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Abstract Leaf morphological, physiological and bio-

chemical characteristics of Robinia pseudoacacia L.

seedlings were studied under different stress conditions.

The plants were subjected to drought and shade stress for

one month. Leaf inclination, chlorophyll fluorescence and

chlorophyll content were measured at the first day (short-

term stress) and at the end of the stress period (long-term

stress) and in the recovery period. Leaf inclination was

affected mainly by light; a low level of irradiance caused

leaves to be arranged horizontally. Diurnal rhythmicity was

lost after the long-term stress, but resumed, in part, in the

recovery period. Drought stress caused leaves to tilt more

obviously and decreased damage to the photosystem. Sun

avoiding movement in a single leaf and sun tracking

movement in the whole plant coexisted. Significant physio-

logical changes occurred under different conditions of light.

Increased energy dissipation and light capture were the

main responses to high and low level of irradiance,

respectively, and these were reflected by changes of chlo-

rophyll fluorescence and chlorophyll content. Phenotypic

plasticity in the leaflet enhanced the protective response to

stress. These adaptive mechanisms may explain better

survival of R. pseudoacacia seedlings in the understory,

especially during the drought periods, and made it to be the

preponderant reforestation species in Shandong Province of

China.
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Abbreviations

Chl Chlorophyll

ETR Electron transport rate

F0 and Fm Initial and maximal fluorescence in the

dark

Fs and Fm0 Steady-state and maximal fluorescence in

the light

Fv/Fm Maximal quantum yield

FC Field capacity

LAI Leaf area index

NPQ Non-photochemical quenching

PAR Photosynthetically active radiation

PFD Photon flux density

PS II Photosystem II
qP Photochemical quenching

RLCs Rapid light curves

SLA Specific leaf area

Yield or UPSII Effective quantum yield

Introduction

Light is essential for photosynthesis, but strong irradiance

can damage the photosystem II (PS II) reaction center, and

weak irradiance may not be enough for photosynthesis. The

amount of sunlight reaching the forest floor under the

canopy and in gaps varies acutely, and it is a great chal-

lenge for seedlings to utilize the changing irradiance and to

adapt to a long-term low level of sunlight, which is dis-

advantageous for forest regeneration (Leakey et al. 2003).
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Water is another important factor that influences the

growth of plants and the spatial distribution of species in

their appropriate habitats (Lemoine et al. 2001). Water is

the primary factor limiting the growth of vegetation, and

plant growth varies widely according to the amount of

water available (Fernández et al. 2000; Thomas and Gau-

sling 2000). When water is limited, drought tolerance is a

prerequisite mechanism for the survival and growth of

seedlings.

Unlike most animals, plants are sessile and cannot flee

in response to acute stress. Many plants have developed

defensive responses to stress conditions, including the

mechanical movement of leaves, frequent in leguminous

species (Kato et al. 2003; Liu et al. 2007). Diaheliotrophic

(i.e., sun tracking) and parahelitrophic (i.e., sun avoiding)

movements are two movement types allowing adaptation

(Gamon and Pearcy 1989; Smith and Ullberg 1989). As

well as the mechanical response, plants have developed

physiological mechanisms that decrease the effects of

stress. Stomatal closure that minimizes transpiration in

drought, enhancement of light-harvesting pigments in

shade and increased size of the xanthophyll cycle pool

in high light are the main mechanisms induced to resist the

stress (Guo et al. 2003; Niinemets et al. 2003). Phenotypic

plasticity in the whole plant is another adaptive mechanism

that aids drought tolerance and light acclimation (Wang

et al. 2006; Guo et al. 2007). Alteration of foliar physi-

ognomy is an important part of plasticity, as the leaf is a

vital organ in photosynthesis (Mediavilla and Escudero

2003; Galmés et al. 2007).

The black locust tree Robinia pseudoacacia L. is a

nitrogen-fixing, leguminous deciduous species. It was

introduced to Shandong Province of China at the end of

nineteenth century (Wang and Zhou 2000) and was

widely planted for its adaptability and aggressive growth.

It has an important role in vegetation restoration and

ecosystem regeneration. Limestone, which is easy to

dissolve and penetrate, is the representative mountain

component in Shandong Province. Anthropization have

perturbed the vegetation in this area and drought occurs

frequently (Wang and Zhou 2000). In addition, the stand

is simplex due to artificial planting and allelopathy. It is

easy to beget diseases to mature trees and lead to forest

gaps. Fluctuating light conditions have effects on the

growth of seedlings.

Seedlings development is the most critical periods in the

life-cycle of trees, and the morphological and physiological

leaf attributes during these periods are key factors in tree

species adaptation. It is very important to reveal the adaptive

mechanisms used by R. pseudoacacia in response to diverse

light and water conditions, which may provide useful

information for plant biologists and may be important in

guiding the maintenance and restoration of vegetation.

The objective of this study was to investigate (1) how

leaves move under different conditions of light and water

and (2) whether adaptive mechanisms can protect the

leaves of R. pseudoacacia against shade and water stress.

Materials and methods

Study site

The study was conducted at the Fanggan Research Station

of Shandong University, Shandong Province, China

(36�260N, 117�270E). The site is characterized by a warm

temperate monsoon climate, with a mean annual tempera-

ture of 13 ± 1�C, and an average annual precipitation of

ca. 600–850 mm, most of which falls during summer. The

soil type is a yellow cinnamon soil, and the parent material

is limestone (Zhang et al. 2006). Mixed forests of the warm

temperature zone are the predominant vegetation in this

area. The tree species are dominated by three evergreen

coniferous species, Pinus densiflora Sieb. et Zucc., Pinus

thunbergii Parl. and Platycladus orientalis (L.) Franco, and

two deciduous broadleaf species, Robinia pseudoacacia L.

and Quercus acutissima Carr. The canopy had a dominant

layer 14 m height. The leaf area index (LAI) was 5.12

when the trees were flourishing in August. Vitex negundo

L. var. heterophylla (Franch.) Rehd. and Zizyphus jujuba

Mill. var. spinosa (Bge.) Hu ex H. F. Chow are abundant in

the shrub layer of the understory.

Plant materials

Seeds of R. pseudoacacia were collected on a hill 2 km

away from the research station in March 2007 in a stand of

R. pseudoacacia. Seeds were collected from mature trees

and transported to the laboratory. They were sterilized by

soaking in 3% H2O2 for 30 min and then soaked in dis-

tilled water for 24 h to stimulate germination. Germination

occurred after about 3 days in the growth chamber with

cycles of 12 h light at 28�C/12 h dark at 23�C. The relative

humidity was about 70% and the photon flux density

(PFD) was about 300 lmol m-2 s-1. After the radicles

reached 20 mm in length, the seedlings were transplanted

to plastic pots (9 l volume, 32 9 29 cm, height 9 dia-

meter), containing a 64:22:14 (v/v/v) mixture of humic

soil, sand and loam. Its saturated water content was 36%

by mass, the largest volumetric water content was 28% and

the porosity was 72%. The pH was 4.4, and the major

chemical components included 88.4 g organic matter,

3.7 g total nitrogen and 42.3 mg available phosphorus per

kilogram. All of the pots were irrigated regularly and

subjected to weed control before the beginning of the

experiment.
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Experimental design

The experiment was carried out during July and August

2007. The seedlings grown for 4 months were submitted to

water and shade stress (ten plants per stress type). Water

was withheld from the drought groups until the soil mois-

ture reached 30–40% of the field capacity (FC), whilst the

well-watered groups received daily irrigation to maintain

the soil water content between 70 and 80% of the FC. All of

the pots were moved into the rainout shelter in order to

avoid the disturbance of precipitations when it was rainy.

The soil water content was controlled by gravimetric probe

and the pots were weighed daily to keep the two different

water levels. Supplement of lost water via transpiration and

evaporation was added evenly by top watering.

The shade–stress treatment was conducted in shade

shelters covered by woven black nylon nets. The frame of the

shelter was 5.0 9 2.5 9 3.0 m (length 9 width 9 height)

and built replicated to avoid pseudoreplication. The micro-

climate was measured hourly using micro-quantum-sensor

and temperature-sensor of Mini-PAM (Walz GmbH, Effel-

trich, Germany) during the leaf inclination measurements.

The average photosynthetically active radiation (PAR)

measured from 07:00 to 16:00 (local time) was 544 ± 71 and

56 ± 6.7 lmol m-2 s-1 in the open field and in the shade

shelter, respectively. The light transmission ratio was 10%

under the stress condition compared to the control. There was

no significant difference in the air temperature between the

sunlit (31.1 ± 0.50�C) and shade (31.8 ± 0.53�C) condi-

tions as determined by Student’s t test (P = 0.344).

Pots were divided into four groups: (1) well-watered and

sunlight; (2) well-watered and shade; (3) drought and

sunlight; and (4) drought and shade. When the fixed soil

moisture level was attained in the drought treatments, the

shade-stressed pots were moved into the shade shelters in

an evening. Leaf inclination was measured the next day

and this was considered the short-term stress. The treat-

ments were then maintained for a month (long-term stress)

and measurements included leaf inclination, chlorophyll

fluorescence and chlorophyll content were taken on the last

day of the stress. Then the seedlings were re-watered and

taken to the open field in that evening. Leaf inclination and

chlorophyll fluorescence were determined on the next day

(the recovery period). The orientations of each pot were

fixed throughout the experiment.

Leaf inclination measurements

Forty mature leaves from eight petioles of each treatment

were taken to determine leaf inclination according to Jiang

et al. (2006). The uppermost mature leaves were chosen

because they were able to orientate freely and were not

subject to self-shading. The midrib angle and petiole angle

were measured with a vertical clinometer (Haerbin Optical

Instrument Co., Haerbin, China). The leaf angle was

defined as 90� when the lamina or petiole was held hori-

zontally, \90� when the leaflet or petiole was tilted

upwards, and [90� when the leaf or petiole was drooping.

The leaf azimuth was measured with a magnetic compass

(Saura Keiki Seisakusho Co., Tokyo, Japan). Measure-

ments of diurnal changes were carried out at 07:00 a.m.,

10:00 a.m., 1:00 p.m. and 4:00 p.m.

Chlorophyll fluorescence measurements

Chlorophyll fluorescence measurements were performed

using a pulse-modulated fluorimeter (Mini-PAM, Walz

GmbH, Effeltrich, Germany). For each treatment, eight

measurements were made on four seedlings. Leaves were

dark adapted for 30 min before measurements. The back-

ground fluorescence signal (F0) was excitated by a short burst

of measuring light. Then, a saturating flash (about

8,000 lmol m-2 s-1 for 0.8 s duration) was applied to

estimate the maximal fluorescence (Fm). The maximal

quantum yield of PSII (Fv/Fm) was calculated as (Fm - F0)/

Fm (Schreiber et al. 1994). Rapid light curves (RLCs) were

generated using an automatic RLC program. Eight steps of

active light from ca. 80 to 1,800 lmol m-2 s-1 were applied

and each irradiation step lasted for 10 s, and ended with a

saturating pulse (White and Critchley 1999). The electron

transport rate (ETR) was determined as UPSII 9

PAR 9 0.5 9 0.84, where UPSII [(Fm0-Fs)/Fm0] was the

effective quantum yield in the light, 0.5 was a factor

assuming an equal distribution of absorbed photons between

PS II and PS I, and 0.84 was the assumed leaf absorption

coefficient (Genty et al. 1989). The photochemical quench-

ing [qP = (Fm0-Fs)/(Fm0-F0)] and non-photochemical

quenching [NPQ = (Fm-Fm0)/Fm0] were calculated

according to Schreiber et al. (1986). After the RLCs mea-

surements, the leaves were kept in the leaf clips for nearly

20 min dark adaptation. The light–dark relaxation kinetics

(RLCs ? recovery routine) was analyzed at the duration of

10, 30 s, 1, 2, 5 and 10 min to estimate the recovery of leaves

after light exposure (Ralph and Gademann 2005).

Chlorophyll analysis

Four seedlings per treatment were chosen to determine leaf

chlorophyll content. Ten leaf disks of each plant were

removed with a cork-borer 1 cm in diameter and 20 ml

ethanol (95%, v/v) in a labeled vial was used to abstract

chlorophyll. The samples were kept in the dark for 24 h

before chlorophyll analysis when the leaf surfaces were

completely white. The absorption of the supernatant liquid

was measured spectrophotometrically at the wavelengths

of 665 and 649 nm for calculating the concentrations of
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chlorophyll a (Chla) and chlorophyll b (Chlb) as described

by Lichtenthaler and Wellburn (1983). Another ten leaves

per plant were used to determine the specific leaf area

(SLA). Leaf areas were measured with CI-203 laser area

meter (CID Inc., Washington, USA). Leaf dry mass was

measured after oven drying at 80�C for 48 h.

Statistical analysis

The measurement data were submitted to analysis of

variance (ANOVA) and the means were compared by

Duncan’s multiple range test. The data at the end of the

light steps were used for fluorescence measurements. The

interactive effects of time, light, water and leaf orientation

on leaf inclination were tested by four-way ANOVA. Leaf

orientation was divided into four directions, according to

the leaf azimuth angles, as follows: angles of 45�–135�
were defined as facing the East; and South, West and North

were defined by adding 90� in that order. All statistical

analysis was done with the SPSS 13.0 software package

(SPSS Inc., Chicago, USA). Plots were drawn using the

Origin 7.5 software (OriginLab Co., Massachusetts, USA).

Results

Leaf movement in response to stress factors

A summary of the four-way ANOVA is given in Table 1 for

the interactive effects of time, light, water and leaf

orientations on leaf midrib angle. The main effect of each

factor, excluding the azimuth angle during the short-term

stress period, was significant (P \ 0.05). The interactive

effect of light and water treatments was also significant

following the long-term stress, whereas time 9 water 9

azimuth and time 9 light 9 water 9 azimuth had no sig-

nificant interactive effect (P [ 0.05) on the leaf movement

during the whole experimental period.

There was no significant leaf petiole inclination

changing during the daily course (data not shown). By

contrast, leaf midrib angle significantly changed (Fig. 1).

Leaf midrib angle was inclined upwards at noon and

flattened or drooped in the morning and afternoon for all

the treatments during the short-term stress period

(Fig. 1a), and the midrib angle changing was larger in

sunlight (55%) than in shade (15%). After the long-term

stress, the leaf midrib angle diurnal trend did not sig-

nificantly changed in sunlight, and there was no

significant change in shade and drought (P = 0.05) or

shade and well-watered treatment (P = 0.14) (Fig. 1b).

The midrib angle changing reappeared in the shade

treatments after the recovery period, especially for the

drought-stressed plants (32%) compared to the well-

watered plants (18%) (Fig. 1c). The midrib and petiole

angles were larger in shade stress. Drought stress caused

leaves to be inclined more vertically compared to those

of the well-watered plants under the same light condi-

tions (Fig. 2). The leaf orientation affected the leaf

inclination after stress, although there was no significant

difference during the short-term stress period. The

Table 1 The data of four-way ANOVA of the interactive effects of time (T), light (L), water (W) and leaf azimuth angle (A) on leaf midrib angle

during stress and recovery periods

Factor df Short-term stress Long-term stress Recovery

F P F P F P

Time (T) 3 72.79 \0.001 42.94 \0.001 165.95 \0.001

Light (L) 1 1816.19 \0.001 1708.25 \0.001 233.68 \0.001

Water (W) 1 65.46 \0.001 219.94 \0.001 140.92 \0.001

Azimuth (A) 3 1.76 0.153 16.37 \0.001 30.87 \0.001

T 9 L 3 14.83 \0.001 18.72 \0.001 47.74 \0.001

T 9 W 3 7.63 \0.001 2.5 0.059 13.63 \0.001

L 9 W 1 0.38 0.539 54.55 \0.001 233.93 \0.001

T 9 A 9 5.21 \0.001 9.8 \0.001 8.57 \0.001

L 9 A 3 4.48 0.004 3.19 0.023 10.4 \0.001

W 9 A 3 4.16 0.006 5.76 0.001 1.89 0.131

T 9 L 9 W 3 2.89 0.035 0.73 0.533 1.49 0.217

T 9 L 9 A 9 1.29 0.24 2.93 0.002 3.2 0.001

T 9 W 9 A 9 0.42 0.924 0.96 0.469 1.12 0.344

L 9 W 9 A 3 0.47 0.703 2.79 0.04 3.76 0.011

T 9 L 9 W 9 A 9 1.08 0.376 0.75 0.663 1.4 0.183

T 9 L indicates the interactive effect between time and light. The rest of the abbreviations are the similar meanings. The effects are significant at

the level of P \ 0.05
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midrib angle of south-facing and west-facing leaves, as

well as the petiole angle of east-facing and south-facing

leaves, was larger because the locations of the pots were

fixed after the experiment was carried out (Fig. 3).

Changes of chlorophyll fluorescence in different stress

conditions

Fv/Fm of seedlings after each considered treatment was not

significantly different (P = 0.304) (Fig. 4a). After the

stress, Fv/Fm of the drought treatment was even higher

than that of the well-watered groups, especially significant

in shade (Fig. 4b). The seedlings grown in shade showed

overt photoinhibition after transferred to the open field.

Fs increased to a steady state while Fm declined as the

irradiance increased (Fig. 5a, b). The values of Fs and Fm

for leaves in shade were higher than those in sunlight, and

the drought-stressed plants had lower values than the well-

watered plants. The trends of Yield, ETR and qP were the

reverse of those of Fs and Fm (Fig. 5c–e). The leaves in

sunlight had higher NPQ, but the difference between water

treatments was not significant (Fig. 5f).

Dark relaxation kinetics after RLCs indicated different

levels of recovery between the treatments, especially

between light treatments. A large fraction of Yield (more

than 80%) relaxed within the first 40 s in darkness and only

2% remained at the end of the recovery for all the treat-

ments. The difference was not significant, although the

relaxations of shade treatments were less (Fig. 6a). The

relaxed proportion of NPQ in sunlight was 84 and 81% for

the well-watered and drought treatment during the first 40 s

recovery period, respectively, and mostly relaxed in the

end. The NPQ in the shade condition recovered only 51%

and 48% for the well-watered and drought treatment during

the first 40 s recovery period, respectively, and approxi-

mately 5% remained after nearly 20 min in darkness

(Fig. 6b).

Changes of Chl content and SLA after long-term stress

Chl a, Chl b and total Chl were significantly higher in the

shade condition than in sunlight, but the Chl a/b ratio was a

little lower in shade. The water treatment did not affect

total Chl and the Chl a/b ratio (Fig. 7). SLA was signifi-

cantly higher in shade (567 ± 2.3 and 482 ± 9.7 cm2 g-1

of well-watered and drought stress, respectively) than in

sunlight (289 ± 2.6 and 273 ± 8.7 cm2 g-1 of well-

watered and drought stress, respectively).

Discussion

The results showed that leaf inclination and orientation

were affected by the duration of the shade stress. The

midrib angle changing was time-lagged in the light-to-dark

period but was resumed rapidly in the dark-to-light period

(Fig. 1), suggesting that this leaf trait can decrease the

Fig. 1 Diurnal changes of leaf midrib angle in short-term stress (a),

long-term stress (b) and recovery (c) period. Means (±SE) of 40

leaves were measured on different water (circles and solid lines for

well-watered; triangles and dotted lines for drought) and light (open
symbols for sunlight and filled for shade) treatments. The time scale

gives the local time of the day
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over-loaded light damage when plants are suddenly stres-

sed. Light had greater impact on leaf inclination, because

the leaflet was flat in shade than in sunlight (Fig. 2a). Leaf

movements are phytochrome-regulated events, as well as

circadian regulated by potassium channels (Moshelion

et al. 2002; Sharma et al. 2003). Light-dependent leaf

movement is the morphological adjustment of maintaining

optimal physiological status, while the endogenous rhythm

is an ecological countermeasure for adapting to periodi-

cally changed circumstances (Zhang et al. 2002). Drought

stress led to different extents of leaf inclination in our

experiment: leaves were inclined more vertically in both

sunlight and shade. The light received by the laminae of

plants in the shade was never in excess, suggesting that the

leaf inclination may be regulated also by air temperature to

decrease leaf temperature and reduce transpiration-induced

Fig. 2 Mean values of leaf

midrib angle and petiole angle

in short-term stress (a, b), long-

term stress (c, d) and recovery

(e, f) period. Boxes represent

means and error bars
represent ± SE of the means

(n = 160 for midrib angle and

n = 40 for petiole angle).

Values with different letters are

significantly different at

P \ 0.05 by Duncan’s multiple

range test

Fig. 3 Mean values of midrib

angle and petiole angle in

different orientations during the

whole period. The orientations

defined by leaf azimuth angles

were divided into east- (E),

south- (S), west- (W) and north-

(N) facing. Boxes represent

means and error bars
represent ± SE of the means

(n = 120–190 for midrib angle

and n = 35–47 for petiole

angle). Values with different

letters are significantly different

at P \ 0.05 by Duncan’s

multiple range test. NS means

not significant
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water loss. Even a small decrease in leaf temperature can

allow plants to survive for a long time (Richards et al.

1986). The leaf inclination in sunlight is important in

preventing excessive absorption of light by the leaflet

(Smith and Ullberg 1989). Photoinhibition did not occur

following the long-term stress period (Fig. 4a), indicating

Fig. 4 Change of maximal

quantum yield of PS II (Fv/Fm)

following long-term stress (a)

and during recovery (b) period.

Bars represent the mean ± SE

of 8 measurements from four

seedlings. Values with different

letters are significantly different

at P \ 0.05 by Duncan’s

multiple range test

Fig. 5 Rapid light curves

(RLCs) were measured for

different water treatments

(circles for well-watered and

triangles for drought) and light

treatments (open symbols for

sunlight and filled for shade). a
steady-state fluorescence yield

(Fs), b maximal fluorescence

yield (Fm), c effective quantum

yield (Yield), d electron

transport rate (ETR), e
photochemical quenching (qP)

and f non-photochemical

quenching (NPQ) are plotted

against PAR. Values are

means ± SE. n = 4
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that the seedlings had adapted to the conditions after a

certain period.

We found that morphological plasticity took place not

only in the leaflet but also in the petiole. The petiole angle

did not show a rapid response when the conditions were

changed; the adaptation is chronic and shows significant

difference at the end of stress. The inclination of the petiole

in shade was stable, and was drooping compared to the

seedlings in the open field (Fig. 2d). The architecture

facilitates light capture by leaves, for the photosynthetic

ability of the adaxial surfaces is higher than that of the

abaxial surfaces (Proietti and Palliotti 1997; Sun and

Fig. 6 Rapid light curves

(RLCs) and recovery of yield

and NPQ were measured for

different water treatments

(circles for well-watered and

triangles for drought) and light

treatments (open symbols for

sunlight and filled for shade).

Curves are fitted with means of

4 replications against time

Fig. 7 Changes of chlorophyll

a, chlorophyll b, total

chlorophyll content and

chlorophyll a/b for different

treatments at the end of the

long-term stress. Boxes
represent means and error bars
represent ± SE of the means

(n = 4). Values with different

letters are significantly different

at P \ 0.05 by Duncan’s

multiple range test
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Nishio 2001; Liu et al. 2007). Both the midrib and the

petioles were vertical in the drought treatments. The pro-

tective mechanism is accomplished by the cooperation of

lamina and petiole. The effect of lamina inclination is more

significant than the petiole movement during the recovery

period, which could be reflected by the Fv/Fm (Fig. 4b).

The measurement of Fv/Fm is used for evaluating

photoinhibition (Krause and Weis 1991). Thirty minutes is

an adequate time to allow complete re-oxidation of PS II

reaction centers and to ensure that all energy-dependent

quenching is relaxed (Werner et al. 1999). Hence, any

decrease in Fv/Fm after 30 min darkness was considered

indicative of chronic photoinhibition (Osmond and Grace

1995). The shade-adapted groups showed photoinhibition

for excessive light interception and the lower damage that

occurred in the drought groups was associated with erect

leaflets. This suggests a relationship between leaf inclina-

tion and photoinhibition, and it has been tested in other

species (Muraoka et al. 1998; Ikeda and Matsuda 2002; Lin

and Hsu 2004; Cui et al. 2006).

Moreover, although there was parahelitrophical move-

ment of the leaflet during the day and of the petiole at the

end of the stress period, the leaf and petiole from different

orientations showed diaheliotrophical movement (Figs. 2,

3). We suggested that parahelitrophical movement was

induced mainly by light for avoiding stress in the short

period, and diaheliotrophical movement following the

long-term period allowing plant growth. The coordinated

acclimation strategy developed in a single leaf and in the

whole canopy ensured a better adaptation of the seedlings

to stress (Ishida et al. 1999).

A greater proportion of the largest PS II reaction center

inactivation at the RLCs in the shade stress condition could

be ascribed to the low xanthopyhll cycle pool for energy

dissipation as reflected by NPQ (Fig. 5), according to the

results of Barker and Adams (1997). The components of

non-photochemical quenching could be distinguished on

the basis of the dark relaxation kinetics (Quick and Stitt

1989; Johnson et al. 1993). Energy-dependent quenching

was the major component in the sunlit leaves, whereas the

shaded leaves showed a slow recovery, induced mainly by

inactive turnover of the reaction center (Fig. 6). Evidence

for a reversible dissociation of light-harvesting complex

from the PS II reaction center complex in soybean leaves

(Hong and Xu 1999; Liao and Xu 2007) indicated the

damage mechanism of saturating light to shade-adapted

plants. A vertically tilted leaf in drought stress could

minimize xanthophyll cycle activity and reduced the

cost of xanthophyll biosynthesis (Figs. 5, 6). Therefore,

photosynthetic activity could be enhanced helping seed-

lings to survive under stress (Liu et al. 2003).

Leaves under the shade stress increased the content of

Chl, which maximized the light capture ability (Fig. 7).

Meanwhile, the larger SLA was accommodated to decrease

self-shading of chloroplasts in the lower part of leaves

(Parker and Mohammed 2000; Quero et al. 2006). This is

an adaptive strategy for plants to deal with conditions of

low levels of irradiance. Drought stress restricted the SLA

but did not decrease the Chl content. It might be that the

smaller leaflet made it easier to tilt vertically and the Chl

components were then less injured in the open field.

As a preponderant species in vegetation restoration,

R. pseudoacacia must rely on certain adaptive mechanisms

for recruitment and survival of tree populations. Physio-

logical and biochemical alterations can acclimatize

seedlings to long-term stress, but these protective strategies

are established at the expense of losing the ability to

respond rapidly to fluctuations of the environment, which

could be detrimental in future. The leaf tropism and

rhythmic movements are the optimum combination of

growth and defense. A rapid response of R. pseudoacacia

at leaf level to stress factors might justify its adaptability to

perturbation thus making this species more suitable for

reforestation. In conclusion, both physiological and mor-

phological characteristics of leaves contribute to the

survival of R. pseudoacacia seedlings in the understory and

during drought. However, the maladaptation after exposure

to large amount of light may be a problem for forest

regeneration. The length of time needed to establish a

response system and the degree of damage caused by

photoinhibition at different ages of seedlings warrants

further study.
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