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Abstract Waterlogging stress lowers yields in sesame

(Sesamum indicum L.). A major component of waterlog-

ging stress is the lack of oxygen available to submerged

tissues. Although the morphology and physiology of plants

grown under anaerobic conditions have been studied in

detail, limited work has been done to elucidate adaptations

at the molecular level. To gain comprehensive insight into

how sesame responds to hypoxia at the genome level, we

performed gene expression profiling at two time points

during a 36-h period following hypoxic treatment using a

whole-genome RNA-Seq analysis. We identified sets of

significantly positively and negatively expressed genes

(induced and repressed, respectively) in response to

hypoxia with distinct temporal profiles. The genes that

were affected were associated with glycolysis, nitrogen

metabolism, starch and sucrose metabolism and plant

hormone signal transduction and indicated the upregulation

of particular pathways (glycolysis/glycogenesis) in the

Kyoto Encyclopedia of Genes and Genomes. Moreover,

significant changes in the expression of genes were

found for pathways, including flavone and flavonol bio-

synthesis, steroid biosynthesis, photosynthesis, cysteine

and methionine metabolism, glutathione metabolism, as

well as phenylpropanoid biosynthesis, spliceosome, circa-

dian rhythm. This study helps in elucidating the molecular

mechanisms of waterlogging tolerance and provides a basis

for the genetic engineering of sesame.
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Introduction

Sesame (Sesamum indicum L.), a member of the Pedalia-

ceae family, is a diploid (2n = 26) dicotyledon. It is one of

the most ancient oil seed crops, and it is grown widely in

tropical and subtropical areas (Ashri 2010; Bedigian and

Harlan 1986). Sesame is extremely susceptible to water-

logging and continuous heavy rains. When grown on soils

with poor drainage, sesame is adversely affected and can

suffer yield losses of greater than 30 % (in severe cases,

50–90 %). Field experiments on waterlogged sesame have

recorded premature senescence resulting from leaf chlo-

rosis, necrosis, defoliation, and reduced nitrogen fixation,

leading to cessation of growth and reduced yield (Snowden

and Wheeler 1993). Effects of waterlogging and growth

regulators on the yield as well as morphological and

physiological characteristics of sesame have been investi-

gated. The growth rate, capsules per plant, biomass, seed

yield, net photosynthesis (Pn), and chlorophyll content

(Chl) are markedly reduced after plant waterlogging during

various stages of growth (Sun et al. 2009). This can lead to

fungal attack by Fusarium oxysporum and Macrophomina

phaseolina, which induce the serious diseases Fusarium

wilt and charcoal rot, respectively, in sesame (Liu et al.

1993). Field observations that have demonstrated changes

in the growth rate, photosynthetic rate, and mineral nutrient

content of waterlogged sesame plants indicate that water-

logging stress does more than just alter the energy
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metabolism of roots. Comprehensive evaluations of

waterlogging tolerance of different sesame varieties and

plant types have identified several germplasm lines with

waterlogging tolerance, providing important material for

genetic improvement (Sun et al. 2010).

Waterlogging results in decreased oxygen (hypoxia)

supply to the plant rhizosphere due to the low diffusion rate

of molecular oxygen in water (Christianson et al. 2010). This

causes plants to switch from respiration to fermentative

metabolism to maintain energy supply for continued

metabolism and growth under anaerobic conditions. There-

fore, a lack of oxygen in the root zone affects the mainte-

nance of numerous cellular pathways (Drew 1997) and

results in morphological, anatomical, and metabolic adap-

tations to flooding. Responses to low oxygen levels have

been studied in Arabidopsis thaliana (Klok et al. 2002; Liu

et al. 2005) and in many crops (Kreuzwieser et al. 2009;

Christianson et al. 2010; Du et al. 2010), many of which show

rapid changes in gene transcription, protein synthesis and

degradation, and cellular metabolism (Bailey-Serres and

Voesenek 2008). Global gene expression studies in

Arabidopsis, rice, poplar, and cotton have revealed complex

responses to low oxygen involving significant changes in

5–10 % of all genes assayed (Klok et al. 2002; Liu et al.

2005; Loreti et al. 2005; Lasanthi-Kudahettige et al. 2007;

Kreuzwieser et al. 2009). In these studies, the genes affected

were associated with cell wall growth and modification,

hormone response, starch metabolism, and nitrogen metab-

olism. Furthermore, promoter elements and transcription

factors involved in the regulation of anaerobically induced

genes have been characterized (Yang et al. 2011; Banti et al.

2010), and some of these genes have been cloned, e.g., XET

(xyloglucan endotransglycosylase) (Wang et al. 2004) and

Arabidopsis RAP2.2 (Related to AP2 2) (Hinz et al. 2010).

Therefore, molecular approaches have sought to enhance

anaerobic responses by introducing individual genes

involved in signaling (hormones or transcription factors) or

in metabolic pathways known to be important to anoxic

tolerance. In sesame, although the morphology and physi-

ology of plants grown under anaerobic conditions have been

studied in detail, limited work has been done to elucidate

adaptations at the molecular level. Only suppression sub-

tractive hybridization (SSH) has been used to construct a

cDNA library for isolation of waterlogging tolerance-related

genes for basic material and energy metabolism, signal

transduction, transcription regulation, and detoxification

defense responses (Wang et al. 2010). XET gene involved in

cell wall metabolism, which can be induced in roots of ses-

ame under anoxia stress, has been cloned (Wang et al. 2004).

However, the mechanisms associated with tolerance to

flooding in sesame remain unclear.

To gain comprehensive insight into how sesame

responds to hypoxia at the genome level, we conducted

gene expression profiling at two time points during a 16-h

period following hypoxic treatment of plants using whole-

genome RNA-Seq analysis. We identified sets of signifi-

cantly induced and repressed genes in response to hypoxia

whose expression showed distinct temporal profiles. Our

analyses based on the gene ontology (GO; http://www.

geneontology.org) terms for these responsive genes, toge-

ther with pathway enrichment analysis (http://www.

genome.jp/kegg/), suggest that hypoxia affects a broad

spectrum of functional gene categories. This study helps to

elucidate the molecular mechanisms of sesame waterlog-

ging tolerance and provides a basis for the genetic engi-

neering of sesame.

Materials and methods

Plant material and experimental setup

Experiments were performed with the sesame waterlog-

ging-tolerant cultivar ‘‘3321’’ at the experimental station of

the Oil Crops Research Institute, Chinese Academy of

Agricultural Sciences, Wuhan, China. Sesame plants at

anthesis were irrigated to above soil level so that the sur-

face was covered with a thin layer of water, which was

maintained for 16 h. After a further 9 h of treatment, the

flooded plants were harvested, and roots were immediately

frozen in liquid nitrogen and stored at -80 �C until further

analysis. As controls, plants 15 h before the flooding were

also harvested.

RNA isolation and cDNA synthesis

Total RNA was isolated using TRIzol reagent according to

the manufacturer’s instructions (Invitrogen). The concen-

tration of total RNA was determined using an ultraviolet

(UV) spectrophotometer, and RNA intactness was assessed

on 1.0 % denaturing agarose gels. The RNA was subjected

to RNA-Seq analysis at the Beijing Genomics Institute

(BGI, Shenzhen, China). RNA quality and quantity was

verified using a NanoDrop 1000 spectrophotometer and an

Agilent 2100 Bioanalyzer prior to further processing at

BGI. Total RNA was treated with DNase I prior to library

construction, and then enriched using oligo-(dT) magnetic

beads. Fragmentation buffer was used to cut the mRNA

into short fragments (about 200 bp) then the first-strand

cDNA was synthesized using random hexamer primers

with the mRNA fragments as templates. Buffer, dNTPs,

RNase H, and DNA polymerase I were added to synthesize

the second strand. The double-strand cDNA was purified

with the QiaQuick polymerase chain reaction (PCR)

extraction kit and washed with EB buffer for end repair and

single nucleotide A (adenine) addition. Finally, sequencing
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adaptors were ligated to the fragments. The required

fragments were purified via agarose gel electrophoresis and

enriched by PCR amplification. The library products were

prepared for sequencing analysis with an Illumina HiSeqTM

2000.

Aligning clean reads to the reference transcriptome

data set

The cDNA library was sequenced using Solexa/Illumina

RNA-Seq. The 49-bp raw reads were generated with the

Illumina HiSeqTM 2000. Image deconvolution and quality

value calculations were performed using the Illumina HCS

1.1 software. The raw reads were cleaned by removing the

adaptor sequences, reads containing undefined nucleotides

(‘N’s) and low-quality reads (the percentage of low-quality

bases with a quality value B5 was more than 50 % in each

read). Clean reads were then mapped to reference sesame

transcriptome sequences using SOAPaligner/soap2 (Li

et al. 2009). Mismatches of no more than two bases were

allowed in the alignment.

Statistical analysis of gene expression level

Gene expression was calculated from the number of reads

mapped to the reference sequence and for every gene. The

expression level was calculated using the RPKM (Mort-

azavi et al. 2008) method (reads per kb per million reads)

with the formula:

RPKM ¼ C

NL
� 109;

where RPKM(A) is the expression of gene A, C is the

number of reads uniquely aligned to gene A, N is the total

number of reads uniquely aligned to all genes, and L is the

number of bases on gene A. The RPKM method eliminates

the influence of different gene lengths and sequencing

discrepancies on the calculation of gene expression, mak-

ing it possible to use these calculations to directly compare

differences in gene expression among samples. If there is

more than one transcript for a gene, the longest is used to

calculate its expression level and coverage.

Identification of differentially expressed genes

Rigorous algorithms have been developed to identify

differentially expressed genes between samples. The cor-

relation of the detected count number between parallel

libraries was assessed statistically by calculating the

Pearson’s correlation (P). In addition to the P value, false

discovery rate (FDR) was used to determine the threshold

P value in multiple tests. If we assume that we have

selected R differentially expressed genes in which S genes

show real differential expression and V genes are false

positives, the error ratio ‘‘Q = V/R’’ must remain below a

cutoff (e.g., 1 %), and the FDR should be preset to a

number no larger than 0.01 (Benjamini and Yekutieli

2001). We used FDR B 0.001 and the absolute value of

log2Ratio C 1 as the threshold to judge the significance of

differences in gene expression. More stringent criteria with

a smaller FDR and a bigger fold-change value can be used

to identify differentially expressed genes (DEGs).

Gene ontology analysis of DEGs

Gene ontology (GO) is an international standardized gene

function classification system that offers a dynamically

updated, controlled vocabulary and a strictly defined con-

cept to comprehensively describe properties of genes and

their products in any organism. GO has three ontologies:

molecular function, cellular component, and biological

process. The basic unit of GO is the GO term. Every GO

term belongs to one type of ontology. GO enrichment

analysis provides all GO terms that are significantly enri-

ched in DEGs as compared to the genome background, and

filters the reads that correspond to biological functions.

This method first maps all DEGs to GO terms in the

database (http://www.geneontology.org/), calculating gene

numbers for every term, then uses a hypergeometric test to

find significantly enriched GO terms in DEGs as compared

to the genome background. The formula is:

P ¼ 1�
Xm�1

i¼0

M
i

� �
N �M
n� i

� �

N
n

� � ;

where N is the number of all genes with a GO annotation,

n is the number of DEGs in N, M is the number of genes

that are annotated to certain GO terms, and m is the number

of DEGs in M (Yang et al. 2007). The calculated P value,

after Bonferroni’s correction, takes a corrected P B 0.05 as

a threshold. GO terms fulfilling this condition are defined

as significantly enriched in DEGs. This analysis recognizes

the main biological functions of DEGs.

Pathway enrichment analysis of DEGs

Genes usually interact with each other to carry out specific

biological functions. Pathway-based analysis helps to fur-

ther understand gene biological functions. The Kyoto

Encyclopedia of Genes and Genomes (KEGG) is the major

public pathway-related database (Saldanha 2004) used to

identify significantly enriched metabolic pathways or sig-

nal transduction pathways in DEGs as compared to whole-

genome backgrounds. The formula used is the same as that
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for GO analysis. Here, N is the number of all genes with a

KEGG annotation, n is the number of DEGs in N, M is the

number of all genes annotated to specific pathways, and

m is the number of DEGs in M.

Real-time quantitative RT-PCR (qRT-PCR) analysis

To validate the repeatability and reproducibility of gene

expression data obtained by RNA sequencing in sesame,

we performed qRT-PCR on 10 differentially expressed

genes with the total RNA used in RNA-Seq. RNA isolation

and quality verification were performed as mentioned

above. The first-strand cDNA fragment was synthesized

from total RNA using Fernments Reverse transcription Kit

(K1652). The quantitative RT-PCR was performed with a

iQTM5 Real-Time PCR Detection Systems (Bio-Rad) in a

final volume of 20 ll containing 12.5 ll 29 SYBR Green

Real-time PCR Master Mix (TOYOBO), 2 ll of cDNA

template, and 0.2 pM each primer. The thermal cycling

conditions were as follows: 95 �C for 3 min; 40 cycles of

95 �C for 10 s, annealing temperature for 15 s, and 72 �C

for 45 s; and 72 �C for 5 min.

Samples were run in triplicate on the same plate with a

negative control that lacked cDNA. Positive controls were

set for each sample using sesame gene ubiquitin-conju-

gating enzyme 9 (UBC9). PCR efficiency was determined

by a series of 10-fold dilutions of cDNAs. The calculated

efficiency of all primers was 0.9–1.0. The relative

expression levels of genes were calculated using the

2-DDCT method (Livak and Schmittgen 2001), which rep-

resents the difference of CT between the control UBC9 and

the target gene products.

Results

RNA-Seq analysis

Solexa/Illumina RNA-Seq analysis was performed to

identify genes involved in sesame’s response to waterlog-

ging. This approach generates absolute rather than relative

gene expression measurements and avoids many of the

inherent limitations of microarray analysis. This method

produced 13.05 million and 12.98 million raw reads per

library, respectively. After transforming the raw sequences

into clean reads, approximately 12 million high-quality

non-redundant reads were obtained in both groups (Fig. 1).

The data sets represent the expressed sequences or tran-

scriptome for each library. Matching the reads to genes is

important to annotate sequences; it can reveal molecular

events behind gene expression (Hegedus et al. 2009). Gene

annotation was performed by read mapping analysis using

the 86,222 non-redundant consensus sequences from

RNA-Seq-based transcriptome analysis as a reference

transcript database (Wei et al. 2011). A total of 61.98 and

70.25 % of all distinct reads could be mapped to the entire

reference database (sense or antisense) of each group,

respectively (Table 1), and approximately 53.78 and

63.34 % of the clean reads could be uniquely mapped to

the reference sequences, respectively. These reads covered

56,177 and 55,065 of the 86,222 non-redundant consensus

Fig. 1 Classification of raw reads, including clean reads, adaptor

sequences, reads containing undefined nucleotides (‘N’s) and low-

quality reads generated from Solexa/Illumina RNA-Seq. 3321 indi-

cated sample of 15 h before the waterlogging stress, while 3321g-1

indicated sample of 9 h treatment; 0.00 % was the approximate value

Table 1 Statistics of the distinct reads mapped to reference database

3321 3321g-1

Read

number

Percentage Read

number

Percentage

Total reads 12,214,287 100.00 12,214,287 100.00

Total base

pairs (bp)

598,500,063 100.00 598,500,063 100.00

Total

mapped

reads

7,570,363 61.98 8,580,510 70.25

Perfect

match

5,256,020 43.03 6,569,708 53.79

B2 bp

mismatch

2,314,343 18.95 2,010,802 16.46

Unique

match

6,568,842 53.78 7,736,004 63.34

Multi-

position

match

1,001,521 8.20 844,506 6.91

Total

unmapped

reads

4,643,924 38.02 3,633,777 29.75

3321 indicated sample of 15 h before the waterlogging stress, while

3321g-1 indicated sample of 9 h treatment
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sequences, respectively. The distributions of gene coverage

values based on these reads from each library were shown

in Fig. 2.

Changes in gene expression profiles

during different treatments

The differentially expressed genes between the two

libraries provide a clue as to the molecular events related to

waterlogging. The expression abundance of read-mapped

genes in the data sets was calculated using the RPKM

(Mortazavi et al. 2008) method. Soap2 software was used

to map all measured reads to the corresponding assembled

consensus sequences (Li et al. 2009). We first normalized

the read density measurement and then used FDR \ 0.001

and the absolute value of |log2Ratio| C 1 as a threshold to

judge the statistical significance of the gene expression.

Exposure to root hypoxia altered the transcript levels of

more 13,307 root genes during the experiment (Table 2

lists the partial DEGs). Of these, more than 60.86 %

(8,099) were upregulated and 39.14 % (5,208) were

downregulated, with 823 genes (6 % of the DEGs) showing

a 10-fold change in expression with an adjusted P \ 0.001.

Of these, 406 (49 %) genes were upregulated and 417

(51 %) were downregulated in response to waterlogging

stress. Genes with altered expression spanned a wide

variety of regulatory and metabolic processes.

Hypoxia-perturbed pathways and functional categories

Functional assignments were defined by GO terms (http://

www.geneontology.org/), which provide broad functional

classifications for genes and gene products representing

their corresponding biological process, molecular function,

and cellular localization; pathway assignments were

derived from KEGG (http://www.genome.ad.jp/kegg). A

wide spectrum of physiological processes was affected by

low-oxygen stress, as evidenced by an overrepresentation

of the corresponding GO terms. In the biological processes

category, metabolic processes (76.30 %) were dominant,

followed by cellular processes (67.10 %), primary meta-

bolic processes (58.30 %), cellular metabolic processes

(56.40 %), and macromolecule metabolic processes

(38.80 %). With regard to molecular function, 61 % of

unigenes were assigned to catalytic activity, followed by

binding (60.5 %), transferase activity (22.6 %), and ion

binding (19.7 %). In the cellular component category, cell

parts (98.8 %) and cells (98.8 %) were dominant, followed

by intracellular (75.7 %) and intracellular parts (74.6 %).

The GO terms identified as being significantly overrepre-

sented were consistent among the molecular function,

biological process, and cellular component classes and

agreed with KEGG pathway analysis; e.g., enrichment of

glycolysis, nitrogen metabolism, starch and sucrose metab-

olism and plant hormone signal transduction glycolysis,

indicated upregulation of a particular KEGG pathway

(glycolysis/glycogenesis). In addition, significant changes in

the expression of genes were found for pathways, including

flavone and flavonol biosynthesis, steroid biosynthesis,

photosynthesis, cysteine and methionine metabolism,

glutathione metabolism, as well as phenylpropanoid bio-

synthesis, spliceosome, circadian rhythm. Table 2 lists the

partial DEGs and their KEGG pathway analysis.

Confirmation of tag-mapped genes by qRT-PCR

To confirm the reliability of Solexa/Illumina sequencing

technology, we used qRT-PCR to validate the expression

levels of 10 differentially expressed genes randomly

selected from Table 2. Gene-specific primer pairs

(Table 3) were designed according to the 10 gene

sequences using primer3-blast program available online

(NCBI, USA). The results showed the expressed patterns of

the 10 genes were consistent each other in the two methods

(Fig. 3) with a high correlation (R2 = 0.89), indicating the

authenticity of these differentially expressed genes.

Fig. 2 Distributions of gene coverage values of 3321 and 3321g-1. 3321 indicated sample of 15 h before the waterlogging stress, while 3321g-1

indicated sample of 9 h treatment
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Table 2 Partial differentially expressed genes in 3321 and 3321g-1 with annotation

Gene ID Description 3321-

RPKM

3321g-1-

RPKM

log2Ratio(3321

g-1/3321)

Up–down

regulation

(3321g-1/

3321)

Pathway

Unigene15054_All Chloroplastic glutamine synthetase 0.001 13.354 13.705 Up Flavone and flavonol

biosynthesis

Unigene21702_All Gamma-glutamyl transpeptidase 0.001 11.173 13.448 Up Cysteine and

methionine

metabolism

Unigene27494_All Receptor-like protein kinase 0.001 13.284 13.697 Up Steroid biosynthesis

Unigene28905_All 16-hydroxytabersonine

O-methyltransferase

0.001 24.717 14.593 Up Photosynthesis–

antenna proteins

Unigene32938_All Carbonic anhydrase 0.001 21.544 14.395 Up Carbon fixation in

photosynthetic

organisms

Unigene33532_All Glucose/ribitol dehydrogenase family

protein

0.001 15.473 13.917 Up Benzoxazinoid

biosynthesis

Unigene33542_All Non-hemic monooxygenase 0.001 13.978 13.771 Up Flavonoid biosynthesis

Unigene38353_All Peroxidase 0.001 32.942 15.008 Up Starch and sucrose

metabolism

Unigene41407_All Beta-glucosidase 24 0.001 14.896 13.863 Up Cyanoaminoacid

metabolism

Unigene45015_All Oxygen-evolving enhancer protein 1 0.001 16.378 13.999 Up Starch and sucrose

metabolism

Unigene56503_All Cytochrome P450 0.001 18.292 14.159 Up Carotenoid

biosynthesis

Unigene58698_All Sedoheptulose-1,7-bisphosphatase 0.001 11.217 13.453 Up Fatty acid biosynthesis

Unigene60241_All Desacetoxyvindoline 4-hydroxylase 0.001 13.485 13.719 Up Nitrogen metabolism

Unigene61376_All Similar to flavanone 3-hydroxylase-like

protein

0.001 16.959 14.050 Up Nitrogen metabolism

Unigene84221_All L-Ascorbate oxidase precursor 0.001 28.931 14.820 Up Plant hormone signal

transduction

Unigene65781_All Fasciated ear2 0.001 14.083 13.782 Up Phenylalanine

metabolism

Unigene73565_All Auxin-induced beta-glucosidase 0.001 12.429 13.601 Up Starch and sucrose

metabolism

Unigene14464_All – 25.754 0.001 -14.653 Down Phenylalanine, tyrosine

and tryptophan

biosynthesis

Unigene14934_All Unnamed protein product 4.060 0.001 -11.987 Down Mismatch repair

Unigene15995_All Chlorophyll a–b binding protein 4 4.114 0.001 -12.006 Down Photosynthesis–
antenna proteins

Unigene17298_All Transcription initiation factor IIF, alpha

subunit family protein, expressed

6.963 0.001 -12.765 Down Basal transcription

factors

Unigene19448_All ATP binding/kinase/protein kinase/protein

serine/threonine kinase/ubiquitin-protein

ligase

23.467 0.001 -14.518 Down Apoptosis

Unigene26815_All Myo-inositol oxidase 3.034 0.001 -11.567 Down Ascorbate and aldarate

metabolism

Unigene28434_All Putative late blight resistance protein

homolog R1A-4

5.890 0.001 -12.524 Down Plant–pathogen

interaction

Unigene3168_All ARR7 (RESPONSE REGULATOR 7);

transcription regulator/two-component

response regulator

10.086 0.001 -13.300 Down Circadian rhythm–

plant

Unigene37681_All Putative cellulose synthase-like protein

D5

4.951 0.001 -12.273 Down Starch and sucrose

metabolism
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Discussion

Global analysis of the sesame transcriptome will facilitate

the identification of systemic gene expression and regulatory

mechanisms under waterlogging conditions (Lee et al. 2006;

Wu et al. 2006). In this study, we performed transcriptome

profiling under waterlogging and normal conditions to

identify genes that are differentially expressed in this treat-

ment and in the control. Using RNA-Seq deep sequencing

(Morrissy et al. 2009), we obtained a direct digital readout of

cDNAs and a large range of genes from the libraries. Thus,

the present study represents a comprehensive analysis of the

sesame transcriptome under waterlogging conditions.

Global gene transcription in stressed root tissue was signif-

icantly altered, which is in line with the results for Arabid-

opsis hypoxia, and rice and poplar waterlogging (Klok et al.

2002; Liu et al. 2005; Loreti et al. 2005; Lasanthi-

Kudahettige et al. 2007; Kreuzwieser et al. 2009). As found

in experiments on poplar (Kreuzwieser et al. 2009), water-

logging led to increased gene expression of glycolysis,

fermentation, and some catabolic pathways and to decreased

expression of synthesis pathways, cell wall activity, and

secondary metabolism-associated genes. Gene transcription

responses to waterlogging in cotton and poplar resemble that

seen in Arabidopsis subjected to hypoxic gas mixtures (Klok

et al. 2002; Branco-Price et al. 2005; Liu et al. 2005; Loreti

et al. 2005), reinforcing that, at least initially, the major

factor in waterlogging stress is a lack of oxygen.

In waterlogged sesame plants, many genes with potential

roles in carbon and energy metabolism were identified as

having a significant transcriptional response to the stress.

The most notable examples were genes involved in glycol-

ysis, fermentation, mitochondrial electron transport and

starch synthesis pathway (Table 2). Waterlogging also

affects nitrogen metabolism in plants. Waterlogging treat-

ments of cotton increased total nitrogen content in aerial

portions of the plants and this increase was influenced by soil

type (Soomro and Waring 1987). Given the need to maintain

balance between carbon and nitrogen levels in the cell and

the role of the mitochondrial electron transport chain in this

(Quesada et al. 2000; Noctor et al. 2004), it is not surprising

that major changes in carbon metabolism caused by water-

logging stress should be accompanied by changes in nitrogen

metabolism.
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Fig. 3 Real-time PCR validations of the upregulated and downreg-

ulated genes characterized by RNA-Seq

Table 2 continued

Gene ID Description 3321-

RPKM

3321g-1-

RPKM

log2Ratio(3321

g-1/3321)

Up–down

regulation

(3321g-1/

3321)

Pathway

Unigene42588_All Three-deoxy-D-manno-octulosonic-acid

transferase, N-terminal

3.397 0.001 -11.730 Down Lipopolysaccharide

biosynthesis

Unigene52912_All 17.7 kDa class I small heat-shock protein 7.225 0.001 -12.819 Down Purine metabolism

Unigene59069_All DEAH box RNA helicase 9.822 0.001 -13.262 Down Spliceosome

Unigene61388_All Malate dehydrogenase precursor 5.736 0.001 -12.486 Down Citrate cycle (TCA

cycle)

Unigene72580_All TPA: class III peroxidase 55 precursor 9.307 0.001 -13.184 Down Phenylpropanoid

biosynthesis

Unigene7827_All ATP binding/protein binding 5.619 0.001 -12.456 Down RNA degradation

3321 indicated sample of 15 h before the flooding, while 3321g-1 indicated sample of 9 h treatment
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Through systematically exploring sets of differentially

expressed genes for high-level biological categories using

GO and pathway assignments, we confirmed much of what

is currently known for low-oxygen stress responses and,

more importantly, obtained new insights into processes

that were not previously associated with the anaerobic

response. This study provides comprehensive gene

expression profiling for hypoxia-perturbed transcriptional

networks in plants. This information represents a basis for

formulating working models and establishing testable

hypotheses to identify the underlying low-oxygen sensing

mechanisms, elucidate signal transduction pathways, and

further characterize hypoxia-responsive genes. Together

with information from independent approaches, such as

proteomics, metabolite profiles, and use of reverse genetics

resources, our results help elucidate low-oxygen stress

responses and will aid in the effort to develop flood-tol-

erant crops.
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