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Enhancement of superoxide dismutase activity in the leaves
of white clover (Trifolium repens L.) in response to polyethylene
glycol-induced water stress
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Abstract Effects of polyethylene glycol (PEG)-induced

water stress on the activities of total leaf superoxide dismu-

tase (SOD) and chloroplast SOD (including thylakoid-bound

SOD and stroma SOD) are described in white clover (Trifo-

lium repens L.) grown in solution culture from rooted

cuttings. Both leaf SOD and chloroplast SOD activities were

markedly enhanced with increasing concentration of PEG

stress, generating osmotic potentials around the roots 0, -0.5,

-1.0, -1.5 MPa. The effects increased with time up to 72 h.

Chloroplast Fe-containing SOD represented about 30% of the

total leaf SOD activity in the control plants and a significant

increase in chloroplast SOD activity was found during the

stress period. This accounted for about 35.5–71.1% of the

total leaf SOD activity. The proportion of chloroplast SOD in

total leaf SOD not only increased with the decreasing of

osmotic potential, but also increased with incubation time.

Furthermore, the increase in thylakoid-bound SOD activity

was much higher than that of stroma SOD in chloroplast of

plants under water stress. The enhanced chloroplastic SOD

activity, especially thylakoid-bound SOD activity, demon-

strated in Trifolium repens suggests that Fe-SOD located in

chloroplasts play a more important role than cytosolic Cu/Zn-

containing SODs in scavenging O2
-.

Keywords Superoxide dismutase � Trifolium repens L. �
Polyethylene glycol � Water stress

Introduction

On account of its excellent forage quality and high animal-

feed value, Trifolium repens L. is the most important for-

age legume and cover crop. It is extensively grown in

the temperate and the subtropical regions of the World.

T. repens is agronomically highly valuable because it can

add considerable amounts of nitrogen to degraded soils

using nitrogen fixed by the bacterium, Rhizobium trifoli in

the roots.

Water is essential for plant metabolism and any limita-

tion in its availability affects almost all plant function,

including the assimilation and partitioning of carbon

(Cabuslay et al. 2002; Wu et al. 2007). Little, however, is

known concerning T. repens responses to water deficit. In

this study, the responses of the white clove cultivar ‘Syrian

Selection’ to polyethylene glycol (PEG)-induced water

stress were detected.

In addition to problems created by water shortage itself,

plants subjected to water stress undergo increased exposure

to activated forms of oxygen and accumulation of free

radicals associated that causes damage to membranes by

peroxidation (Smirnoff 1993). Both drought and salinity

induce water deficit and consequently stomatal closure, a

process that reduces CO2 availability for photosynthesis.

As a consequence of such condition and under intense

sunlight, the rate of production of reducing power is higher

than the rate of re-oxidation, mainly by CO2 reduction

thereby resulting in excessive reactive oxygen species

(ROS) in the chloroplasts, that can result in photoinhibition

and photooxidation damage (Asada 1999).

Drought-tolerant plants have well-developed defense

systems against ROS, involving both enzymatic and

non-enzymatic mechanisms. SOD has a central role in the

antioxidant defense network. SOD is a key enzyme
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lowering concentrations of superoxide (Slooten et al.

1998). SOD catalyzes the disproportion of superoxide

radicals (O2
-) to yield molecular oxygen and hydrogen

peroxide (H2O2). The control of the steady-state O2
- levels

by SOD is an important protective mechanism against

cellular oxidative damage, since O2
- acts as a precursor of

more cytotoxic or highly reactive oxygen derivatives, such

as peroxynitrite or HO (Halliwell and Gutteridge 1999).

Therefore, SOD is usually considered the first line of

defense against oxidative stress, and increased SOD

activity is correlated with increased protection from dam-

age associated with environmental stress (Sigaud-Kutner

et al. 2002; Pang et al. 2005). The involvement and the role

of antioxidants in protection against oxidative stress have

been demonstrated using transgenic plants (Foyer et al.

1994). Transgenic plants over expressing SOD showed

increase tolerance to oxidative stress induced by light and

methyl viologen (Bowler et al. 1994; Perl et al. 1993;

Gupta et al. 1993), chilling (McKersie et al. 1993), ozone

(Van Camp et al. 1994a, b), water-deficit (Foyer et al.

1994), salt stress (Tanaka et al. 1999) and anoxia (Biemelt

et al. 2000). Over-production of Fe-SOD in tobacco chlo-

roplasts was more effective in protecting against methyl

viologen-induced damage than overproduction of Mn-SOD

(Van Camp et al. 1994a, b).

To understand better the mechanisms underlying

drought resistance in T. repens, the effects of PEG-induced

water stress on activities of SOD in T. repens cultivar

‘Syrian Selection’ were studied. Both leaf SOD and chlo-

roplast SOD activities were markedly enhanced with the

increasing of PEG or with time, and the proportion of

chloroplast SOD in total leaf SOD not only increased with

the decreasing of osmotic potential, but also increased with

incubation time. The enhanced leaf and chloroplast SOD

activities demonstrated in T. repens suggest that T. repens

seedlings may have higher potential to scavenge O2
-

produced in situ in the chloroplasts, which may lead to

higher tolerance to water stress.

Materials and methods

Plant material and water stress treatments

Seedlings of white clover (Trifolium repens L.) cultivar

‘Syrian Selection’ were established as apical cuttings

consisting of 2–3 nodes rooted in a sand–peat potting mix.

When a significant root system had developed, plants were

transplanted to plastic jugs of half-strength Hoagland

nutrient solution. According to Verslues et al. (1998), PEG

used to impose low water potentials in solution culture

decreased O2 movement by increasing solution viscosity,

so supplemental oxygenation was required to avoid

hypoxia in PEG solutions. In this experiment, the solution

was aerated by bubbling with pressurized air through a

perforated plastic tube extending along the bottom of the

jug, the flow rate was 1,000 mL min-1. The ambient

temperature was 25 ± 2�C, relative humidity was 60%,

photoperiod was 14 h light/10 h dark and photon flux

density was 200 lmol m-2 s-1. When plants reached a

sufficient size, comprising at least 8–10 mature stolons,

water stress was imposed.

For water stress treatments, T. repens plants were cul-

ture in half-strength Hoagland nutrient solution containing

polyethylene glycol 6000 solutions of osmotic potential:

-0.5, -1.0 and -1.5 MPa. After 24, 48 and 72 h of

incubation, T. repens leaves and chloroplasts were assayed

for SOD activities and isozymes.

Preparation of leaf SOD extracts and SOD activity

assay

One gram of plant material was homogenized at 4�C in

2 mL of medium: 100 mmol L-1 K-phosphate buffer (pH

7.8) containing 3 mmol L-1 MgSO4, 3 mmol L-1 EDTA

and 2% (W/V) polyvinyl polypyrrolidone (PVP). The

homogenate was centrifuged at 20,000g (Eppendorf Cen-

trifuge 5417R) for 5 min at 4�C. The supernatant was used

for determination of SOD and protein content.

In the presence of SOD the photochemical reduction of

nitro blue tetrazolium (NBT) is inhibited and the level of

inhibition was used to quantify the enzyme. SOD was

assayed according to Giannopolitis and Ries (1977) with

some modifications. The reaction medium was composed of

50 mmol L-1 K-phosphate buffer (pH 7.8), 0.1 mmol L-1

EDTA, 15 mmol L-1 methionine, 60 lmol L-1 riboflavin,

2.25 mmol L-1 NBT and an appropriate aliquot of extract in

a final volume of 4 mL. The reaction mixture was illumi-

nated with light intensity of 72 lmol m-2 s-1 for 15 min

and turning the lights off stopped the reaction. A control

reaction was always performed wherein all the steps and

components were exactly the same as described above,

except that crude enzyme was replaced with an equal volume

of phosphate buffer (pH 7.8). Assays were always carried out

at 25�C. The reaction was measured at 560 nm. One unit of

enzyme activity was defined as the quantity of enzyme that

reduced the absorbance reading of samples to 50% in com-

parison to tubes lacking enzymes.

The protein content was determined by using bovine

serum albumin as standard according to Bradford (1976).

Isolation of chloroplast SOD and SOD activity assay

Chloroplasts were isolated according to the method of

Sgherri et al. (2000) with some modifications. Twenty

grams of T. repens leaves were placed at -15�C for 1 h, and
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then washed with cold deionized water and homogenized in

ice-cold grinding medium containing 330 mmol L-1

sorbitol, 50 mmol L-1 MES (pH 6.1), 10 mmol L-1

NaCl, 2 mmol L-1 MgCl2, 2 mmol L-1 EDTANa2,

0.5 mmol L-1 KH2PO3 and 2 mmol L-1 sodium ascorbate.

The homogenate was filtered through eight layers of

cheesecloth and centrifuged at 300g for 30 s. The super-

natant was centrifuged at 1,500g for 2 min, then the

supernatant was discarded and the pellet obtained was

suspended in 3-mL suspension medium (330 mmol L-1

sorbitol, 50 mmol L-1 HEPES (pH 7.6), 10 mmol L-1

NaCl, 2 mmol L-1 MgCl2, 2 mmol L-1 EDTA-Na2,

0.5 mmol L-1 KH2PO3, 2 mmol L-1 sodium ascorbate).

Three milliliters of chloroplast suspension was loaded onto

4 mL of 40% Percoll and centrifuged at 2,500g for 60 s.

The lowest layer, containing intact chloroplasts, was

removed and washed three times with the suspension

medium. One fraction was resuspended with 1-mL sus-

pension medium containing 0.1% Triton X-100, which is

used in total SOD activity assay. The other fraction was

re-suspended in a hypotonic medium (the same as the sus-

pension medium except that sorbitol concentration was

4 mmol L-1) in order to break the chloroplasts and release

the stromal enzyme. After centrifugation at 20,000g for

5 min, the supernatant is used as stromal SOD extracts and

thylakoids were included in the pellet for solubilizing

membrane-bound SOD. Thylakoid-bound SOD was solu-

bilized as reported in Navari-lzzo et al. (1998). Thylakoid-

bound SOD was extracted by incubating membranes with

0.1% Triton X-100 and 1.5 mmol L-1 DTT for 30 min

(Hayakawa et al. 1985). All the steps were carried out at

4�C.

Identification of SOD isozymes

SOD isozymes from T. repens leaves and chloroplasts were

separated by non-denaturating polyacrilamide gel electro-

phoresis (Laemmli 1970). Samples (40 mg protein per slot)

were loaded on 10% gels. The gels were run at 4�C. SOD

isozymes were localized on the gels by the method of

NBT reduction by superoxide radicals generated photo-

chemically (Beauchamp and Fridovich 1971). After

electrophoresis, the gels were covered with a solution

containing nitro blue tetrazolium (0.25 mg mL-1) and

riboflavin (0.1 mg mL-1), and exposed to light. SOD

activity in gels was visualized as achromatic bands by

staining with NBT. The three types of SOD, Mn-SOD, Fe-

SOD and Cu/Zn-SOD were identified using specific inhib-

itors. Before staining, zymograms were incubated at 25�C

for 30 min, separately, in solutions of 5 mmol L-1 H2O2,

3 mmol L-1 KCN or both inhibitors. The sensitivity of Cu/

Zn-SOD to cyanide (KCN) has been used as a diagnostic

tool to distinguish Cu/Zn-SOD from Fe-SOD and Mn-SOD

that are unaffected by cyanide. Likewise, Fe-SOD is irre-

versibly inactivated by H2O2, whereas Mn-SOD is resistant

to both inhibitors (Baum and Scandalios 1979).

Activity staining patterns of the negatively SOD gels

were analyzed using a FB 910 Densitometer (FisherBio-

tech, USA) and a computer-aided image analysis system.

The isozyme activity in percentage was quantified by

recording the transmittance of the gels and integrating the

activity areas under the transmittance peaks. The isozyme

activity was obtained by multiplying each percentage by

the total SOD activity of extracts (Hernandez et al. 1994).

Results

SOD isozyme patterns

Extracts of soluble proteins from T. repens seedlings were

analyzed on the non-denaturing polyacrylamide gel in

order to differentiate Cu/Zn-, Mn-, and Fe-SOD. According

to inhibitor sensitivities, Mn-SOD (neither inhibited by

3 mmol L-1 KCN nor 5 mmol L-1 H2O2), Fe-SOD

(inhibited by 5 mmol L-1 H2O2) and Cu/Zn-SOD (inhib-

ited by 3 mmol L-1 KCN and 5 mmol L-1 H2O2) were

examined. Three kinds of electrophoretically different

isozymes were present in the leaves of T. repens. As judged

by their sensitivity towards KCN or H2O2, they were

identified as one Mn-SOD, one Fe-SOD and three Cu/Zn-

SODs. Band B was fully inhibited in the presence of

5 mmol L-1 H2O2, but not affected by 3 mmol L-1 KCN,

the broad band C was very sensitive to both KCN and

H2O2, while the upper band (A) was insensitive to both

inhibitors, indicating that the band A was Mn-SOD, the

band B was Fe-SOD and the broad band C with high

electrophoretic mobility contained Cu/Zn-SODs (Fig. 1).

On the right-hand side, the activity bands were named

according to the inhibitor sensitivities of the respective

SOD proteins (Fig. 1, rows 2, 3). According to the isoform

patterns observed in T. repens leaves, 20, 30 and 50% of

the total SOD activity can be ascribed to the activities of

Mn-SOD, Fe-SOD and Cu/Zn-SODs, respectively.

Electrophoretic pattern of SOD isolated from chloro-

plasts was shown in Fig. 1, row 4. The band B was the

main SOD in chloroplasts. Thus, the band C was very

likely to be cytosolic Cu, Zn-containing SOD and the band

B Fe-containing SOD located in chloroplasts.

Effects of water stress on leaf SOD activity

When seedlings of T. repens were subjected to water stress

by incubation with PEG solutions of different concentra-

tions, the staining intensities of the SOD isozymes in gels

were proportionally enhanced with the decreasing of
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osmotic potential (Fig. 2). No novel SOD isoenzyme band

was apparent in extracts from PEG-treated plants compared

to control plants. Mn-SOD activity decreased while Fe-

SOD activity significantly increased as responses to PEG-

treatment. Cu/Zn-SODs exhibited the highest inherent

activity; however, only one Cu/Zn-SOD isoenzyme activity

increased in response to water stress.

Electrophoretic observations were confirmed by total

leaf SOD and chloroplast SOD activities. As shown in

Fig. 3, leaf SOD dramatically increased with increasing

water stress. Upon imposition of water stress at 48 h, the

total SOD activity increased by 25.3, 35.6 and 53.5% at

-0.5, -1.0 and -1.5 MPa, respectively. Furthermore, leaf

SOD activity also increased with incubation time. Incu-

bation of T. repens plants for 24, 48 and 72 h led to a

gradual increase in the activity of leaf total SOD. For

example, at -1.5 MPa, the highest effect was found 72 h

after water deficit—the activity was about 72.3% higher

than in the control plants (Fig. 3a).

Effects of water stress on chloroplast SOD activity

To examine the response of chloroplast SOD activity to

water stress, total chloroplast SOD activity was deter-

mined. As shown in Fig. 3b, under water stress, the total

chloroplast SOD activity was markedly enhanced with

decreasing osmotic potential or with time in T. repens

seedlings. In the control plants, the chloroplast Fe-con-

taining SOD represented about 30% of the total leaf SOD

activity. This is consistent with the results of the former

electrophoresis (Fig. 1). The proportion of chloroplast

SOD in total leaf SOD not only increased with the

decreasing osmotic potential, but also increased with

incubation time. For example, at -1.0 MPa, the percent-

ages of chloroplast SOD in total leaf SOD activity were

36.5, 46.5 and 62.7% at 24, 48 and 72 h, respectively.

While at 48 h, the percentages of chloroplast SOD in total

leaf SOD activity were 40.2, 46.5 and 59.7% at -0.5, -1.0

and 1.5 MPa, respectively, whereas the chloroplast SOD in

the control plants remained unchanged. These results

suggest that water stress influences differentialy chloro-

plastic and cytosolic SODs. Enhanced Fe-SOD located in

chloroplasts may play an even more important role than

cytosolic SODs in scavenging O2
- with in situ amounts

produced in the chloroplasts increasing with the magnitude

of water stress.

Similar to total chloroplast SOD activity, both the

activities of thylakoid-bound SOD and stroma SOD

increased with decreasing osmotic potential or with time

(Fig. 3c ,d). The thylakoid-bound SOD activity was much

higher than the stroma SOD activity in T. repens seedlings.

For example, the activity of thylakoid-bound SOD was

28.8 U mg-1 pro h-1, while the activity of stroma SOD

was 12.10 U mg-1 pro h-1 when seedlings grown in

solution with osmotic potential of -1.0 MPa at 48 h. That

is to say, the activity of thylakoid-bound SOD constituted

the major part of total chloroplast SOD activity. Further-

more, the increases in the thylakoid-bound SOD activity

were much higher than in the stroma SOD activity under

water stress. For example, the increase in thylakoid-bound

SOD activity was 14.8 U mg-1 pro h-1, while that of

stroma SOD activity was 6.36 U mg-1 pro h-1 at

-1.0 MPa at 48 h. The activity of thylakoid-bound SOD

was distinctly enhanced at -1.0 MPa and represented 70%

Fig. 1 Differentiation of Cu/Zn-, Mn-, and Fe-SOD in leaf extract of

control unstressed T. repens plants. Forty-mg-protein were loaded and

separated on the non-denaturing polyacrylamide gel and stained with

NBT. Row 1 crude enzyme extract; row 2 crude enzyme extract

treated with 3 mmol L-1 KCN; row 3 crude enzyme extract treated

with 5 mmol L-1 H2O2; row 4 enzyme extract from isolated

chloroplasts. Band A Mn-SOD; band B chloroplastic Fe-SOD; band

C cytosolic Cu/Zn-SODs

Fig. 2 Effect of polyethylene glycol-induced water stress on the

activities of superoxide dismutase isozymes in leaves of T. repens
after 48 h. The non-denaturing polyacrylamide gel was loaded with

40 mg protein per slot and negatively stained with NBT. Lanes 1, 2, 3
and 4 represent Control, -0.5, -1.0, and -1.5 MPa, respectively
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of total chloroplast SOD. These results indicate T. repens

seedlings have a high ability to scavenge ROS in situ

produced in the chloroplasts when subjected to the PEG-

induced water stress.

Discussion

Abiotic stress accounts for more plant productivity loss

than any other factor (Boyer 1982). At the present, our

ability to improve plant stress tolerance is limited by a poor

understanding of the inherent complexity of stress physi-

ology and adaptation processes. In the present work, the

responses of the SOD enzymes to PEG-induced water

stress suggest that oxidative stress is an influential com-

ponent of water stress on T. repens plants. The data also

suggest that SOD plays a significant role in resistance to

water stress in T. repens.

In different species, tolerance to water stress has been

linked to increased enzymatic defenses against oxygen

radicals, together with synthesis of free radical scavengers

(Smirnoff 1993; Zhang and Kirkham 1994). Variable

responses of SOD to water deficit have been reported.

Enhanced SOD activity in pea (Moran et al. 1994), wheat

(Zhang and Kirkham 1994) and tobacco (Van Rensburg

and Krüger 1994) was found when drought stress was

applied. However, most of these studies did not distinguish

between the activities of various SOD isoforms. It is known

that enzymes having a multiple intracellular distribution

are present as different isoenzyme forms and targeted to

different cell compartments (Damodara and Venkaiah

1984). Clearly therefore, analysis of the activity of indi-

vidual SOD isozymes is important, because it can help to

understand how each stress may affect different subcellular

compartments (Scandalios 1993). Three SOD isozymes in

potato species have been described (Bowler et al. 1994).

Cu/Zn-SOD isozymes are present in both cytosol and

chloroplasts, Mn-SOD in mitochondria and glyoxisomes,

and Fe-SOD in chloroplasts and peroxisomes (Scandalios

1993). All the SODs are nuclear coded and transported to

their organellar locations by means of NH2-terminal tar-

geting sequences (Bowler et al. 1994). In the chloroplast,

superoxide dismutase and ascorbate peroxidase enzymes

exist in both soluble and thylakoid-bound forms.

Thylakoid-bound forms of SOD and APX may efficiently

detoxify O2
- and H2O2 at their site of production (Bowler

et al. 1994) and prevent inactivation of Calvin cycle

enzymes (Kaiser 1979). Soluble forms of SOD and APX

react with O2
- and H2O2 that diffuse into the stroma from

the thylakoid membrane (Niyogi 1999).

Yu and Rengel (1999) found in water-stressed lupins

that total SOD activity markedly increased due to Cu/Zn-

SOD and Fe-SOD activity that rose with increasing stress.

When water stress was relieved, the activity of Cu/Zn-SOD

returned to the control level, while the Fe-SOD activity

remained above the control level. In contrast, Mn-SOD

Fig. 3 Leaf SOD activity a,

total chloroplast SOD activity b,

thylakoid-bound SOD activity

c and stroma SOD activity of

chloroplast d in leaves of

T. repens exposed to different

levels of polyethylene glycol-

induced water stress (0, -0.5,

-1.0, -1.5 MPa) after 24, 48

and 72 h. Data points are

mean ± SE (n = 5)
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activity was not affected during the course of drought

stress. Yu and Rengel suggested that Cu/Zn-SOD and

Fe-SOD, but not Mn-SOD are involved in the drought-

induced oxidative stress events in the lupin. In this study,

no novel SOD isoenzyme was apparent in PEG-treated

plants compared to control plants (Figs. 1, 2) although

total leaf SOD and chloroplast SOD activities both

markedly increased when T. repens was exposed to

PEG-induced water stress (Fig. 3a, b). The proportion of

chloroplast SOD in total leaf SOD not only increased with

the decreasing of osmotic potential but also increased with

incubation time (Fig. 3b). So Fe-SOD located in chloro-

plasts play a more important role than cytosolic Cu/Zn-

containing SODs in scavenging O2
- produced in the

chloroplasts during water deficiency.

Two important sources of oxidative stress in photosyn-

thetic organisms are the chloroplast and the mitochondria.

In chloroplasts, the presence of electron flux, high oxygen

concentration and metal ions can enhance the generation of

ROS, particularly O2
- and O2

1 (Foyer 1996). Water deficit

is known to enhance O2
- production in the chloroplast

(Asada 1999) and to be associated with greater activity of

chloroplast SOD over time. Thylakoids are considered to

be major sites of superoxide production because of the

simultaneous presence in chloroplasts of high oxygen

concentrations and an electron transport system (Sgherri

et al. 2000). Here, it was found that the increase in chlo-

roplast Fe-SOD activity and the increase in magnitude of

water stress were closely related (Fig. 3b). The activity of

thylakoid-bound SOD constituted the major part of total

chloroplast SOD activity and was effectively enhanced by

water stress (Fig. 3c, d). Consequently, the enhancement of

SOD activity in the chloroplasts of T. repens, especially

thylakoid-bound SOD activity appears to play an important

role in resisting oxidative stress induced by water deficit.
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