC gene expression and

production of IAA, occurs in stationary phase and induced

by amendment of tryptophan (Ryu and Patten 2008).When

inoculated with PNS-1, Arabidopsis showed great varia-

tion, both in MS and sand system. In MS media, it

increased the number of lateral roots and lateral root den-

sity whereas Contesto et al. (2010) found the results with

Phyllobacterium brassicacearum STM 196 inoculations

with Arabidopsis plant, showed an increase in lateral root

length. Azospirillum brasilense showed proliferation in

root numbers rather than increasing root length (Kapulnik

et al. 1985). These findings indicated that different

microbes had different and diverse effects on plant growth.

To confirm the involvement of bacterial auxin in changing

the endogenous auxin, transgenic line (DR5:GUS) of

Arabidopsis thaliana was inoculated with PNS-1 strain,

which showed the increase in staining, mainly in root

aspects of primary and lateral roots. This GUS activity

pattern indicated that change in endogenous auxin in the

vascular regions of both primary and lateral roots is related

to bacterial IAA. The GUS activity pattern, therefore, may

reflect that changes in IAA distribution within plant root

showed that the root enhancement provoked by PNS-1 is

auxin dependent. This increase in endogenous auxin

resulted due to the released bacterial auxin in rhizospheric

region and finally in plant roots (Contesto et al. 2010). The

illustration of change in Arabidopsis root system with

bacterial inoculation was very similar to previous results

(Lopez-Bucio et al. 2002; Stepanova et al. 2005). Our

findings showed significant increase in primary root length

both in MS and sand system. This growth promotion trig-

gered by selected strain indicated that PNS-1 has the ability

to promote the plant growth by increasing the primary root

length and lateral root proliferation. Gamalero et al. (2003)

also evaluated that two pseudomonas strains increased the

total root length of the cucumber seedlings by producing

auxin, although most finding showed that auxin produced

by rhizobacteria may inhibit the primary root length

depending upon the auxin concentration (Lopez-Bucio

et al. 2007). Lot of studies has shown that elongation of

primary root length and root hair development was also

controlled by ethylene, which is generally considered to be

synthesized by auxin dependent mechanism (Stepanova

et al. 2005). Inoculation of plants with PNS-1 altered the

endogenous level of ethylene by producing ACC deami-

nase (Glick et al. 1998). Certain rhizobacterial strains

produce ACC deaminase that lowers the ethylene level by

breaking down the ethylene precursor and in turn elongate

the root length (Mayak et al. 2004), which is inhibited by

high ethylene level. Glick et al. (1998) claimed that ACC

deaminase containing rhizobacteria have the ability to

elongate plant root while colonizing the plant roots and

hence considered as PGPR. The dual function of ACC

deaminase for plant growth, i.e., as plant growth promotion

and defense against plant pathogens, puts this enzyme as

one of the important traits among various beneficial char-

acters of plant growth-promoting bacteria (Cattelan et al.

1999; Shaharoona et al. 2006). The enhancement in root

number and surface caused better improvement in the

length of the primary root, fabrication of adventitious roots,

and increasing number and length of root hairs. Alterna-

tively, the coordinated existence of several rhizobacterial

mechanisms, inducing physiological changes in the plant,

make it complicated to recognize the expression of a par-

ticular character. In this sense, it is difficult to determine

whether the development of roots was a direct consequence

of PNS-1 IAA, or by IAA-induced plant ethylene, or both.

Different rhizobacterial strains have the combination of

variety of modes of action. By utilizing these different

mechanisms they promote the plant growth. PNS-1 is one

of those bacteria which modulated the Arabidopsis root by

utilizing different mechanisms and without using the

mutants of PNS-1 that are deficient in IAA and ACC

deaminase. We cannot rule out the possibility that other

produced metabolites may be responsible for plant root

modulation. Thus, PNS-1 has the ability to modulate the

root architecture for the sand system by elongation and

proliferation of primary and lateral roots, respectively.
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