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Abstract In wheat (Triticum aestivum L.), leaf

senescence can be initiated by different factors.

Depending on the plant system (intact plants or de-

tached leaves) or the environmental conditions (light,

nutrient availability), the symptoms of senescence

differ. The aim of this work was to elucidate the

catabolism of ribulose-1,5-bisphosphate carboxylase/

oxygenase (Rubisco, EC. 4.1.1.39) under various

senescence-inducing conditions. Leaf senescence was

initiated in intact plants by darkness or by N-depriva-

tion and in leaf segments by exposure to light or

darkness. Depending on the treatment, a 50 kDa

fragment of Rubisco was observed. The formation of

this fragment was enhanced by leaf detachment and

low light. In segments exposed to high light and in

intact plants induced to senesce by N-deprivation, the

fragment was essentially absent. Since an antibody

against the N-terminus of a large subunit of Rubisco

(LSU) did not cross-react with the fragment, it appears

likely that a smaller fragment was removed from the N-

terminus of LSU. Inhibitor studies suggest that a cys-

teine endopeptidase was involved in the formation of

the 50 kDa fragment. Non-denaturing-PAGE followed

by SDS-PAGE revealed that the fragment was pro-

duced while LSU was integrated in the holoenzyme

complex, and that it remained there after being pro-

duced. It remains open how the putative endopepti-

dase reaches the stromal protein Rubisco. The results

indicate that depending on the senescence-inducing

conditions, different proteolytic enzymes may be in-

volved. The involvement of vacuolar proteases must be

considered as occurring during LSU degradation,

which takes place in darkness, low light or under car-

bon limitation.
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Abbreviations
E-64 trans-epoxysuccinyl-L-leucylamido-

(4-guanidino)butane

GO glycolate oxidase

GOGAT glutamate synthase

LHCII light-harvesting chlorophyll a,b binding

complex

LSU large subunit of Rubisco

N-LSU N-terminal part of LSU

PAR photosynthetically active radiation

PEPC phosphoenolpyruvate carboxylase

SSU small subunit of Rubisco

Introduction

Leaf senescence is the final stage of development

during which controlled degradation and remobiliza-

tion of cell components take place. The initiation of

leaf senescence is regulated by several environmental

factors, such as shading, drought, or nutrient defi-

ciency, and internal factors including reproductive

development, phytohormone levels, or age (Noodén
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et al. 1997; Brouquisse et al. 2001). Various models

have been used to investigate senescence. By trans-

ferring plants to darkness or by withdrawing nitrogen,

senescence can be artificially initiated. Also, detaching

of plant parts may lead to senescence (Feller 1983;

Cuello et al. 1984; Parrott et al. 2005). Depending on

the plant system or the experimental conditions used,

senescence-associated genes are differently expressed,

thus altering the progress of the senescence process

(Park et al. 1998; Weaver et al. 1998). Moreover,

senescence in detached leaves is only partially repre-

sentative of natural senescence in intact plants, since

stress-related genes may play a role in excised leaves

(Becker and Apel 1993). Differences among the vari-

ous types of senescence may also be related to bio-

chemical and physiological changes caused by the

experimental conditions used (Brouquisse et al. 2001;

Demirevska-Kepova et al. 2005). It must be considered

that phloem transport to other plant parts is no longer

possible in detached leaves (Feller and Fischer 1994;

Parrott et al. 2005). Therefore, carbohydrates accu-

mulate in the light and might contribute to the accel-

eration of senescence (Herrmann and Feller 1998).

Catabolic processes in plant tissues may be influenced

by sugar accumulation as well as by a depletion of

soluble sugars (Brouquisse et al. 2001; Parrott et al.

2005; Roulin and Feller 2001; Wälti et al. 2002).

There are, however, hallmarks of leaf senescence.

Rapid net protein degradation, changes in the enzyme

pattern and, in general, also chlorophyll catabolism are

observed under various senescence-inducing conditions

(Feller 2004; Parrott et al. 2005). A large fraction of leaf

nitrogen is localized in the chloroplasts, mainly in the

form of proteins (Makino and Osmond 1991). The most

prominent protein in chloroplasts of C3 plants is ribu-

lose 1,5-bisphosphate carboxylase/oxygenase (Rubisco).

The degradation of this enzyme during senescence is

therefore of special interest. Rubisco degradation has

been attributed to both plastidial and vacuolar proteases

(Hörtensteiner and Feller 2002). Since hydrolytic en-

zymes of the cytosol or the vacuole are spatially sepa-

rated from plastidial proteins, it is tempting to suggest

that plastidial proteins become degraded inside the

chloroplast by plastidial peptide hydrolases (Brouquisse

et al. 2001; Hörtensteiner and Feller 2002). Fragmen-

tation of Rubisco has frequently been shown to occur in

chloroplasts and chloroplast lysates (Mitsuhashi et al.

1992; Desimone et al. 1996; Ishida et al. 1997, 1998). A

plastidial zinc protease able to hydrolyze Rubisco has

been reported by Bushnell et al. (1993). Further evi-

dence for the involvement of a zinc-containing metal-

loprotease in the degradation of stromal proteins inside

the plastids was obtained from experiments with intact

chloroplasts isolated from pea leaves (Roulin and Feller

1998a). A role for activated oxygen species in the deg-

radation of Rubisco in intact chloroplasts seems likely.

Both stimulation of Rubisco degradation under oxida-

tive conditions (Desimone et al. 1996; Roulin and Feller

1998b) and direct fragmentation of the enzyme by hy-

droxyl radicals (Ishida et al. 1998) have been reported.

The most prominent degradation product of LSU in

chloroplasts or their lysates had a molecular mass in the

range of 36–37 kDa (Desimone et al. 1996; Mitsuhashi

et al. 1992; Ishida et al. 1997; Roulin and Feller 1998b).

This fragment likely contains the N-terminus of Rubisco

(Ishida et al. 1997, 1998; Roulin and Feller 1998b), al-

though another fragment without the N-terminus of

LSU was mentioned by Desimone et al. (1996). The

direct cleavage of Rubisco in vitro by active oxygen

species resulted in the formation of an N-terminal 37-

kDa product and a 16-kDa fragment bearing the C-

terminus (Ishida et al. 1998, 1999). A contamination of

chloroplasts with vacuolar proteases resulted in a dif-

ferent degradation pattern of Rubisco (Miyadai et al.

1990). More recently, such a fragmentation of the large

subunit of Rubisco by reactive oxygen species was also

detected in intact cucumber leaves incubated in light at

4�C (Nakano et al. 2006). Redox-sensitive modifica-

tions, an insolubilization of Rubisco under stress, and

the role of two cystein residues in this context were

recently elucidated in Clamydomonas reinhardtii using

site-directed mutagenesis as a tool (Marı́n-Navarro and

Moreno 2006).

High levels of endopeptidases and carboxypeptid-

ases are localized in vacuoles (Brouquisse et al. 2001;

Huffaker 1990; Otegui et al. 2005). Recently, the pos-

sibility has been discussed that vacuolar proteases are

involved in the degradation of plastidial proteins dur-

ing senescence of purple nutsedge (Fischer et al. 1998).

Beside this, mRNAs encoding for cysteine proteases

were increased or were retained during senescence

(Hensel et al. 1993; Lohmann et al. 1994; Smart et al.

1995). It has been shown that Rubisco degrading pro-

teases exist in the vacuole (Lin and Wittenbach 1981;

Thayer and Huffaker 1984; Bhalla and Dalling 1986).

Yoshida and Minamikawa (1996) suggested the

involvement of at least two proteases in the degrada-

tion of purified Rubisco by vacuolar lysates. In the first

step, a cysteine protease catalyzed the degradation at

the N-terminus of LSU leading to a 48-kDa fragment

through the 50 kDa intermediate, while in the second

step, the 48-kDa polypeptide was converted by a serine

protease through the 42-kDa intermediate to the 41-

kDa product.

The aim of this work was to elucidate the catabolism

of the predominant stromal protein Rubisco under
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various senescence-inducing conditions. The proteo-

lytic enzymes involved, the timing, the compartmenta-

tion, and the control mechanisms may partially depend

on the factors initiating or accelerating senescence.

Some controversial findings reported previously might

be related to the conditions used to induce senescence.

Materials and methods

Plant matersial

Wheat (Triticum aestivum L.cv. Arina) grains were

germinated for 4 days on wet paper in darkness and

then for 3 days on well-watered coarse sand in a day/

night cycle of 14/10 h at 25�C. Seven days after germi-

nation, the seedlings were transferred to a half-strength

nutrient solution, according to Hildbrand et al. (1994).

On day 11, the nutrient solution was exchanged with a

full strength solution and the grains were removed from

the plant. The plants were left on the pots until day 17,

when the incubation of segments was started. The

photosynthetically active radiation (PAR) was 80 lmol

m–2 s–1, measured at the level of leaf 2.

Experiments with leaf segments

Leaf segments (2 · 5 cm) were cut from the middle

part of the fully expanded leaf 2 and incubated for the

indicated times in plastic beakers containing 100 ml of

deionized water, sucrose (50 mM), sorbitol (50 mM),

or KCl (25 mM). In some experiments, the cysteine

protease inhibitor (E-64) was used. Segments were

incubated on 25 ml of deionized water or KCl (25 mM)

with or without E-64 (100 lM), a cysteine protease

inhibitor. During incubation, PAR was 0, 25, or

80 lmol m–2 s–1, measured at the level of the segments.

When segments were separated into different zones,

the first 0.5 cm from both cut ends (zone A), the next

1 cm at both sides (zone B), and the middle 2 cm (zone

C) were separated, immediatly frozen in liquid nitro-

gen, and then stored at –80�C. In one experiment

(±CO2), the leaf material was prepared and incubated

as described previously (Herrmann and Feller 1998).

Experiments with intact plants

For the nitrogen starvation experiment, the nutrient

solution was replaced on day 11 by either a N-con-

taining (3.5 mM) or a N-depleted full-strength nutrient

solution containing 800 g m–3 KH2PO4, 750 g m–3

MgSO4�7H2O, 198 g m–3 CaCl2�2H2O, and 70 g m–3

sequestren. The micronutrients were as described in

Hildbrand et al. (1994). On day 13, the experiment was

started. When intact plants were incubated in darkness,

the nutrient solution was changed at the beginning of

the experiment (day 17) and the plants were placed in

darkness. Samples (5-cm segments) from the middle

part of leaf 2 (dark experiment) or leaf 1 (N experi-

ment) were stored at –80�C prior to analysis.

Preparation of leaf extracts

Leaf samples were powdered under liquid nitrogen and

were then extracted with a Polytron mixer (PT 1200

Kinematica, Luzern, Switzerland) for 10 s at 3/4 speed

and for 5 s at full speed. Unless stated otherwise, 10 cm

(total length of two segments) plant material was ex-

tracted in 1 ml phosphate buffer (20 mM, pH 7.5)

containing 1% [w/v] PVPP;and 0.1% [v/v] b-mercapto-

ethanol. The crude extract was filtered through

Miracloth (Calbiochem, La Jolla, USA).

Incubation of extracts

The segments were incubated for 3 days at either

80 lmol m–2 s–1 in water or at 25 lmol m–2 s–1 PAR in

water or KCl (25 mM). The leaf extracts were pre-

pared from the inner part (zone B and C) of the seg-

ments. Duplicates of three segments (4 cm leaf length

per segment) were homogenized in 600 ll of either a

phosphate buffer (pH 7.5) or an acetate buffer (pH

5.4), each containing 1% [w/v] PVPP and 0.1% [v/v]

b-mercaptoethanol. The crude extract was passed

through Miracloth and was centrifuged at 4�C for

10 min at 20,000g. Samples of 120 ll of the supernatant

were incubated for 0, 2, 4, or 8 h at 30�C.

Quantification of chlorophylls, proteins,

and carbohydrates

The Miracloth filtrate was used to measure chloro-

phylls (Strain et al. 1971). For the determination of

soluble proteins and soluble carbohydrates, the filtrate

was centrifuged for 10 min at 20,000g at 4�C. Soluble

proteins were measured in the supernatant according

to Bradford (1976) using bovine serum albumin

(PIERCE, Rockford, IL, USA) as the standard. The

soluble carbohydrates were determined according to

Stieger and Feller (1994). Sucrose was used as the

standard.

SDS-PAGE and immunoblotting

Gel electrophoresis was carried out in a Mini Protean

II Dual Slab Cell (Bio Rad, Glattbrugg, Switzerland)
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according to Laemmli (1970). For Coomassie Blue-

stained gels and for immunoblots developed with

antibodies against the whole denatured LSU or against

a synthetic version of the first 25 amino acids of the N-

terminal region of LSU (N-LSU), 9% slab gels

(0.75 mm) were used. For immunoblots developed

with antibodies against other enzymes, 12% slab gels

(0.75 mm) were used. Samples from either two or three

replicates were combined and mixed before analysis by

SDS-PAGE. Each lane was loaded with aliquots con-

taining equal amounts of leaf length (0.67 mm), unless

stated otherwise. After electrophoresis, the gels were

stained with Coomassie Brilliant Blue R-250 for visu-

alizing the protein pattern or blotted onto nitrocellu-

lose membranes (0.45 mm supported, Bio Rad) for the

detection of specific proteins (Mitsuhashi and Feller

1992). The primary polyclonal antibodies were kindly

provided by S. Gepstein (Technion-Israel Institute of

Technology, Haifa, Israel) against the whole denatured

large subunit of Rubisco (Anti-LSU; Pauncz et al.

1992), by R. L. Houtz (University of Kensington,

Lexington, USA) against the synthetic version of the

first 25 amino acids from the N-terminal region of LSU

of spinach Rubisco (Anti-N-LSU), by R. M. Walls-

grove (IACR-Rothamsted, Harpenden) against ferre-

doxin-dependent glutamate synthase (GOGAT) from

barley (Marquez et al. 1988), by S. Crafts-Brandner

(Western Cotton Research Laboratory, Phoenix, Ari-

zona, USA) against purified recombinant tobacco

Rubisco activase (Feller et al. 1998), and by T. Sugiy-

ama (Nagoya University, Nagoya, Japan) against

phosphoenolpyruvate carboxylase (PEPC) from maize

(Sugiyama et al. 1984). Antibodies against purified

glycolate oxidase (GO) from sugar beet were raised as

reported previously (Mitsuhashi and Feller 1992).

Non-denaturing PAGE

For non-denaturing PAGE, the proteins were ex-

tracted from plant tissue as described above with the

following modifications. The leaf extracts were pre-

pared from the inner part (zone B and C) of segments

incubated for 0 or 7 days in water at 25 lmol m–2 s–1.

Triplicates of four segments were homogenized (16 cm

plant material in 600 ll phosphate buffer), combined,

and mixed with half the volume of a sample buffer

(196 mM Tris–HCl pH 6.8, 32% (v/v) glycerol, 0.02%

(w/v) bromphenol blue). Gel elctrophoresis was car-

ried out at 4�C in a Mini Protean II Dual Slab Cell (Bio

Rad, Glattbrugg, Switzerland) according to Laemmli

(1970) using 6% slab gels (1.5 mm). SDS was omitted

from the gels and the running buffer. Each lane was

loaded with an aliquot containing an equal amount of

leaf length (3.6 mm). Proteins were detected by Coo-

massie-Blue staining (40% Methanol, 0.1% Comassie

Brilliant Blue R-250). A piece containing Rubisco was

excised from the gel and crushed with a plastic pistil in

the presence of 40 ll of a 1:2 diluted sample buffer

(196 mM Tris–HCl pH 6.8, 6.3% (w/v) SDS, 16% (v/v)

b-mercaptoethanol, 32% (v/v) glycerol, 0.02% (w/v)

bromphenol blue). After centrifugation at 20,000g for

10 min at 4�C, the supernatant was boiled for 5 min.

Supernatant of 10 ll was loaded on a 9% slab gel

(1.5 mm). SDS-PAGE was carried out as described

above.

Results

Depending on the senescence-inducing treatment, dif-

ferent time courses for chlorophyll and protein degra-

dation were observed (Table 1). For intact plants

induced to senesce by nitrogen deficiency or darkness,

protein degradation was more pronounced than chlo-

rophyll degradation. In segments with increasing light

intensities, proteolysis was retarded compared to

chlorophyll degradation.

The level of carbohydrates was strongly influenced

by the senescence-inducing conditions (Table 1). It

differed markedly between segments exposed to low

light or darkness and segments incubated at the higher

light intensity. After 2 days of exposure to high light,

the amount of soluble carbohydrates was fivefold

higher than in segments incubated in low light. In dark-

incubated segments or dark-incubated intact plants,

the carbohydrate content decreased rapidly to a very

low level. Senescence induced by nitrogen deprivation

coincided with an increase of soluble carbohydrates.

The catabolism of proteins in senescing segments is

shown in Fig. 1a. During the incubation of segments in

low light, LSU was quite stable; however, a fragment of

about 50 kDa appeared on day 7 (Fig. 1a, b). The same

fragment was also present after 4 days of dark incu-

bation, but it was essentially absent in segments ex-

posed to high light. The 50 kDa band was identified

with antibodies against whole denatured LSU, but it

could not be detected by an antibody against the syn-

thetic version of the first 25 amino acids of the N-ter-

minal region of LSU (Fig. 1b). The 50 kDa cleavage

product was also observed in intact plants (Fig. 2a, b).

After 2 days of darkness, it was clearly visible, al-

though it did not accumulate to such high levels as

detected in segments. In nitrogen-starved leaves, LSU

was continuously degraded, but until day 13, the

50 kDa fragment did not accumulate (Fig. 3) and also

a longer period of N-starvation did not lead to the
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formation of this band (data not shown). The catabo-

lism of Rubisco in leaf segments was influenced by

temperature and the level of CO2 (Fig. 4). During the

incubation of segments at 25�C, LSU was catabolized.

The formation of the 50 kDa polypeptide was strongly

stimulated by low CO2 levels, whereas the influence of

light was less important. In contrast, at 35�C, LSU re-

mained more stable. Only at the lower light intensity,

especially in the absence of CO2, LSU declined, how-

ever, without any accumulation of the 50 kDa poly-

peptide. This result is consistent with the findings that

Rubisco itself is not very susceptible to elevated tem-

perature (Demirevska-Kepova and Feller 2004 and

references therein).

During the incubation of segments, it became obvi-

ous that the inner part of the segment senesced dif-

ferently from the outer part. To examine if the cutting

of segments and a partial destruction of cells are

responsible for this specific degradation of Rubisco,

wheat segments were separated into different zones

after incubation. The first, 0.5 cm at both ends (zone

A), the next, 1.0 cm at both sides (zone B), and the

inner 2 cm of the segment (zone C) were analyzed

separately (Fig. 5). The catabolism of proteins was

comparable in zone B and C, but it was different from

zone A where an altered polypeptide pattern became

visible. Furthermore, the 50 kDa polypeptide accu-

mulated to higher levels in zone B and C than at the

ends of the segment in zone A.

A cysteine protease mediating the first step in the

catabolism of LSU was described by Yoshida and Mi-

namikawa (1996). We therefore tested the influence of

the cysteine protease inhibitor E-64 in our system

(Fig. 6). In the presence of the inhibitor, the possible

fragment of Rubisco at 50 kDa did not accumulate in

the inner part of segments exposed to low light, al-

though the main subunit declined. An enhancement of

LSU degradation was achieved by incubating segments

either with low light in KCl or in darkness in water.

Again, the formation of the 50 kDa band was de-

creased by the addition of E-64. The influence of the

cysteine protease inhibitor on the catabolism of other

enzymes than Rubisco was also studied in order to

distinguish between Rubisco-specific and more general

Table 1 Chlorophyll, soluble
protein and carbohydrate
contents in extracts of
senescing wheat leaves or leaf
segments

Senescence was induced by
incubating segments (5 cm) in
darkness or in light (25 or
80 lmol m–2 s–1) or by
incubating intact plants either
in darkness or at N-limiting
conditions. Duplicates of two
or three (N-deficiency)
segments were analyzed

Treatment Time of
incubation (day)

Chlorophyll
(lg/segment)

Soluble proteins
(lg/segment)

Soluble carbohydrates
(lg/segment)

Leaf segments (leaf 2)
PAR: 80 lmol m–2 s–1 0 43 377 150

2 47 531 2,740
4 38 442 4,433
7 8 183 3,463

PAR: 25 lmol m–2 s–1 0 43 377 150
2 41 361 538
4 40 344 644
7 30 210 371

PAR: 0 lmol m–2 s–1 0 43 377 150
2 36 234 55
4 25 124 54
7 11 35 19

Dark-incubated intact plants (leaf 2)
Light 0 36 294 104

2 50 431 139
4 57 415 163
7 62 353 165

Dark 0 36 294 104
2 44 294 48
4 37 139 26
7 25 103 26

Nitrogen-starved intact plants (leaf 1)
+Nitrogen 0 48 419 153

4 45 438 154
8 45 206 146

13 46 228 204
–Nitrogen 0 59 394 141

4 36 262 132
8 41 105 273

13 23 57 304
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effects (Fig. 6). Rubisco activase (Activase), an en-

zyme present in the chloroplast, was very susceptible to

degradation. The addition of E-64 to the incubation

medium retarded the catabolism of this protein on low

light, in the presence and absence of KCl, and in

darkness. Another plastidial protein, glutamate syn-

thase (GOGAT), was much more stable than Activase

during incubations. Due to this stability, a protective

effect of E-64 was less clearly visible. Enzymes local-

ized in other compartments than the chloroplast were

analyzed for comparison. Phosphoenolpyruvate car-

boxylase (PEPC) present in cytosol was relatively sta-

ble. An effect of the protease inhibitor was therefore

hardly visible. The peroxisomal protein glycolate oxi-

dase (GO), however, was rapidly degraded. The

catabolism of this enzyme was only slightly affected by

E-64, but the data indicated that GO was protected

weakly during light incubations. The effect of E-64 on

protein catabolism during senescence of segments ex-

posed to higher light was tested in addition (Fig. 7).

Except PEPC, all proteins tested were essentially not

influenced by the presence of the inhibitor.

An incubation of leaf extracts, prepared from the

inner part of segments (zones B and C), revealed a

pH dependence of the proteolytic event leading to

the formation of the 50 kDa fragment (Fig. 8). At

pH 5.4, LSU was cleaved and the prominent frag-

ment transiently accumulated already after 2 h of

incubation. An additional weak band below this

fragment became visible on the gel after 2 h of

Fig. 1 Effects of light on the degradation of proteins in
senescing wheat leaf segments. The segments were incubated
in light (25 or 80 lmol m–2 s–1) or in darkness (0 lmol m–2 s–1).
LSU and LHCII were visualized by Coomasie Blue-staining (a).
A fragment of LSU (F) was detected at about 50 kD. LSU was
immunologically detected (b) with specific antibodies against the
whole denatured subunit (Anti-LSU) or against the N-terminus
of LSU (Anti-N-LSU)

Fig. 2 Degradation of proteins in the second leaf of intact plants
incubated in a light/dark cycle (light) or in permanent darkness
(dark). LSU and LHCII were visualized on a Comassie Blue-
stained gel. A fragment (F) at about 50 kD was detected on the
gel (a). Immunoblots (b) were decorated with antibodies against
the whole denatured LSU (Anti-LSU) or with antibodies against
the N-terminus (Anti-N-LSU). The fragment was recognized by
Anti-LSU but not by Anti-N-LSU
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incubation. The intensity of this band depended on

the preincubation conditions of the plant material.

The band did not cross-react with antibodies against

LSU. At a higher pH (7.5), Rubisco was less af-

fected. Even after 8 h of incubation, LSU was not

markedly reduced.

Non-denaturing-PAGE followed by SDS-PAGE

was used to determine if the 50 kDa polypeptide was

generated while LSU was still integrated in the holo-

enzyme, and whether it remained there after proteo-

lytic cleavage (Fig. 9a, b). On non-denaturing PAGE

from control plant material (day 0), only one sharp,

intense band was detected. Analysis of the senescing

plant material (day 7) revealed one sharp, intense band

slightly below the band from control plants (Fig. 9a).

From the intensity of this band and from the compar-

ison of its migration properties with those of molecular

weight markers, it was concluded that this predominant

band represents Rubisco holoenzyme from control and

senescing leaves. Additionally, the subsequent analysis

by SDS-PAGE showed the presence of LSU and SSU

(Fig. 9b). When the holoenzyme of the senescing

leaves was analyzed by SDS-PAGE, an additional

band below LSU at 50 kDa was present.

Discussion

The relative rates of chlorophyll and protein degrada-

tion have been demonstrated to vary according to the

senescence-inducing conditions applied. In addition,

distinctly different degradation patterns of LSU be-

came evident depending on the senescence-inducing

condition. In segments incubated in darkness or in low

light and in intact dark-incubated plants, a degradation

product of about 50 kDa accumulated while LSU de-

clined. Yoshida and Minamikawa (1996) described a

similar fragment of 50 kDa in incubated French bean

leaf extracts. In contrast to our results, they could not

detect the fragment in incubated detached leaves.

Since there are differences in the response of mono-

cotyledonous and dicotyledonous plants to detachment

(Feller and Fischer 1994), such conflicting data may

arise. In oat leaf slices, a senescence-like response was

Fig. 3 Degradation of LSU in the first leaf of intact wheat plants
under nitrogen deficiency. Two days after supplying either a
nitrogen-containing (+N) or a nitrogen-depleted (–N) nutrient
solution, the experiment was started (day 0). LSU was visualized
on a Coomassie Blue-stained gel and on an immunoblot
incubated with anti-LSU

Fig. 4 Effect of CO2 on the degradation of LSU under two
irradiances in senescing wheat leaf segments. Segments of leaf 1
were incubated at 25 or 35�C in ambient (+) or CO2-depleted (–)
air. The PAR was 50 or 150 lmol m–2 s–1. LSU and a possible
LSU fragment (F) in the range of 50 kD were visualized on a
Coomasie Blue-stained gel. Each lane was loaded with an
amount of sample equivalent to 0.7 mm of a leaf segment
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achieved by incubation with the host-selective toxin

victorin (Navarre and Wolpert 1999). It resulted in the

formation of an LSU cleavage product of 53 kDa in

darkness, whereas in light, LSU was degraded without

any accumulation of degradation products. Parrott

et al. (2005) also detected a band of this size in extracts

of excised (but not of attched) barley leaves after in-

tiating senescence. Yoshida and Minamikawa (1996)

further reported that Rubisco LSU is degraded by at

least two types of vacuolar proteases. A protease,

which belongs to the same cysteine protease class as

SH-EP, hydrolyzes LSU in the first step. In wheat ex-

tracts, a similar fragment of 50 kDa has been described

by Ishida et al. (1997). The cleavage of LSU was im-

paired in the presence of the cysteine protease inhibi-

tor E-64, in this system. Moreover, it has been reported

by Navarre and Wolpert (1999) that in victorin-treated

leaf slices, the formation of the 53 kDa fragment could

be prevented in a similar manner by the addition of

two different cysteine protease inhibitors (E-64 and

leupeptin). In intact chloroplasts and chloroplast

lysates, the most prominent cleavage products of LSU

had molecular weights of about 36 and 16-kDa, but no

50 kDa product was described (Desimone et al. 1996;

Ishida et al. 1997; Roulin and Feller 1998b). Degra-

dation products of about 50 kDa could be detected in

lysates only if chloroplasts were contaminated with

vacuolar proteases (Miyadai et al. 1990). In our

experiments, the protease inhibitor E-64 prevented the

formation of the 50 kDa polypeptide in leaf segments

incubated in low light and under senescence-promoting

conditions. Moreover, the proteolytic process leading

to the 50 kDa fragment in incubated extracts was

clearly stimulated at pH 5.4 as compared to pH 7.5. A

low pH (5.4) would be adequate for vacuolar enzymes,

but it would be far below the pH in the stroma of

functional chloroplasts. These results prompted us to

suggest that a vacuolar protease functions to degrade

Rubisco under conditions where the 50 kDa fragment

is formed. This conclusion is consistent with the

observation that such a fragment was formed in crude

Fig. 5 Proteolysis in different zones of senescing wheat leaf
segments. The segments were incubated in water (–), 50 mM
sorbitol (So), or 50 mM sucrose (Su) in low light (25 lmol m–2

s–1). After incubation, the segments were separated into zone A
(0.5 cm at both ends), B (next 1.0 cm at both sides) and C
(2.0 cm in the center). Proteins were visualized on a Coomassie
Blue-stained gel. Especially in zone B and C, a possible LSU
fragment (F) appeared below LSU at about 50 kD

Fig. 6 Effect of E-64 (100 lM) on the degradation of selected
proteins in senescing wheat leaf segments incubated for 7 days in
water (–) or 25 mM KCl at 25 lmol m–2 s–1 (light) or for 4 days
in water, in darkness (dark). After incubation, 0.5 cm at both
ends of the segments was removed and the remaining part was
analyzed. LSU, the possible LSU fragment (F), and LHCII were
visualized on a Coomassie Blue-stained gel. PEPC, GOGAT,
GO, and Activase were identified with specific antibodies
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extracts from young wheat leaves, but not in chloro-

plast lysates from the same source (Zhang et al. 2006).

A comparison of Rubisco with other proteins showed

that beside LSU, Rubisco activase was stabilized by the

protease inhibitor E-64. Other enzymes were either not

affected or were too stable to show an inhibition of

proteolysis. However, E-64 was unable to completely

inhibit protein degradation during the time course. In

high light, E-64 had no obvious effect, although pro-

teins were degraded. Therefore, at least two different

mechanisms, E-64-sensitive and E-64-insensitive, may

have taken place under the different conditions used

(high light, low light, darkness).

A senescence-associated formation of special vacu-

oles containing a senescence-specific cysteine protease

has been detected in leaves of Arabidopsis and soy-

bean (Otegui et al. 2005). Ricinosomes (precursor

protease vesicles) containing large amounts of a pa-

pain-type cysteine endopeptidase develop at the

beginning of programmed cell death in the nucellus of

Ricinus communis (Gietl and Schmid 2001; Green-

wood et al. 2005). The ricinosomes bud from the en-

doplasmatic reticulum (Schmid et al. 2001). The

Fig. 7 Degradation of selected proteins in senescing wheat leaf
segments exposed to light (80 lmol m–2 s–1) in the presence or
absence of 100 lM E-64. After incubation, 0.5 cm at both ends of
the segments was removed and the remaining part was analyzed.
LSU and LHCII were visualized on a Coomasie Blue-stained
gel. PEPC, GOGAT, GO, and Activase were identified with
specific antibodies

Fig. 8 Rubisco degradation in incubated wheat leaf extracts.
Wheat segments were preincubated for 3 days at 80 lmol m–2 s–1

in water (a) or at 25 lmol m–2 s–1 in water (b) or 25 mM KCl (c).
After preincubation, 0.5 cm at both ends of the segments was
removed and the remaining part was extracted with either an
acetate buffer (pH 5.4) or a phosphate buffer (pH 7.5). After
centrifugation, the supernatants were incubated at 30�C. LSU
and a fragment (F) at about 50 kD were detected on Coomassie
Blue-stained gels and on the immunoblot incubated with specific
antibodies against whole denatured LSU
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cysteine endopeptidase precursor in these vesicles

contains a C-terminal KDEL motif (Schmid et al.

2001). It remains open to debate whether this type of

endopeptidases was involved in the E-64-sensitive

degradation of Rubisco reported in this paper or an-

other type of cysteine-endopeptidase was involved.

In our system, the 50 kDa fragment was not or only

weakly detectable in segments exposed to high light

and in intact plants induced to senescence by nitrogen

deprivation, although the level of LSU declined. In

excised leaf segments incubated in higher light, car-

bohydrates markedly increased (Table 1), and in se-

nescing leaves of N-stressed plants, a twofold increase

of carbohydrates could be observed. On the other

hand, both detachment and low light intensities seem

to enhance the accumulation of the 50 kDa fragment.

Additionally, removing CO2 during incubations of

segments in high light led to low carbohydrate levels

and to accumulation of the possible LSU fragment at

50 kDa. These results indicated that the C-status of the

cell could play a regulatory role in the degradation of

Rubisco and in the accumulation of the 50 kDa poly-

peptide. Feeding of sucrose during incubations in low

light, however, did not prevent the formation of the

50 kDa polypeptide in the inner part of the segments.

LSU was degraded and the possible 50 kDa fragment

accumulated, although the carbohydrate level was in-

creased about threefold compared to controls (data not

shown). Individual sugars or other metabolites and

their compartmentation might be more relevant in this

context than the overall level of carbohydrates in a leaf

segment. We can only speculate about the regulatory

mechanisms leading to the 50 kDa polypeptide and the

involvement of assimilate levels or of the energy status

of the cell.

Since the formed 50 kDa fragment was not recog-

nized by a specific antibody raised against the N-ter-

minus of LSU, it appears likely that a smaller fragment

was removed from the N-terminus of LSU. Consistent

with this result, the cleavage product reported by Ishida

et al. (1997) also did not cross-react with anti-N-LSU.

The cleavage site was further characterized and located

at the 14th amino acid from the N-terminus (Yoshida

and Minamikawa 1996; Navarre and Wolpert 1999).

LSU seems to be especially vulnerable at this site.

Other investigators described that during in vitro

treatment of Rubisco with trypsin and the endopro-

teinase Lys C, proteolysis occurred at Lys 14 (Gutter-

idge et al. 1986; Mulligan et al. 1988; Houtz et al. 1989).

This proteolytic event caused a loss of carboxylase and

oxygenase activities without destroying the quaternary

structure and without disrupting the substrate binding

(Gutteridge et al. 1986; Mulligan et al. 1988). Proteo-

lytic inactivation of Rubisco was drastically reduced

under catalytic conditions (Houtz and Mulligan 1991).

The 50 kDa fragment accumulated, while LSU was

still integrated in the holoenzyme complex. Assuming

that the cysteine protease involved is located in the

vacuole, the question arises, how Rubisco as a holo-

enzyme would reach the protease (or vice versa).

Transfer of vesicles, autophagic processes or loss of

membrane integrity represent possible mechanisms

(Greenwood et al. 2005; Hörtensteiner and Feller

2002). It has been shown in Chlamydomonas rhe-

inhardtii that soluble plastidial proteins can be trans-

ferred via protrusions from the chloroplast to vacuoles

(Park et al. 1999). A mass exodus from chloroplasts of

senescing soybean leaves has been proposed by Guia-

met et al. (1999). For higher plant cells subjected to

carbon deprivation, an autophagic process leading to

the disintegration of plastids has been reported (Au-

bert et al. 1996). This mechanism provides a possibility

for plants to compensate for the energy demand under

carbon starvation by dissimilating lipids and proteins

instead of sugars.

For future work, it has to be considered that dif-

ferent proteolytic events may take place under various

senescence conditions and that a wide range of prote-

olytic enzymes may contribute to the catabolism of leaf

proteins during senescence (Bhalerao et al. 2003). The

involvement of vacuolar proteases in the degradation

of plastidial proteins should be considered as a possi-

bility, especially under low light intensity or under

carbon limitation.

Fig. 9 Rubisco holoenzyme isolated from a non-denaturing gel.
Wheat segments incubated for 0 or 7 days in water in low light
(25 lmol m–2 s–1) were analyzed by non-denaturing PAGE (a).
Rubisco holoenzymes and two marker proteins, thyroglobulin
(669 kDa) and ferritin (440 kDa), were visualized by a Coomas-
sie Blue-staining (without acetic acid). Each lane was loaded
with an amount of sample equivalent to 3.6 mm of a segment.
The band corresponding to Rubisco holoenzyme was excised
from the gel and further analyzed by SDS-PAGE (b). LSU, SSU,
and the possible LSU fragment (F) were visualized together with
a molecular weight marker in the range of 14–66 kDa on a
Coomassie Blue-stained gel
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