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Abstract Gas exchange rates, chlorophyll fluorescence,

pressure–volume relationships, photosynthetic pigments,

total soluble sugars, starch, soluble proteins and proline

concentrations were investigated in five Olea europaea L.

cultivars with different geographical origins (Arbequina,

Blanqueta, Cobrançosa, Manzanilla and Negrinha) grown

under Mediterranean field conditions. We found consider-

able genotypic differences among the cultivars. Comparing

the diurnal gas exchange rates, we observed that

Cobrançosa, Manzanilla and Negrinha had high photo-

synthetic rate than Arbequina and Blanqueta. The first

group reveals to be better acclimated to drought conditions,

and appears to employ a prodigal water-use strategy,

whereas Blanqueta and Arbequina, with high water-use

efficiency, appear to employ a conservative water-use

strategy. The degree of midday depression in photosyn-

thesis was genotype dependent, with a maximum in

Arbequina and a minimum in Negrinha. The reductions in

the photosynthetic rate were dependent from both stomatal

and non-stomatal limitations. Elastic adjustment plays an

important role as drought tolerance mechanism. The group

of cultivars that employ a prodigal water-use strategy

revealed high tissue elasticity, whereas Arbequina and

Blanqueta revealed high tissue rigidity. We also identified

the existence of drought tolerance mechanisms associated

with soluble proteins accumulation in the foliage. The high

levels of soluble proteins in Arbequina may represent an

increased activity of oxidative stress defence enzymes and

may also represent a reserve for post stress recovery. In all

cultivars, especially in Manzanilla, free proline was accu-

mulated in the foliage. The discussed aspects of drought

stress metabolism may have an adaptative meaning, sup-

porting the hypothesis that olive cultivars native to dry

regions, such as Cobrançosa, Manzanilla and Negrinha,

have more capability to acclimate to drought conditions

than cultivars originated in regions with a more temperate

climate, like Arbequina and Blanqueta.
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Introduction

Soil and atmospheric water deficits are the most important

limiting factors for photosynthesis, growth and survival of

plants growing in semiarid climates, such as the Mediter-

ranean. In the field, high irradiance and high temperature

also contribute to the reduction in leaf net carbon uptake

(Faria et al. 1996). Stomatal control of water losses has

been identified as an early event in plant responses to water

deficit under field conditions, leading to a limitation of

carbon uptake by the leaves (Abd-El-Rahman et al. 1966;

Chaves 1991; Cornic and Massacci 1996). When carbon

assimilation is limited by the decrease in stomatal con-

ductance during the warmest period of the day, chloroplasts

may be subjected to an excess of energy resulting in the

Communicated by W. Filek.

E. A. Bacelar (&) � J. M. Moutinho-Pereira �
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down-regulation of photosynthesis or in photoinhibition

(Demmig-Adams and Adams 1996).

The olive tree has a reputation of being drought tolerant

from very early reports, but few studies have been con-

ducted in the field that quantified its responses to water

deficits (Giorio et al. 1999; Bacelar et al. 2007). Among

such responses, gas exchange is of particular importance in

determining the efficiency of water-use in response to the

limited resources. Knowledge on gas exchange of olive

leaves is limited and most studies have been conducted on

young trees growing in pots (Bongi et al. 1987; Chartzo-

ulakis et al. 1999; Bacelar et al. 2006). In potted olive trees,

Angelopoulos et al. (1996) observed that leaf conductance

was limiting photosynthesis in trees subjected to mild and

moderate water stress, whereas non-stomatal factors influ-

enced photosynthesis only under severe stress conditions.

Angelopoulos et al. (1996) also observed that the diurnal

course of photosynthesis and leaf conductance in potted

trees exposed to the natural environment exhibited a

maximum value in the morning, declined towards midday

and was more or less constant throughout the afternoon,

describing a pattern that is common in Mediterranean

woody vegetation (Schulze and Hall 1982; Tenhunen et al.

1990; Fernández and Moreno 1999; Chaves et al. 2002;

Ogaya and Peñuelas 2003).

In order to preserve photosynthesis, the olive tree like

some plants grown in arid and semi-arid environments, has

evolved physiological processes to maintain to some extent

tissue turgor and thus stomatal opening (Fernández et al.

1991; Dichio et al. 1997; Chartzoulakis et al. 1999).

Lowering of osmotic potential due to net accumulation of

compatible solutes in the cytoplasm such as proline, gly-

cine betaine, organic acids and sugars as mannitol and

sucrose, is a well established ecophysiological mechanism

whereby many plants adjust to low soil water availability

(Morgan 1984; Ingram and Bartels 1996; Hare et al. 1998).

Nonetheless, the stomatal and the non-stomatal, if existent,

limitation of photosynthesis may lead to a drought-induced

starvation injury (Levitt 1980) and consequently also

metabolic alterations (Souza et al. 2004). Sites at which

photosynthetic metabolism may, potentially, be affected by

water stress include: (1) Rubisco activity, (2) regeneration

of ribulose biphosphate (RuBP) by the photosynthetic

carbon reduction (PCR) cycle, (3) supply of ATP and

NADPH to the PCR cycle, (4) electron transport and

generation of the proton gradient across the thylakoid

membrane, (5) light capture and transduction in the

photosystems, and (6) use of assimilation products outside

the chloroplast (Lawlor 2002; Lawlor and Cornic 2002).

Changes in cell wall elasticity can also contribute to

turgor maintenance under drought conditions (Patakas and

Noitsakis 1997). Water potential changes more for a given

change in tissue water content in leaves with greater bulk

modulus of elasticity (e), leading to larger gradients of

water potential between leaves and soil with lower tissue

water loss (Niinemets 2001). This improves water uptake

from drying soil (Bowman and Roberts 1985) and is a

frequently cited mechanism enabling drought-stressed

plants to maintain cell volume and avoid deleterious

reductions in relative water content (Tyree and Jarvis

1982). In contrast, cells with low e allow greater cell

shrinkage following dehydration. This results in turgor

maintenance with lower leaf osmotic potentials, and also

higher gradients of water potentials between leaves and the

soil (Abrams 1990).

Olive has traditionally been grown in Trás-os-Montes

(Northeast Portugal), where it is of considerable economical

and social importance. Cultivars most frequently grown in

the region are considered to be well adapted to drought. In a

previous study (Bacelar et al. 2004), two cultivars origi-

nated in Trás-os-Montes reveal to possess different leaf-

level mechanisms to cope with summer stress. Neverthe-

less, there are no studies documenting the physiological

responses of these cultivars to drought conditions. The aims

of this study were (1) to compare diurnal gas exchange rates

(specifically, net CO2 assimilation rate, stomatal and

mesophyll conductance, transpiration rate, ratio of inter-

cellular to atmospheric CO2 concentration and intrinsic

water-use efficiency) and chlorophyll fluorescence para-

meters (minimal and maximal fluorescence and maximum

quantum yield of PSII) of five olive cultivars, (2) to

investigate the quantitative variability of photosynthetic

pigments, total soluble sugars, starch, soluble proteins and

free proline in the foliage; and (3) to ascertain diurnal

changes in stem water potential and leaf water relations

determined from the pressure–volume measurements

(osmotic potential at full turgor, osmotic potential at turgor

loss point, maximum bulk modulus of elasticity and relative

water content at turgor loss point).

Materials and methods

Study site

The experiment was conducted in a shallow schistic soil at

Mirandela in Northeast Portugal (41�310N and 7�120W) at

250 m above sea level. The site has a Mediterranean cli-

mate with hot dry summers. Mean annual rainfall is

520.1 mm and minimal rainfall is usually recorded during

the summer months, although some periods of drought can

occur during winter (Table 1). The warmer months are

July/August and the coldest are December/January, with

average daily temperatures of 23.6/22.9�C and 6.3/6.1�C,

respectively. During the study year (2001), rainfall was

rare during the warmer months and plants were subjected
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to a combination of water deficit, high temperatures and

high photosynthetic active photon flux density (PPFD).

Measurements were performed under clear sky conditions

on a representative day of summer (25 July 2001).

Plant material

We studied five cultivars of field-grown, unirrigated,

10-year-old, own-rooted olive trees. Cobrançosa and Negr-

inha are native to Trás-os-Montes (Northeast Portugal),

Arbequina is the major cultivar in Cataluña (Northeast

Spain), Blanqueta is of great importance in Valencia and

Alicante (Southeast Spain), and Manzanilla in Extremadura

(Centre Spain). Arbequina and Blanqueta are from regions

with a Mediterranean climate, tempered by a maritime

influence, and Manzanilla comes from the central interior

of the Iberian Peninsula, with a climate similar to Trás-

os-Montes.

Plant water relations

Stem water potential measurements were used to evaluate

tree water status. Predawn (WPD) and midday (WMD) stem

water potentials were measured on six sun-exposed shoots

using a pressure chamber (PMS, Corvallis, OR), according

to Scholander et al. (1965). Care was taken to minimise

water loss during the transfer of the shoot to the chamber

by enclosing it in a plastic bag immediately after excision

(Turner and Long 1980).

The pressure chamber was also used to obtain pressure–

volume curves (P–V) of current year mature leaves. The

leaf samples were immediately put in tubes with the

petioles sunken in distilled water and kept in darkness until

reception at the laboratory. An analysis by water potentials

isotherms through a progressive loss of symplasmic water

was carried out. At periodic intervals, samples were

weighted and water potential was evaluated immediately

using a pressure chamber (internally covered with moist

paper to reduce transpiration during measurement). Leaves

were dried on a laboratory bench at constant temperature of

20�C and the drying period in each curve was about 6–8 h.

P–V curves were drawn using a type II transformation

(Tyree and Ritcher 1982) and allowed the deduction of the

following parameters: osmotic potential at full turgor

(WPFT), osmotic potential at turgor loss point (WPTLP),

maximum bulk modulus of elasticity (emax) and relative

water content at turgor loss point (RWCTLP).

Gas exchange and chlorophyll fluorescence

measurements

Leaf gas exchange measurements were performed using a

portable IRGA (ADC-LCA-3, Analytical Development,

Hoddesdon, U.K.), operating in the open mode on eight

well exposed current year leaves during the morning

(0830–0930 hours), midday (1330–1430 hours) and after-

noon (1730–1830 hours). Table 2 indicates the mean

values of PPFD, air temperature, vapour pressure deficit

(VPD), and CO2 concentration during the three periods of

gas exchange measurements. Net CO2 assimilation rate (A),

stomatal conductance (gs), transpiration rate (E) and the

ratio of intercellular to atmospheric CO2 concentration (Ci/

Ca) were estimated from gas exchange measurements using

the equations developed by von Caemmerer and Farquhar

(1981). Intrinsic water-use efficiency (WUE) was calcu-

lated as the ratio of A/gs. Values for liquid phase diffusive

conductance to CO2 (gm) were calculated in accordance

with Izuta et al. (1996).

In vivo chlorophyll fluorescence was measured with a

portable chlorophyll fluorometer (Plant Stress Meter,

Table 1 Monthly rainfall and air temperature at the study site during the period 1951–1980 and for the year 2001

Months

January February March April May June July August September October November December

Rainfall1951–1980 (mm) 64.1 66.2 57.3 40.5 40.2 36.6 9.5 10.5 28.7 50.8 59 56.7

Rainfall2001 (mm) 162.8 105.8 284.3 14.5 68.8 2.0 34.8 20.8 25.8 84.8 5.5 8.8

Temperature1951–1980 (�C) 6.1 7.8 10.2 12.5 16.3 20.4 23.6 22.9 20.0 15.2 9.4 6.3

Temperature2001 (�C) 7.1 7.4 10.6 12.1 15.2 21 21.2 22.5 19.3 14.7 6.8 2.1

Table 2 Mean ± SE of photosynthetic photon flux density, PPFD (lmol m-2 s-1), air temperature (�C), vapour pressure deficit (kPa), and CO2

concentration during gas exchange measurements (n = 8)

PPFD (lmol m-2 s-1) Air temperature (�C) VPD (kPa) [CO2] (ppm)

Morning 1,626 ± 10 27.7 ± 0.2 3.8 ± 0.3 360 ± 2

Midday 1,798 ± 15 34.9 ± 0.1 5.5 ± 0.1 338 ± 1

Afternoon 1,427 ± 29 31.8 ± 0.2 4.8 ± 0.1 334 ± 1
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BioMonitor SCI AB, Umeå, Sweden) at predawn and

midday on attached intact leaves similar to those used for

gas exchange measurements. Prior to the measurements, a

small part of the leaves was kept in the dark for 30 min

using cuvettes for dark adaptation. A 5-s light pulse at

400 lmol m-2 s-1 was used. Following convention, we

used F0 to denote minimal fluorescence, which occurs

when all PSII reaction centres are open. Maximal fluores-

cence, which occurs when all PSII reaction centres are

closed, was denoted Fm. The difference between F0 and Fm

is variable fluorescence, Fv. Maximum quantum yield of

PSII was estimated by the Fv/Fm ratio (Krause and Weis

1991).

Photosynthetic pigments and metabolites assays

All metabolic compound analyses were made with leaf

discs taken at morning (10.00 h) from six fully expanded

leaves of comparable physiological age, thereby elimina-

ting developmental effects. Leaf sections of a known area

were ground in 80% acetone for chlorophyll and carotenoid

determination. Total chlorophyll (Chla?b) and Chla/Chlb
ratio was determined according to Sesták et al. (1971) and

total carotenoids (Car) according to Lichtenthaler (1987).

Total Soluble sugars (TSS) were extracted by heating

leaf discs in 80% ethanol, according to Irigoyen et al.

(1992). TSS were analysed by the reaction of 200 ll of the

alcoholic extract with 3 ml of fresh anthrone and placed in

a boiling water bath for 10 min. After cooling, the absor-

bance at 625 nm was determined. After the extraction of

the soluble fractions, the solid fraction was used for starch

analysis. Starch was extracted with 30% perchloric acid,

according to Osaki et al. (1991). The starch concentration

was determined by the anthrone method as described

above. Glucose was used as a standard for both soluble

sugars and starch.

The amount of soluble proteins (SP) was quantified

using the method of Bradford (1976). Leaf discs were

homogenised in a grinding medium that contained 50 mM

phosphate buffer (pH 7.8), 0.1 mM EDTA, 100 lM PMSF

and 2% PVP (w/v). Bovine serum albumin was used as a

standard.

Proline was determined following the ninhydrin

method as described by Bates et al. (1973). Briefly, fresh

leaf tissue was extracted in 6 ml of 3% sulfosalicylic acid.

After centrifugation at 5,000g for 20 min, 4 ml of the

supernatant was added to 2 ml of a mixture of glacial

acetic acid and ninhydrin reagent in a 1:1 (v:v) ratio. The

reaction mixture was incubated in a water bath at 100�C

for 1 h and then portioned against 3 ml of toluene.

Absorbance was read in the organic phase at 520 nm. A

standard curve was performed with proline. All reagents

and chemicals used were of the highest grade of purity

commercially available.

Statistics

All data were subjected to an analysis of variance with

prior data transformation when required. Proportional data

expressed as ratio data were log transformed. Significant

different means were separated using the Fisher’s LSD test

(P \ 0.05).

Results

Plant water relations

Stem water potential at predawn and midday indicate that

olive trees were mildly water-stressed (Table 3). Arbequ-

ina and Blanqueta had significantly lower WPD than the

other cultivars. Stem water potential decreased gradually

during the morning reaching a minimum of -2.68 MPa at

midday in Arbequina. Differences between WPD and WMD

were higher in Cobrançosa, Manzanilla and Negrinha

(above 200%) and lower in Blanqueta (130%). The ana-

lysis of P–V curves indicated that both WPFT and WPTLP

were higher in Arbequina and Blanqueta (Table 3). In

addition, these cultivars had higher RWCTLP and emax.

Cobrançosa had intermediate values of WPFT and WPTLP

Table 3 Plant water relation attributes of the five olive cultivars (n = 6)

Cultivar WPD (MPa) WMD (MPa) WPFT (MPa) WPTLP (MPa) RWCTLP (%) emax (MPa)

Arbequina -1.03 b -2.68 b -2.46 a -2.99 a 77.8 a 7.61 a

Blanqueta -1.02 b -2.35 a -2.37 a -2.87 a 76.8 a 5.90 b

Cobrançosa -0.78 a -2.48 a -2.69 ab -3.21 ab 70.9 c 2.42 d

Manzanilla -0.82 a -2.49 a -2.99 b -3.41 b 69.7 c 2.78 cd

Negrinha -0.82 a -2.47 a -2.89 b -3.39 b 73.9 b 4.02 c

Means within a column followed by the same letter were not significantly different at P \ 0.05

WPD stem water potential at predawn, WMD stem water potential at midday, WPFT osmotic potential at full turgor, WTLP osmotic potential at

turgor loss point, RWCTLP relative water content at turgor loss point, emax maximum bulk modulus of elasticity
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between that group of cultivars and the group of which

included Manzanilla and Negrinha.

Gas exchange rates and chlorophyll fluorescence

Photosynthetic rate was affected by time of day and cul-

tivar. Figure 1 depicts the diurnal changes of A in the five

olive cultivars. The values of A followed a pattern char-

acteristic of woody Mediterranean vegetation, with a

maximum in the morning that declined towards midday, in

a close association with increased evaporative demand and

soil water deficits. In the morning, A was lowest in Blan-

queta. Later on, at midday, Blanqueta and Arbequina had

the lowest A, whereas Negrinha had the highest A. No

recovery of A towards the afternoon was observed. On the

contrary, Negrinha and Blanqueta had a tendency to drop

A. As a consequence, the behaviour between cultivars was

the same as in the morning period. The gs values followed a

diurnal pattern very similar to those of A (Fig. 1). Never-

theless, gs was relatively more affected during the day than

A, which means that the WUE increased from the morning

towards the afternoon in all cultivars. In any case, it was

evident that Blanqueta had the lowest variation (28%).

Among the cultivars, Arbequina and Blanqueta had high

WUE, whereas the group of cultivars including Cobran-

çosa, Manzanilla and Negrinha had low WUE values

(Fig. 1). In general, the Ci/Ca decreased along the day

(Fig. 1). However, we observed a much greater reduction

in gs compared with Ci/Ca, from morning to midday.

Moreover, Blanqueta had an almost constant Ci/Ca from

midday to afternoon, despite the reduction of gs (Fig. 1).

The variation of E throughout the day was related to gs

and mainly by VPD values. In all the cultivars, except in

Arbequina, E increased at midday relatively to the morning
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Fig. 1 Diurnal evolution of leaf net CO2 assimilation rate (A),

stomatal conductance (gs), mesophyll conductance (gm), transpiration

rate (E), ratio of intercellular to atmospheric CO2 concentration

(Ci/Ca) and intrinsic water-use efficiency (WUE) in Arbequina (dark

circle), Blanqueta (dark square), Cobrançosa (white circle), Manza-

nilla (dark triangle) and Negrinha (white square). Each point is the

average of eight measurements and the vertical bars represent twice

the standard error
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period as a result of higher VPD, despite the lowest gs

(Fig. 1). Arbequina had an opposite trend, in a more clo-

sely association with decreased gs. Meanwhile, E decreased

from midday towards the afternoon, due to increased sto-

matal resistance and/or decreased atmospheric evaporative

demand.

Daily recordings of chlorophyll fluorescence parameters

(Table 4) showed that Fv/Fm decreased from predawn to

midday in all cultivars, being paralleled by decreases of

Fm. A tendency to decreased F0 was also observed, except

in Manzanilla (Table 4). Across cultivars, Cobrançosa had

the lowest F0 and Fm. The Fv/Fm values were not signifi-

cantly different among the cultivars in both periods.

Photosynthetic pigments and metabolites in leaves

Significant differences in Chla?b and Car concentrations

and in Chla/Chlb ratio were observed among the olive

cultivars (Table 5). Higher values of Chla?b and Car were

observed in the leaves of Blanqueta, Cobrançosa and

Manzanilla, but no differences were detected in Chla?b/Car

ratio. Arbequina and Cobrançosa had higher Chla/Chlb
ratio and Blanqueta, the lowest.

There were also significant differences in TSS, starch,

SP and proline concentrations among cultivars (Table 5).

Negrinha had the lowest TSS concentration (25.7% less

than Manzanilla), whereas the starch concentration was

significantly higher in Cobrançosa. This cultivar had 230%

more starch than Arbequina. Nevertheless, Arbequina

leaves were richest in SP. Among the cultivars, Manzanilla

had the highest proline concentration, whereas Blanqueta

and Negrinha had low proline concentrations.

Discussion

The diurnal trends of A in the field-grown olive cultivars

(Fig. 1) followed a typical pattern described for woody

Mediterranean vegetation (Schulze and Hall 1982; Ten-

hunen et al. 1990; Fernández and Moreno 1999; Chaves

et al. 2002; Ogaya and Peñuelas 2003), with a maximum in

the morning and decline at midday. However, we observed

that the degree of the midday depression in photosynthesis

was genotype dependent, with a maximum in Arbequina

and a minimum in Negrinha. The midday depression in

photosynthesis is a common phenomenon in higher plants

and is the result of a complex effect of many interacting

internal and external factors (Xu and Shen 1996). The

causes for this depression are still not fully understood and

seem to involve mechanisms at both stomatal (Downton

et al. 1988) and chloroplastic level (Correia et al. 1990).

Our results suggest that the reductions in A in drought-

stressed olive plants were dependent on both stomatal and

non-stomatal limitations. Stomata closed partly in response

to high air temperatures and water vapour pressure deficits,

but these factors did not fully explain the closing response,

Table 4 Chlorophyll fluorescence parameters at predawn and midday (n = 8)

F0 (relative units) Fm (relative units) Fv/Fm

Predawn Midday Predawn Midday Predawn Midday

Arbequina 0.229 a 0.210 ab 1.191 ab 0.827 a 0.822 a 0.742 a

Blanqueta 0.244 a 0.225 ab 1.312 a 0.884 a 0.810 a 0.740 a

Cobrançosa 0.177 b 0.159 c 0.906 c 0.577 b 0.794 a 0.720 a

Manzanilla 0.214 ab 0.234 a 1.173 ab 0.884 a 0.812 a 0.732 a

Negrinha 0.210 ab 0.203 b 1.050 bc 0.819 a 0.795 a 0.720 a

Columns flanked by the same letter are not significantly different at P \ 0.05

F0 minimal fluorescence, Fm maximal fluorescence, Fv/Fm PSII maximum quantum yield

Table 5 Photosynthetic pigments, total soluble sugars (TSS), starch, soluble proteins (SP), and proline concentrations (n = 6)

Cultivar Chla?b

(mg dm-2)

Chla/Chlb Car

(mg dm-2)

Chla?b/Car TSS

(mg dm-2)

Starch

(mg dm-2)

SP

(mg dm-2)

Proline

(lmol dm-2)

Arbequina 6.04 b 2.85 a 1.25 b 4.86 a 329.0 a 94.7 d 100.9 a 0.767 ab

Blanqueta 8.22 a 2.16 b 1.69 a 4.89 a 303.7 ab 228.5 bc 84.5 ab 0.665 b

Cobrançosa 9.25 a 2.66 a 1.88 a 4.93 a 326.5 a 312.5 a 68.9 b 0.775 ab

Manzanilla 8.77 a 2.45 ab 1.78 a 4.97 a 339.7 a 191.0 bc 63.1 b 1.190 a

Negrinha 6.62 b 2.45 ab 1.26 b 5.22 a 252.3 b 177.3 bc 56.8 b 0.433 b

Means within a column followed by the same letter were not significantly different at P \ 0.05
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as was observed previously by Faria et al. (1996) in

Quercus suber. It is possible that an increased xylem sap

ABA concentration (Davies et al. 2000; Liu et al. 2001)

and circadian rhythms (Snaith and Mansfield 1986; Correia

et al. 1995) may also be involved.

When stomata close in response to drought and CO2

assimilation is reduced, the photosynthetic reduction of O2

via photorespiration increases and serves as a sink for

excess excitation energy in the photosynthetic apparatus

(Cornic and Briantais 1991; Nogués and Baker 2000).

Nevertheless, studies conducted with different species

under a variety of conditions provide partly contradictory

data on the role of photorespiration during drought stress

(Wingler et al. 2000).

The much greater reduction in gs compared with Ci/Ca,

from morning to midday (Fig. 1), indicates that non-sto-

matal factors may play an important role in limiting

photosynthesis when olive cultivars are submitted to pro-

longed drought under field conditions. This was more

evident in Blanqueta that had an almost constant Ci/Ca,

from midday to afternoon, despite the reduction of gs

(Fig. 1). Similar results were obtained by Giorio et al.

(1999) in a study with field-grown olive trees under water

deficit conditions. Possibilities include a higher mesophyll

resistance (Fig. 1) and impaired metabolism (Lawlor 2002;

Lawlor and Cornic 2002). According to Lawlor (2002), the

metabolic limitation of A under drought conditions is pri-

marily caused by decreased RuBP synthesis, probably by

impaired ATP synthesis, and not by the inhibition or loss of

PCR cycle enzymes, including Rubisco.

Photochemical factors could also be responsible for

midday depression of A in olive cultivars. In fact, a decline

in photochemical efficiency of PSII, given by Fv/Fm in

dark-adapted leaves (Table 4), was parallel to midday

depression of A. However, the Fv/Fm values were not

significantly different among the cultivars in both periods

of measurements and differences between values of Fv/Fm

measured in predawn and midday were rather low

(Table 4). According to that, the daily decrease of fluo-

rescence parameters rather reflects the typical circadian

rhythms than the drought-induced photoinhibition.

Among cultivars, Cobrançosa had the lowest F0 and Fm,

namely at midday, indicating a highest absorption effi-

ciency of photons by chlorophyll a in the light harvesting

complex and of the reaction centre of PSII (Giorgieva and

Yordanov 1993) and a higher non-radiative energy dissi-

pation (Oberhuber and Bauer 1991).

Our study did not show any association between Chla?b

concentration and photosynthetic activity/quantum yield in

olive cultivars. This was an expected result, since for C3

species, the relationship between quantum yield and chlo-

rophyll is relevant only when Chla?b concentration is

below 4 mg dm-2 (Björkman 1981). Apparently, the lower

Chla?b concentration of Arbequina and Negrinha (Table 5)

was a good way to avoid excessive absorption of light

energy, but it occurred in the absence of reduction in

chlorophyll fluorescence yield (Table 4). As a conse-

quence, there was a continued efficient use of light

captured by chlorophyll in those cultivars. Furthermore,

Blanqueta had the lowest Chla/Chlb ratio (Table 5), which

reflects the relative increase in the light harvesting chlo-

rophyll a/b proteins at the expense of the chlorophyll a

containing reaction centre complexes (Evans 1993). In

addition, the low Chla/Chlb ratio of Blanqueta is probably

associated with a decline in cytochrome f content (Wa-

tanabe et al. 1994), which causes the reduction in electron

transport capacity, and may also help to explain the low A

of Blanqueta.

In general, gs was relatively more affected than A

(Fig. 1), which means that WUE increased from the

morning towards the afternoon in all cultivars. Neverthe-

less, olive cultivars have different water-use behaviours.

Passioura (1982) pointed out that two types of water-use

behaviour may be employed in woody plants. The prodigal

water-use behaviour is beneficial in conditions, where

water supply is interrupted for short periods only. In this

situation, there is little danger of serious desiccation

despite rapid water-use, and it enables a plant to grow

quickly. The conservative water-use behaviour is beneficial

in conditions, where a long, dry period prevails, enabling

the plant to use the available water efficiently. According

to this theory of plant water-use behaviour, the group of

cultivars including Cobrançosa, Manzanilla and Negrinha,

with high gs, high Ci/Ca and low WUE that is positively

correlated with A, appears to employ a prodigal or non-

conservative strategy, whereas Blanqueta and Arbequina,

with high WUE, appear to employ a conservative strategy

in the use of water. Nevertheless, our data showed that the

reductions in gs for Arbequina could not prevent lower

WMD values (Table 3). This result, combined with the fact

that leaves are anatomically less protected against water

loss (Bacelar et al. 2004), suggest that Arbequina have

developed some mechanisms linked to drought tolerance.

In fact, Arbequina leaves have high emax (Table 3) and high

SP concentration (Table 3). Moreover, we found evidence

for the feedforward hypothesis for stomatal closure in

Arbequina in response to air drought as proposed by Far-

quhar (1978), because there was evidence of decreasing E

at high VPD (i.e. at midday), whereas the relationship

between E and VPD of the other cultivars well abided by

feedback effect (Monteith 1995).

We observed that Arbequina and Blanqueta had high

emax (Table 3). The high values of emax (i.e. high tissue

rigidity) of those cultivars were indicative of cell wall

adjustment, reduced turgor loss volumes and tightening of

the cell walls around the protoplasts, suggesting a cell size
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reduction (Lemcoff et al. 2002). Inelastic cell walls,

although precluding turgor maintenance at low water

content, do have several advantages over elastic cell walls

(Patakas et al. 2002). In plants, in which there is osmotic

adjustment, a rigid cell may be more effective at main-

taining cell/tissue integrity on rehydration after a period of

stress (Patakas et al. 2002). Rigid cells may also help

maintain lower water potential at any given volume than do

elastic ones (Patakas et al. 2002). This can result in an

increase in the gradient in water potential between the soil

and the plant, thereby promoting a more effective water

uptake from drying soils and/or accelerating recovery after

re-watering (Bowman and Roberts 1985). Conversely, the

group of cultivars that employ a prodigal water-use strat-

egy (Cobrançosa, Manzanilla and Negrinha), revealed low

emax (i.e. high tissue elasticity), what may reflect changes

on cell wall composition (Munoz et al. 1993). More elastic

cell walls can shrink more easily when subjected to stress,

which helps maintain higher turgor pressure and protects

cell walls from rupturing (Joly and Zaerr 1987). In fact,

those cultivars tend to maintain turgor pressure at the

expense of more water being lost at zero turgor (lower

RWCTLP; Table 3). Thus, the low emax of Cobrançosa,

Manzanilla and Negrinha would probably reduce the fluc-

tuation of both cell turgor and xylem pressure potential,

and may have ecological significance by buffering the olive

plants against short-term changes in water content (Fann

et al. 1994). The parallelism between emax and RWCTLP

confirmed that the volumetric modulus of elasticity con-

trolled RWCTLP values, and that elastic tissues require a

more pronounced water deficit in order to lose turgor

(Torrecillas et al. 1995). This drought tolerance mechanism

observed in Cobrançosa, Manzanilla and Negrinha plants,

permits a greater utilization of nutrients and assimilates for

growth (Munns 1988), while turgor-mediated processes,

such as elongative growth or photosynthesis, can be

maintained (Bradford and Hsiao 1982).

The results revealed some differences in leaf osmotic

potential among the cultivars (Table 3). Manzanilla and

Negrinha had lower WPFT and WPTLP, suggesting a

greater capability for osmotic adjustment. However, since

those cultivars had low emax, we believe that it was mostly

a consequence from simple passive solute concentration

resulting from dehydration (Morgan 1984). Some studies

have already dealt with WP decrease in olive cultivars as a

result of water deficit in the leaf tissue (Xiloyiannis et al.

1988; Dichio et al. 1997; Chartzoulakis et al. 1999; Bacelar

et al. 2006). In our experiment, we indeed observed the

accumulation of TSS and proline in the foliage (Table 5).

However, osmotic adjustment was probably accomplished

mainly by accumulation of a wide range of other metabo-

lites and inorganic ions. In fact, the compounds involved in

osmotic adjustment differ widely among plant species

(Patakas et al. 2002). Gucci et al. (1997) reported that

osmotic adjustment in olive leaves under salt stress was

accomplished primarily by accumulation of inorganic ions,

despite the osmotic contribution of soluble carbohydrates.

Although it is highest A, Negrinha had the lowest TSS

concentration (25.7% less than Manzanilla). As highlighted

by Chaves (1991), it is difficult to establish a clear rela-

tionship between the sugar content of the leaves and the

photosynthetic activity, which may be partly explained by

the complex compartmentation of sugars in the leaf.

On the other hand, the starch concentration was signif-

icantly lower in Arbequina (Table 5), probably related with

a high export rate of photosynthates to sink organs and/or

lower A imposed by drought (Souza et al. 2004).

We observed that in all cultivars, especially in Man-

zanilla, free proline accumulates in the foliage for further

osmotic adjustment (Table 5). Proline within the cell can

act as an osmolyte with compatibility for enzymes and

other cell macromolecules, therefore protecting them from

drought stress induced damage (Hare et al. 1998). Osmotic

adjustment produced by proline accumulation causes a

drop of the osmotic potential in plant tissues (Hare and

Cress 1997). Lower osmotic potentials allow leaves to

withstand a greater evaporative demand without loss of

turgor. Moreover, proline has a protective action which

prevents membrane damage and protein denaturation

during severe drought stress (Hare et al. 1998; Ain-Lhout

et al. 2001). It has also been proposed that proline can act

as an electron acceptor, avoiding damage of photosystems

due to their photoinibition by activated oxygen species

(Hare et al. 1998). Accumulation of proline, which is a

common metabolic response to water deficit, salinity and

cold stress in many higher plants (Delauney and Verma

1993), may also facilitate the continued synthesis of

nitrogenous compatible solutes using excess photochemi-

cal energy available when stomata are closed (Smirnoff

et al. 1985). This process seems to be species related. In

fact, proline accumulation in two Mediterranean shrubs

(Halimium halimifolium L. and Pistacia lentiscus L.)

during increasing water deficit was twice the amount

found in olive tree (Ain-Lhout et al. 2001). Despite its

known role in osmotic adjustment, proline has been con-

sidered, in some studies, a symptom of injury (Irigoyen

et al. 1992), probably resulting from an excessive protein

breakdown during water deficits (Levitt 1980). Sofo et al.

(2004) reported that in olive trees, the proline content

increases in relation to the severity of stress, particularly

in leaves and medium roots. In this study, we observed

low levels of proline, so it may rather be a consequence of

moderate water stress conditions and not an induced

beneficial response. In fact, as we observed, olive cultivars

have other mechanisms of drought resistance such as

stomata closure and elastic adjustment.
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Arbequina leaves exhibited higher levels of SP

(Table 5). Changes of soluble protein contents are impor-

tant to understand the impact of stress on cell proteolysis

and protein synthesis (Santos and Caldeira 1999). During

drought periods, plants undergo many physiological chan-

ges and induce a large number of genes for adaptation

(Ingram and Bartels 1996). Under water deficit conditions,

a typical change in gene expression is the induction of

genes involved in the synthesis of various osmolytes and

low-molecular-weight proteins, e.g. dehydrins and late

embryogenic-abundant proteins (Ingram and Bartels 1996).

Moreover, the increase of SP in Arbequina may represent

increased activity of oxidative stress defense enzymes. In

fact, under mild water deficit, an increase in activities of

superoxide dismutase, glutathione reductase and catalase

has been reported (Baisak et al. 1994). The accumulation of

leaf proteins under water deficit may also represent a

reserve for post stress recovery and with probable impli-

cations in stress tolerance (Millard 1988).

Cobrançosa, Manzanilla and Negrinha seem to be well

acclimated to the region, with high A along the day, and

appear to use a prodigal water-use strategy, whereas

Blanqueta and Arbequina appear to employ a conservative

water-use strategy. Elastic adjustment plays an important

role as drought tolerance mechanism. The group of culti-

vars that employ a prodigal water-use strategy revealed

high tissue elasticity, whereas Arbequina and Blanqueta

revealed high tissue rigidity. The high tissue elasticity may

help Cobrançosa, Manzanilla and Negrinha plants to

maintain elongative growth and photosynthesis under

moderate water stress conditions. We also identified the

existence of drought tolerance mechanisms of O. europaea

plants, associated with SP accumulation in the foliage. The

high levels of SP in Arbequina may represent an increased

activity of oxidative stress defence enzymes and may also

represent a reserve for post stress recovery.

In conclusion, the results of this study reveal that olive

cultivars, native to dry regions, such as Cobrançosa,

Manzanilla and Negrinha, have more capability to accli-

mate to drought conditions than cultivars originated in

regions with a more temperate climate, like Arbequina and

Blanqueta.
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Ferreira HF, Correia CM (2006) Immediate responses and

adaptative strategies of three olive cultivars under contrasting

water availability regimes: changes on structure and chemical

composition of foliage and oxidative damage. Plant Sci

170:596–605

Bacelar EA, Santos DL, Moutinho-Pereira JM, Lopes JI, Gonçalves

BC, Ferreita TC, Correia CM (2007) Physiological behaviour,

oxidative damage and antioxidative protection of olive trees

grown under different irrigation regimes. Plant Soil 292:1–12

Baisak R, Rana D, Acharya PBB, Kar M (1994) Alterations in the

activities of active oxygen scavenging enzymes of wheat leaves

subjected to water stress. Plant Cell Physiol 35:489–495

Bates LS, Waldren RP, Tear ID (1973) Rapid determination of free

proline for water stress studies. Plant Soil 156:205–207

Björkman O (1981) Responses to different quantum flux densities. In:

Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological

plant ecology II. Encyclopedia of plant physiology, vol 12A.

Springer, Berlin, pp 57–108

Bongi G, Mencuccini M, Fontanazza G (1987) Photosynthesis of

olive leaves: effect of light, flux density, leaf age, temperature,

peltates, and H2O vapour pressure deficit on gas exchange. J Am

Soc Hortic Sci 112:143–148

Bowman WD, Roberts SW (1985) Seasonal changes in tissue

elasticity in chaparral shrubs. Physiol Plant 65:233–236

Bradford MM (1976) A rapid and sensitive method for the

quantification of microgram quantities of protein utilising the

principle of protein-dye binding. Anal Biochem 72:248–254

Bradford KJ, Hsiao TC (1982) Physiological responses to moderate

water stress. In: Lange OL, Nobel PS, Osmond CB, Ziegler H

(eds) Physiological plant ecology II. Encyclopedia of plant

physiology, vol 12B. Springer, Berlin, pp 263–324

Chartzoulakis K, Patakas A, Bosabalidis AM (1999) Changes in

water relations, photosynthesis and leaf anatomy induced by

intermittent drought in two olive cultivars. Environ Exp Bot

42:113–120

Chaves MM (1991) Effects of water deficits on carbon assimilation.

J Exp Bot 42:1–16

Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CPP,
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