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Abstract

The light-dependent, cyclic changes of xanthophyll pigments:
violaxanthin, antheraxanthin and zeaxanthin, called the xan-
thophyll cycle, have been known for about fifty years. This
process was characterised for higher plants, several fern and
moss species and in some algal groups. Two enzymes, vio-
laxanthin de-epoxidase (VDE) and zeaxanthin epoxidase
(ZE), belonging to the lipocalin protein family, are engaged in
the xanthophyll cycle. VDE requires for its activity ascorbic
acid and reversed hexagonal structure formed by
monogalactosyldiacylglycerol. ZE, postulated to be a
flavoprotein, has not been purified yet and it is known from its
gene sequence only. Zeaxanthin epoxidation is dependent on
the reducing power of NADPH and presence of additional pro-
teins.

The xanthophyll cycle is postulated to play a role in many im-
portant physiological processes. Zeaxanthin, formed from
violaxanthin under high light conditions, is thought to be a
main photoprotector in autotrophic cells due to its ability to
dissipate excess of absorbed light energy that can be measured
as a non-photochemical quenching. In addition the zeaxanthin
formation is important in protection of the thylakoid mem-
branes against lipid peroxidation. Other postulated functions
of the xanthophyll cycle, which include regulation of mem-
brane physical properties, blue light reception and regulation
of abscisic acid synthesis, are also discussed.

List of abbreviations:

VDE; violaxanthin de-epoxidase
Vx; violaxanthin

MGDG; monogalactosyldiacylglycerol
DGDG,; digalactosyldiacylglycerol
PE; phosphatidylethanolamine

Zx; zeaxanthin

AX; antheraxanthin

Xc; xanthophyll cycle

ZE; zeaxanthin epoxidase

NPQ; non-photochemical quenching
ABA; abscisic acid

DTT; dithiothreitol

SCR; short conservative motifs

Hii; reversed hexagonal structure

Introduction

Light is one of the most important environmental
factors influencing photosynthetic activity of green
plants. The absorption of light by antenna pigments
and the transfer of excitation energy to the reaction
centres of Photosystems I and Il are the primary
steps in this process. To achieve high efficiency of
photosynthesis, plants have developed regulatory
mechanisms to adapt their photosynthetic appara-
tus to variable light conditions, which can rapidly
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change in both duration and intensity during the
day. At low light intensity, the system must be able
to convert as much as possible of the available en-
ergy into its useful form. However, under high light
condition, the available light energy may exceed
the plants ability to use the photosynthetic systems
at an efficient rate (see, for example, Fryer et al.
2002). To avoid damage under such conditions the
plants have created several adaptive and protective
mechanisms. These mechanisms may operate at
various levels of organisational complexity, e.g., as
amovement of assimilatory organs, (leaves), trans-
location of chloroplast within the cell, changes in
distribution of pigment-protein complexes in the
thylakoid membrane, and others. One of the mech-
anisms optimising the amount of light necessary for
photosynthesis is the xanthophyll cycle, which was
discovered by Sapozhnikov and coworkers in
1957. These researchers described a decrease in the
content of one of xanthophyll pigments,
violaxanthin (Vx), in plants after high light treat-
ment and its subsequent increase in low light or
darkness (Sapozhnikov et al. 1957). Yamamoto et
al. (1962) showed, that decrease in the VVx concen-
tration in plants in intensive light was connected to
the Vx transformation into the different xantho-
phyll pigment, zeaxanthin (Zx).

The following studies, mainly by Yamamoto
(Yamamoto and Takeguchi 1972, Yamamoto and
Kamite 1972, Yamamoto et al. 1974, Yamamoto
1979), Siefermann-Harms (1977) and Hager
(1980) allowed a more accurate description of the
light dependent transformation of xanthophy!l pig-
ments in plants. However, the xanthophyll cycle is
still the subject of intensive studies concentrated on
the explanation of both molecular mechanism of
the cycle and its diverse functions in plants.

Forms of the xanthophyll cycle and their
distribution

The light dependent changes in the Vx concentra-
tion, discovered by Sapozhnikov, are called the
xanthophyll cycle (Xc) or the violaxanthin cycle.
This process represents a sequence of two reac-
tions, both composed of two steps (Fig. 1). The first
reaction is the dependent on the light intensity
de-epoxidation of VVx to Zx. The second reaction of
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Fig. 1. Reactions of the xanthophyll cycle typical for higher
plants. VDE - violaxanthin de-epoxidase, ZE - zeaxanthin
epoxidase.

the cycle is the epoxidation of Zx to Vx. Both these
processes have one common intermediate product,
xanthophyll monoepoxide called antheraxanthin
(Ax). De-epoxidation and epoxidation are cata-
lysed by two different enzymes: the violaxanthin
de-epoxidase (VDE) is responsible for the first re-
action and the zeaxanthin epoxidase (ZE) is be-
lieved to mediate the second reaction.

The Xc, defined as above, was described in the
thylakoid membranes of all higher plants, ferns,
mosses and some algae (Table) (Stransky and Ha-
ger 1970, Adamska 1997). Recently, light depend-
ent and reversible changes of epoxylutein to lutein
and of lutein to epoxylutein were found in some
higher plants, (Cuscuta reflexa Roxb., Amyema mi-
quelli and in quercus), (Fig. 2; Bungard et al. 1999,
Matsubara et al. 2001, Garcia-Plazaola et al. 2002,
2003).

Amodification of the Xc was also described in ma-
rine alga, Mantoniella squamata (Goss et al. 1998).
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Table. Occurence of different forms of the xanthophyll cycle in hotoautotrophic organisms

The violaxanthin cycle

The diadinoxanthin cycle

Lack of xanthophyll cyclic changes

Higher plants Bacillariophyceae

Ferns Chrysophyceae
Mosses Xanthophyceae
Phaeophyta Rhaphidophyta

Chlorophyta Dinophyceae

Some species of Rhodophyta Euglenophyta

Cyanobacteria
Photosynthetic bacteria
Most of Rhodophyta
Cryptophyta

The most intriguing feature of this cycle is that the
second step of the de-epoxidation i.e. conversion of
Ax to Zx is very slow and, as a consequence, and
contrary to typical Xc, Ax is accumulated in place
of Zx . These observations lead to the conclusion,
that VDE from Mantoniella has less affinity to Ax
than VDEs from other plants. Another kind of
xanthophyll transformation was discovered in cells
of diatoms. In this systematic group, the viola-
xanthin cycle does not occur. However, another
xanthophyll pigment, diadinoxanthin, is de-epoxi-
dated to diatoxanthin in high light. The reaction re-
verses after turning light down (Stransky and
Hager 1970), (Fig. 3). Recently, it has been shown
(Lohr and Wilhelm 1999) that in Phaeodactylum
tricornutum, in addition to the diadinoxanthin cy-
cle, the Xc also operates. The diadinoxanthin
de-epoxidase from the cells of this alga is charac-
terised by higher pH optimum than diadinoxanthin

5,6-epoxylutein

lutein

Fig. 2. Light dependent and reversible changes of epoxylutein
to lutein (modified from Bungard et al. 1999, Matsubara et al.
2001).

de-epoxidase and violaxanthin de-epoxidases from
other organisms (Jakob et al. 2001).

The possibility of zeaxanthin synthesis from b-car-
otene in high light was shown for some repre-
sentantatives of Cyanobacteria (Demmig-Adams
1990), but neither Vx nor Ax was found in these or-
ganisms. As it is summarised in Table, except sev-
eral groups of autotrophs where one or two forms of
the Xc have been detected, there are also some
other groups, where the Xc has not yet been de-
scribed. Although, it must be noted that these
groups have not been fully explored for the pres-
ence of the xanthophyll cycle.

Enzymes of the xanthophyll cycle
Violaxanthin de-epoxidase (VDE) and zeaxan-
thin epoxidase (ZE) are two of the six known plant

Diadinoxanthin on

0\\\\\\\\5

HO

OH

NN

HO

Diatoxanthin

Fig. 3. The diadinoxanthin cycle occuring in diatoms (Lohr
and Wilhelm 1999).
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Fig. 4. Scheme of the secondary structure of typical lipocalin
domain (modified from Flower et al. 2000). SCR - short con-
servative region, A-J - b-sheets of b-barrel.

lipocalin proteins. Biological function of lipocalins
was described only for VDE and ZE (Bugos et al.
1998, Hieber et al. 2000). Lipocalins are widely
characterised for animals (Flower 1996) and Pro-
caryota (Barker and Manning 1997, Bishop 2000).
The main features of these proteins are, firstly, sim-
ilar tertiary structure, and secondly, their function
in organism. The characteristic feature of lipocalins
is the presence of eight, antiparallel b-sheets (Fig.
4). Among them, three highly conservative motifs,
known as SCR, can be distinguished (Flower et al.
2000):

- motif | - first of the eight b-sheets, preceded by a
short fragment of a-helix;

- motif 1l - fragments of the sixth and the seventh
b-sheet, together with the loop between these
sheets;

- motif Il - part of the eighth b-sheet together with
the fragment of C-terminal a-helix and the loop be-
tween this helix and the eighth b-sheet.

Some of lipocalins, thought previously to contain
eight b-sheets (Bugos et al. 1998), consist of six
b-sheets only as described for VDE and retinol
binding protein. The kernel lipocalins (e.g. retinol-
-binding protein, glycodelin or b-lactoglobulin) are
conserved in all SCRs and outlier lipocalins (VDE,
ZE, lazarillo — a neuronal protein in grasshoppers,
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Fig. 5. The tertiary structure of model lipocalin, bovine
b-lactoglobulin, complexed with retinoic acid (Kontopidis et
al. 2002). The picture was proceeded in MOLSCRIPT (Kraulis
1991) and Raster3D (Merritt and Bacon 1997).

and neuthrophil-gelatinase associated lipocalin)
are conserved just in two or only one SCR (Aker-
strom et al. 2000). Crystalographic research
showed that the characteristic structure of b-sheets
is responsible for creation of a deep, conical hol-
low, necessary for substrate binding. The depth of
the hollow in examined proteins is about 40 A
(Newcomer et al. 1984, Holden et al. 1987). The
structure like the one shown in Fig. 5 is typical for
lipocalins and is associated with their function. All
proteins belonging to this class are able to bind and
carry small hydrophobic molecules (Pervaiz and
Brew 1985). The presence of the hollow in VDE
molecules was already predicted (Yamamoto
1979). The depth of this hollow fits the length of Vx
molecule and this is why VDE is strictly specific to
3 OH, 5,6-epoxycarotenoids in configuration 3R,
5S, 6R (Yamamoto 1979, Grotz et al. 1999). Except
for VDE and ZE, there is only one other known
lipocalin with enzymatic activity - prostaglandin D
synthase (Urade and Hayashi 2000).

VDE isencoded in nuclear DNA. In 1996 cDNA of
VDE was cloned for the first time and expressed in
Escherichia coli (Bugos and Yamamoto 1996).
These experiments allowed to determine the num-
ber of amino acids (348 residues), and to calculate
the molecular mass of VDE as 39.9 kDa, which is
close to 43 kDa resulting from its determination us-
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Fig. 6. Conformational changes and pH dependence of VDE (modified from Eskling
1998). In pH 7 or higher, all VDE molecules are in unbound conformation. After pH
decrease, conformation of the enzyme changes, (S-bridge is exposed to environment),
and VDE molecules bind to the membrane. This process can be detained by reversible
inhibition by dithiothreitol (DTT) or irreversible inhibition by iodoacetamide.

ing PAGE (Akerlund et al. 1995, Arvidsson et al.
1996, Rockholm and Yamamoto 1996, Havir et al.
1997). Calculated isoelectric point amounts 4.57,
as compared with the 5.4 found experimentally
(Rockholm and Yamamoto 1996).

Besides the lipocalin domain, there are also two
other domains in VDE. The first of them is the
N-terminal region enriched in cystidyl moieties (11
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Fig. 7. Monogalactosyldiacylglycerol and inverted hexagonal
structure it forms in water.
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from all 13 found in VDE). This
region most probably contains
a-helices. Second, C-terminal do-
_ main is charged and enriched in
7 glutamyl residues and it probably
contains long a-helices. Domains
like those have also been found in
VDE of other plants. Comparison
of amino acid sequence (deduced
from cDNA) indicates a high de-
gree of homology among VDE
proteins from different plants.
VDEs from Arabidopsis thaliana,
Nicotiana tabacum and Lactuca
sativa differ just in nine amino
acid residues (Hieber et al. 2000).
Transit peptides of VDE do not
show such a high homology.
Their structure is similar but the
reported amino acid sequences
agree in eight residues only (Bu-
gos et al. 1998). Knowledge of
the amino acid sequence permits
to understand some specific prop-
erties of VDE. Cysteine enriched
domain is responsible for inhibi-
tory effect of dithiothreitol (DTT),
which reduces the disulphide bonds in the enzyme
molecule (Yamamoto and Kamite 1972, Bugos and
Yamamoto 1996). Inhibition (at pH 5.2 and 5.7) is
reversible, but it is not reversible after iodoacet-
amide treatment (Arvidsson et al. 1997). After
treatment at pH 7.2, the chemicals do not influence
enzyme activity which means that in such condi-
tions disulphide bonds are not exposed to the envi-
ronment. This result shows that the pH-dependent
conformational changes in the VDE molecule are
necessary for enzymatic activity (Fig. 6).

VDE was identified as a water-soluble and lumen
localised protein (Hager 1969). Later, VDE can be
either unbound or bound to the thylakoid mem-
brane depending on the lumenal pH (Fig. 6). Con-
nection to the membrane is important for enzymatic
activity (Hager and Holocher 1994). At pH lower
than 6.0, all VDE molecules are associated with the
membrane. If pH increases to 7.0 or more, the VDE
exists in an unbound form. In pH 6.6, half of VDE
molecules was found to be linked to the membrane
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Fig. 8. Postulated mechanism of ZE catalysed rection (Bouvier
et al. 1996). Flox -oxidised flavine, Fd - ferredoxin, FNR -
ferredoxin:NADP™ oxidoreductase. Flavine (cofactor of zea-
xanthin epoxidase) is reduced by Fd. Electrons to Fd reduc-
tions came from NADPH, through FNR. Reduced flavin binds
oxygen molecule, then the OH™ group is transfered to zeaxan-
thin, to create the unstable carbocation. In the following
reaction H* ion is removed and antheraxanthin molecule is
formed.

(Bratt et al. 1995). These properties of VDE are
useful for its purification (Yamamoto and Higashi
1978, Havir et al. 1997). Membrane joining occurs
by the C-terminal, a charged domain of the enzyme.
At low pH, glutamic acid residues are protonated
which can facilitate their association with the mem-
brane (Bugos and Yamamoto 1996, Hieber et al.
2000).The optimum pH for VDE activity in vivo is
4.8 and it increases to 5.2 after isolation (Hager
1969).

Activity of an isolated enzyme can be measured
spectrophotometrically. The reaction mixture ex-
cept Vx has to contain additional components -
monogalactosyldiacylglycerol (MGDG, Fig. 7)
and ascorbic acid (Hager 1969, Siefermann and
Yamamoto 1975b, Yamamoto and Higashi 1978,
Latowski et al. 2000, Muller-Moule et al. 2002).
MGDG is the main lipid component of the thyla-
koid membrane (about 50 % of total thylakoid
lipids). According to Yamamoto, MGDG forms in
vitro micelles containing Vx molecules, which are
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exposed in this way to VDE (Yamamoto and Higa-
shi 1978). Ascorbic acid (Asc) is thought to be an
endogenous electron donor for de-epoxidation and
regulator of the VDE activity (Sokolove and
Marscho 1976, Yamamoto 1979, Neubauer and
Yamamoto 1994, Bratt et al. 1995). The mecha-
nism of the transport of Asc through the thylakoid
membrane has not been elucidated yet. Different
researches showed that Asc transporters can be
found in the cell and outer chloroplast membranes
but not in the thylakoid membrane. Consequently,
it has to be assumed that Asc molecules diffuse
across the thylakoid membrane (Foyer and Lelan-
dis 1996). However, concentration of the protona-
ted form of Asc increases as a function of a decrease
of the lumenal pH during photosynthesis (Fig. 8).
Protonated form of Asc can influence VDE activity
simply as a substrate (Bratt et al. 1995, Eskling et
al. 1997). Asc is converted into dehydroascorbate
(DHA) during Ax formation. On the other hand, no
mechanism engaged in rereduction of DHA into
Asc in thylakoid lumen is known. Such process,
however, is believed to occur in the stroma. This is
why the presence of the DHA transporter in the
thylakoid membrane is postulated with the assump-
tion that Asc can freely diffuse across membranes
(Bratt et al. 1995, Foyer and Lelandis 1996,
Eskling et al. 1997).

Zeaxanthin epoxidase (ZE) is the second identi-
fied plant lipocalin. Its cDNA was first character-
ized for Nicotiana plumbaginifolia (Marin et al.
1996), later for Capsicum annum (Bovier et al.
1996), Lycopersicon esculentum (Burbidge et al.
1997), Arabidopsis thaliana and Prunus armenia-
ca (Hieber et al. 2000). ZE also contains tertiary
structure characteristic for lipocalin (Fig. 4). Dif-
ferences between ZE and VDE are in the number of
amino acids between motifs | and Il. In the case of
ZE from Nicotiana there are 103 residues, but 65 to
73 residues were found in VDEs from different
sources. The increase in amino acid number gives
evidence about longer loop, or about the existence
of additional b-form in that region of the protein
(Bugos et al. 1998). The level of homology be-
tween motif 11 and 11l of ZE and those motifs of
other lipocalins seems to be rather low (Flower et
al. 1993, Flower 1996). The homology to VDE is
also low (Hieber et al. 2000). However, it should be



noticed that the first motif of different ZEs (except
ZE of Prunus) aligns well with other lipocalins. In
this region, after triptofan and tyrosine residues,
follows an unusual cysteine moiety. This position is
conserved in every known lipocalin (Hieber et al.
2000). Besides the similarity in the tertiary struc-
ture, there are no similiarities between ZE and VDE
in the amino acid sequence. Contrary to VDE, ZE is
proposed to be localised on the stromal side of the
thylakoid membrane. ZE is thought to be a mono-
oxygenase, catalysing reaction of epoxidation in
positions 5 and 6 of xanthophyll rings (Hieber et al.
2000). In plants, this process occurs in the dark or in
weak light. Some data indicate, that it can be ob-
served even in high light epoxidation (Siefermann
and Yamamoto 1975a, Gilmore et al. 1994, From-
moltetal. 2001). Optimum pH for ZE activity is 7.5
(Bouvier et al. 1996). Until now, in spite of many
attempts, an active form of this enzyme has not
been isolated, however Marin et al. (1996) were
able to express this protein in Escherichia coli.

Molecular mechanism of the xantophyll cy-
cle and its regulation

Since Sapozhnikov’s discovery of light dependent
Vx transformation, the mechanism of this reaction
is intensively explored. However, after almost 50
years of research on that subject, the molecular
mechanism of xanthophylls transformation is still
far from being completely understood. In accor-
dance with requirement of the MGDG for the in vi-
tro reaction, it has already been proposed that Vx is
located in the micelles of that galactolipid (Yama-
moto et al. 1974). In such structures, believed to
consist on average of 28 MGDG molecules, VX can
oscillate and finally come in contact with substrate
binding site of the VDE. Then, one of the two ep-
oxy groups of the ionone rings can be
de-epoxidated and Vx changed into
antheraxanthin. This part of the reaction mecha-
nism is rather easy to explain, but it is not clear how
the second step, the transformation of Ax to Zx, oc-
curs. Yamamoto suggested that during oscillation
in micelles Ax can make a full turn and the second
ionone ring may become accesible to the enzyme
(Yamamoto and Higashi 1978). Some researchers
suggested that in vivo Vx de-epoxidation occurs
within thylakoid protein-pigment complexes

THE XANTHOPHYLL CYCLE

(Thayer and Bjorkman 1992) but a great number of
experiments demonstrated that the reaction takes
place in the lipid part of the membrane. Vx was
proven to bind to thylakoid membrane proteins
weaker than other carotenoids. Results obtained re-
cently by Ruban et al. (2002) suggest, that the Xc
pigments are not freely located in thylakoid mem-
branes, but are bound by proteins of light harvest-
ing complexes. However, the same data shows, that
these pigments can easily dissociate from their loci.
Perpendicular location of Vx in the thylakoid mem-
brane was confirmed by experiments with VDE
added from the stromal side of the thylakoids
(Akerlund et al. 1995). In addition, Gruszecki
(1995) showed, that this pigment locates perpen-
dicularly to the membrane surface in model lipid
bilayers.

The main problem of the molecular mechanism of
Xc is de-epoxidation of the ionone ring located on
the stromal side of the thylakoid membrane, i.e. on
the opposite side to the enzyme location. An as-
sumption of flip-flop of Ax, created by Vx de-ep-
oxidation has to be made to explain the Ax epoxide
group removal. This hypothesis was never fully
clarified and Ax flip-flop was hard to imagine in
membrane bilayer for thermodynamical reasons.
We have proposed a new mechanism for Vx con-
version to Ax and Zx, which also takes into account
indispensability of MGDG for de-epoxidation
(Latowski et al. 2002). In accordance with the
MGDG properties — hydratation degree of about 5
water molecules per one molecule of MGDG, in
comparison to about 50 and 35 in the case of
DGDG and PC, respectively (Sen and Hui 1988,
Newman and Huang 1975, Finer and Drake 1974,
Lisetal. 1982) and value of critical packing param-
eter (Israelachvili and Mitchell 1975) it has been
shown that this lipid does not create micelles in wa-
ter, but it forms reversed hexagonal structures (Hy;)
(Sen et al. 1981, Shipley et al. 1973) . The new
model of Xc functioning is based on the in vitro ex-
periments, consisting of PC liposomes enriched in
MGDG and VX, i.e. the system which resembles
more the thylakoid membrane that the commonly
used system composed of MGDG aggregates. The
presence of the Hj; domains inside native thylakoid
membranes and the liposomes composed of PC and
MGDG has been described by several authors (De
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Kruijffetal. 1979, Gounaris et al. 1983a, b, Haran-
czyk et al. 1995, Sprague and Staehelin 1984,
Quinn and Wiliams 1983, van Venetié and Verkleij
1981, Walde et al. 1990, Latowski et al. 2002). In
liposomes composed of PC and MGDG, the de-ep-
oxidation rate of VVx depends on the MGDG/VX ra-
tio. In order to be de-epoxidated into Ax, VX has to
reach the MGDG domain by lateral diffusion and
the rate of de-epoxidation depends on the rate of the
lateral diffusion of VVx to these structures (Latowski
etal. 2002). Due to the presence of Hi phase in the
MGDG domain, Ax can easily turn in the mem-
brane, performing the flip-flop type of movement.
The role of Hy structures in Vx and Ax de-epoxi-
dation has been confirmed in experiments with an-
other non-bilayer-forming lipid, phosphatidyletha-
nolamine (PE). Active Vx de-epoxidation was ob-
served when MGDG was replaced by this lipid
(Latowski et al. 2004).

Until zeaxanthin epoxidase is not isolated and stu-
died in vitro, the molecular mechanism of epoxi-
dation of Zx to Vx can not be fully elucidated.
However, it is known that for its activity ZE re-
quires NADPH, FAD, ferredoxin and oxygen
(Hager 1975, Siefermann and Yamamoto 1975c,
Biichetal. 1996, Bouvier etal. 1996). Other known
epoxidases also need additional proteins for their
activity. For example, squalen epoxidase needs
flavoprotein oxidase and NADPH-cytochrome
P450 oxidase (Ono et al. 1982, Bouvier et al.
1996). Similiar dependence is proposed for ZE.
Bouvier et al. (1996) suggest that electrons from
NADPH are transferred through
ferredoxin:NADP™* oxidoreductase to ferredoxin,
then to FAD. Reduced FAD is able to bind oxygen
molecule and to form hydroperoxyl moiety. Part of
this moiety is transfered to Zx, as a hydroxyl radi-
cal. Zeaxanthin forms unstable carbocation and
then proton from Zx is transferred through FAD to
oxygen and finally water molecule is formed. After
loss of proton Zx becomes antheraxanthin (Fig. 8).
Ax undergoes an analogical reaction of transforma-
tion to Vx. In accordance with the data of
zeaxanthin preference to membrane protein com-
plexes, it is proposed that transformation Zx - Ax
occurs in that place (Gruszecki and Krupa 1993,
Jahns and Schweig 1995, Hartel et al. 1996, Hager
1966, Arvidsson et al. 1993, Bouvier et al. 1996,
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Bassi et al. 1993, Ruban et al. 1994, Lee and
Thornber 1995, Farber and Jahns 1998). Similarly
to de-epoxidation reaction, Ax has to perform a
flip-flop type movement to be further epoxidated to
Vx. However, until now there is no knowledge how
second ionone ring can be exposed to ZE. Two
mechanisms are possible: (i) Ax molecule turns in
precincts of protein complex, (ii) it leaves the com-
plex and translocates to lipid domains, containing
reversed hexagonal structures where the flip-flop
takes place. It is also possible, that both proteins
and lipids are engaged in the Ax flip-flop.

Functions of the xanthophyll cycle

Quenching of excess energy in PSII

Thorough and detailed studies by different re-
search groups showed the dependence between the
content of Zx and non-photochemical quenching
(NPQ) in chloroplasts (Demmig et al. 1987 a, b,
Krause 1988, Demmig-Adams et al. 1990, Dem-
mig-Adams 1990, Krause and Weis 1991, Dem-
mig-Adams and Adams 1992, Pfundel et al. 1994,
Demmig-Adams et al. 1995, Jin et al. 2001, Ma et
al. 2003). Even better correlation was found be-
tween NPQ and the total amount of Zx + Ax (Gil-
more and Yamamoto 1993, Adams et al. 1995). An
increase in NPQ after light treatment and its corre-
lation to Vx de-epoxidation in spinach (Spinacia
oleracea) leaves, isolated chloroplasts and purified
LHC complexes were also observed (Ruban and
Horton 1999). In diatoms, the NPQ level is well
correlated with the diatoxanthin amount, which
was created during de-epoxidation of diadin-
oxanthin (Lavaud et al. 2002 a, b). In other experi-
ments, photoprotection of diatoxanthin during pro-
longed UV-A and UV-B ilumination of diatoms
(Thalassiosira weissflogii) has been demonstrated
(Zudaire and Roy 2001). These UV-insensitive dia-
toms have increased activity of the diatoxanthin cy-
cle as an answer to light stress.

It is generally thought that the xanthophyll cycle is
one of the main photoprotection mechanisms in
autotrophic cells. Induction of energy transfer from
chlorophyll to Ax and Zx, in connection with struc-
tural transformations make possible energy dissi-
pation by Ax and Zx in LHC (Horton et al. 1991,



Frank et al. 1994, Gilmore et al. 1995, Yamamoto
and Bassi 1996, Gilmore and Yamamoto 2001, L. et
al. 2002, Polivka et al. 2002). On the other hand, it
has been shown that accumulation of Zx is not the
main cause of chlorophyll fluorescence quenching
(Leipner et al. 2000). Moreover, analysis of Arabi-
dopsis mutants and its wild form proved that Zx is
not responsible for the dissipation of energy excess
in PSII, and that photoprotection mechanisms of
the xantophyll cycle are not simply associated with
the replacement of Vx by Ax or Zx (Tardy and
Havaux 1996, Peterson and Havir 2000). In Ara-
bidopsis npgl mutant without active VDE, the ex-
tent of photoinhibition was comparable to that in
the wild form of the plant after light stress (Havaux
and Niyogi 1999). Kiilheim et al. (2002) showed,
that in npgl mutant the fitness decreased rather in
fluctuanting light conditions, than in a response to
high light. It has been demonstrated that there is no
difference between Vx and Zx in fluorescence
quenching from purified LHCII, which was incor-
porated into liposome, (Gruszecki et al. 1997). Ex-
periments with Arabidopsis mutant aba-1 and
aba-2 containing only Zx and lutein showed that
the presence of Zx is not sufficient for fluorescence
guenching, both in vivo and in isolated protein-
-pigment complexes (Pesaresi et al. 1995).

Protection against lipid peroxidation

Degradation of lipids in pea leaves was observed
after light stress (Havaux et al. 1991). In intensive
light, the content of lipids in leaf cells decreased
and the saturated/unsaturated lipid ratio increased.
The lipid degradation was more significant when
Zx formation was inhibited by DTT (Havaux et al.
1991). Similiar results came from the experiments
in which the lipid contents were measured in re-
sponse to high illumination in npgql mutant (Ha-
vaux and Niyogi 1999). In comparison to the wild
Arabidopsis form, npgl mutant had significantly
higher level of lipid photooxidation. Interestingly,
in tomato leaves, Zx level and lipid degradation
(measured as ethylene formation) were also corre-
lated. In 3 °C and high light condition (low level of
created Zx), ethylene production was intensive.
But in 23 °C and high light condition, ethylene se-
cretion was lower and the Zx content increased
(Sarry et al. 1994).

THE XANTHOPHYLL CYCLE

It is also possible that Xc and Zx play a role in se-
nescence, as a photoprotectant against lipid photo-
oxidation (Munne-Bosch and Alegre 2002).

Regardless the differences among the authors, the
Xc is recognized as one of the main adaptation
mechanisms responsible for a fast response to
peroxidation and creation of antioxidant sub-
stances in thylakoid membranes. This
photoprotectant is Zx, which can quench singlet
oxygen (Krinsky 1979) and other free radicals
(Burton and Ingold 1984, Lim et al. 1992).

Blue light reception

Another postulated function of the xanthophy!l cy-
cle is blue light reception. Some researchers sug-
gested that Zx is responsible for the blue-light-
-dependent stomata opening (Srivastava and
Zeiger 1995, Quinones et al. 1996, Talbott et al.
2002), chloroplast movement (Tlatka et al. 1999),
and phototrophism (Quinones and Zeiger 1994).
HPLC measurement of Zx level as a function of
chloroplast movement in strong and weak light in
Lemma trisulca proved a good correlation between
these two variables (Tlatka et al. 1999). Because of
this finding, Zx is supposed to be a photoreceptor in
blue-light stimulated chloroplast movement.
Moreover, Zea mais coleoptiles, grown in dark-
ness, did not show blue-light dependent
phototrophism. Interestingly, these coleoptiles did
not contain Zx. The degree of increase in Zx level
(regulated by red light, darkness periods, and use of
DTT) correlated well with the blue-light stimulated
phototrophism of maize coleoptiles (Quinones and
Zeiger 1994). The DTT-related inhibition of Zx
synthesis consequently inhibited
blue-light-dependent stomata opening in Vicia faba
epidermis, what was thought to be a proof of the
photoreceptor function of Zx (Srivastava and
Zeiger 1995). Similar conclusions came from anal-
ysis of blue-light phototrophism or stomata open-
ing activity spectrum and absorption spectrum of
Zx (Quinones et al. 1996). However, Palmer et al.
(1996) showed, in experiments correlating the level
of protein phosphorylation and blue-light induced
phototropism, that there is no connection between
Zx, or any other carotenoid, and phototropism.
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Regulation of membrane physical properties

Modulatory effects of carotenoids on physical pro-
perties of model and natural membranes have been
known since the 70-ties. Soon after Xc characteri-
sation, there was a suggestion that this process may
regulate physical properties of thylakoid membra-
nes (Siefermann and Yamamoto 1975a, Yamamoto
1979). This hypothesis has been confirmed by
other studies (Gruszecki and Strzatka 1991, Tardy
and Havaux 1997).

In natural and model membranes, zeaxanthin ap-
pears to have the strongest influence on such mem-
brane properties as temperature of phase transition,
molecular dynamics, permeability and polarity gra-
dient (Lazrak et al. 1987, Gruszecki and Strzatka
1991, Subczynski et al. 1991, Subczynski et al.
1992, Havaux and Gruszecki 1993, Strzatka and
Gruszecki 1997, Tardy et al. 1997, Jagannadham et
al. 2000, Socaciu et al. 2000, Kostecka-Gugata et
al. 2003). It was shown for two antarctic bacterial
species, Sphingobacterium antarcticus and Sphin-
gobacterium multivorum, that membrane fluidity is
regulated mainly by Zx (Jagannadham et al. 2000).
Zx is able to stiffen the membrane in liquid-
-crystalline phase and this process is connected to
orientation of this xanthophyll in the membrane.
Long axis of Zx molecule is oriented perpendicu-
larly to the membrane surface and ionone rings are
anchored in peripheral, polar zones of the mem-
brane (Lazrak et al. 1987, Gruszecki and Sielewie-
siuk 1991, Subczynski et al. 1992). In addition, Zx
decreased molecular dynamics of lipids, limiting
heat-induced lipid mobility and preventing mem-
brane desorganisation (Gruszecki and Strzatka
1991, Havaux and Gruszecki 1993, Tardy and
Havaux 1997).

Regulation of abscisic acid synthesis

One of the postulated Xc function is its involvement
in abscisic acid (ABA) synthesis. It has been shown
(Marin et al. 1996, Pogson et al. 1996, Audran et al.
1998) that \Vx is one of the intermediate products in
that process. One could suppose that conditions
causing an increase in VDE activity, would cause
decrease in ABA production. Exogenously added
ABA, which inhibits its synthesis, resulted in higher
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concentration of Zx and greater photoprotection of
PSII (lvanov et al. 1995).

The existence of a relationship between Xc pigments
and ABA synthesis was proven for Nicotiana
tabacum. After ozone treatment, VX level in leaves
strongly decreased, but Ax and Zx contents changed
insignificantly. This changed was accompanied by a
pronounced increase in ABA (Pasqualini etal. 1999).

Other postulated functions of the xantophyll cycle

Krinsky (1966) suggested that formation of Vx
through the incorporation of oxygen to Ax and Zx
plays a role in photoprotection by lowering the ox-
ygen level in chloroplasts. Oxygen, together with
high light conditions, lead to the destruction of the
photosynthetic apparatus. However, according to
recent studies, it is known that photoprotection is
associated with the reverse process, i.e., conversion
of Vx to Axand Zx (Demmig-Adams 1990). On the
other hand, Sapozhnikov and Calvin postulated
that Xc takes part in the oxygen evolution during
photosynthesis (Sapozhnikov et al. 1957, Sapo-
zhnikov 1967 1973), however this proposal turned
out not to be correct (Vrettos et al. 2001)

The xanthophyll cycle - still a lot of questions

The xanthophyll cycle has been investigated for
about 50 years but functions and molecular mecha-
nism of this process are still not completely known.
Some hypotheses were disproved, some other were
created. Recently, some new aspects of molecular
mechanism of Xc action have been elucidated. A
new model system to study VDE activity in vitro
has been worked out. The regulatory role of the mo-
lecular dynamics and structure of the membrane in
de-epoxidation reaction were demonstrated in
model and natural systems. Also the importance of
MGDG and Hy; in the molecular mechanism of the
xanthophyll cycle has been described.

Presently, the xanthophyll cycle is thought to play
a role in quenching of excess energy in PSII, pro-
tection against lipid peroxidation, blue light recep-
tion, regulation of physical membrane properties,
and regulation of abscisic acid synthesis. There are,
however, remaining important questions, e.g. Xc
regulation in different plant species, Xc regulation
during plant growth and senescence, lipid depend-



ence of VDE activity, and an almost totally un-
known molecular mechanism of zeaxanthin epoxi-
dation to antheraxanthin and zeaxanthin.
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