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Abstract
Applications, such as military and disaster response, can benefit from robotic collectives’ 
ability to perform multiple cooperative tasks (e.g., surveillance, damage assessments) effi-
ciently across a large spatial area. Coalition formation algorithms can potentially facilitate 
collective robots’ assignment to appropriate task teams; however, most coalition forma-
tion algorithms were designed for smaller multiple robot systems (i.e., 2–50 robots). Col-
lectives’ scale and domain-relevant constraints (i.e., distribution, near real-time, minimal 
communication) make coalition formation more challenging. This manuscript identifies 
the challenges inherent to designing coalition formation algorithms for very large collec-
tives (e.g., 1000 robots). A survey of multiple robot coalition formation algorithms finds 
that most are unable to transfer directly to collectives, due to the identified system differ-
ences; however, auctions and hedonic games may be the most transferable. A simulation-
based evaluation of five total algorithms from two combinatorial auction families and one 
hedonic game family, applied to homogeneous and heterogeneous collectives, demonstrates 
that there are collective compositions for which no evaluated algorithm is viable; however, 
the experimental results and literature survey suggest paths forward.

Keywords Robotic collectives · Multiple robot systems · Coalition formation · Task 
allocation

1 Introduction

Robotic collectives, defined here as >  50 robots with limited sensing and computa-
tional capabilities as compared to a typical robot in a smaller multiple robot system, are 
increasingly relevant for military (e.g., building or area surveillance) (Defense Advanced 
Research Projects Agency, 2019) and disaster response (e.g., damage assessments, search 
and rescue) (Hildmann & Kovacs, 2019) applications. A fundamental problem is coalition 
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formation for task allocation, or partitioning robots into teams for task performance (Ger-
key & Matarić, 2004; Korsah et al., 2013). Effective coalition formation can enable collec-
tives to perform multiple cooperative tasks distributed over large environments efficiently; 
however, collectives’ scale and the application domains’ constraints make this problem 
challenging.

Military and disaster response applications require high-quality coalition formation 
solutions for hundreds to thousands of robots in near real-time (e.g., < 5 min). Low-band-
width, deployed networks (e.g., mobile ad hoc networks) will often be utilized, due to dam-
aged permanent infrastructure or remote deployment locations (Klinsompus & Nupairoj, 
2015). Minimal, distributed communication is required to reserve bandwidth for mission 
critical communications (Jahir et al., 2019; Legendre et al., 2011; Shah et al., 2019). Addi-
tionally, frequent communication with a central entity is infeasible, as collectives can be 
highly distributed (Berman et al., 2009a; Hamann, 2018).

Many prior collective coalition formation algorithms assign approximate fractions 
of collectives to tasks (e.g., Berman et al., 2009b; Mather & Hsieh, 2011), or determine 
when robots participate in continuous tasks (e.g., Castello et al., 2013; Pang et al., 2019). 
These algorithms have been applied to large collectives, but do not address common robot 
coalition formation requirements, including optimizing solutions based on task utilities 
(i.e., numbers representing how important tasks are to a mission) and allowing team size 
specification. Many tasks require a minimum team size (e.g., cordon, area coverage), or an 
exact team size (e.g., moving a piece of debris, guarding a building entrance). This manu-
script’s focus is exact team sizes, as assigning more than the minimum robots unnecessar-
ily reduces the resources available for new tasks, which can emerge frequently in highly 
dynamic domains.

Other existing coalition formation incorporates exact and approximation (e.g., Aziz 
et al., 2021; Dutta & Asaithambi, 2019; Service & Adams, 2011a; Zhang & Parker, 2013), 
auction-based (e.g., Chen & Sun, 2011; Guerrero et  al., 2017; Oh et  al., 2017), biologi-
cally-inspired (e.g., Agarwal et al., 2014; Mouradian et al., 2017; Yeh & Sugawara, 2016; 
Haque et  al., 2013), and, recently, hedonic game-based (e.g., Czarnecki & Dutta, 2019; 
Jang et al., 2019) algorithms. However, software agent algorithms (e.g., Liemhetcharat & 
Veloso, 2014; Michalak et al., 2010; Rahwan & Jennings, 2008; Rahwan et al., 2009; She-
hory & Kraus, 1995; Sless et al., 2014) are not directly transferable to collectives due to 
differences between software agents and embodied robots (Vig & Adams, 2007). Addition-
ally, robot coalition formation algorithms were evaluated predominantly for smaller multi-
ple robot systems, not collectives, and few evaluations consider practical communication 
requirements, so it is unknown if the algorithms will scale. Thus, existing algorithms either 
are not, or have not been demonstrated to be, viable for collectives.

This manuscript assesses robot coalition formation algorithms’ viability. A simulation-
based evaluation with up to one thousand robots demonstrates that multiple robot coali-
tion formation algorithms do not fully satisfy the target domains’ solution quality, runtime, 
and communication requirements when applied to collectives. In fact, there are collective 
compositions for which no existing algorithm is suitable; however, potential avenues for 
addressing these collective compositions are suggested.

1.1  Coalition formation for task allocation

Coalition formation for task allocation partitions agents into teams for task performance 
(Service & Adams, 2011b). The input is a set of n agents, A = {a1,… , an} , a set of m 
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tasks, T = {t1,… , tm} , and a characteristic function, f ∶ (tj,Cj) → ℝ , where Cj ⊆ A is the 
set of agents assigned to task tj (Service & Adams, 2011a). Characteristic functions vary by 
application; however, f (tj,Cj) generally represents the inherent value of coalition Cj com-
pleting task tj (Service & Adams, 2011a; Zhang & Parker, 2013).

A coalition formation for task allocation problem assumes that a coalition’s value 
can be calculated considering only agents in the coalition (i.e., not considering agents 
assigned to other tasks) (Rahwan et al., 2009). The optimal solution is a coalition structure, 
CS = {(t1,C1),…(tm,Cm)} , that satisfies:

This manuscript considers a characteristic function where f (tj,Cj) is equal to task tj′s util-
ity (i.e., representing the inherent value to the overall mission of completing tj ) if Cj pro-
vides all of tj′s required capabilities, and 0 otherwise. Maximizing the utility enables the 
collective to maximize its achievement of mission objectives; thus, the goal is for a col-
lective coalition formation to achieve as close to 100% of the total mission utility as pos-
sible. However, deriving an optimal solution, or a provably reasonable approximation, is 
NP-hard (Service & Adams, 2011a; Sandholm et  al., 1999). Specifically, no polynomial 
time algorithm can produce an O(|C|1−�) or O(m1−�) approximation, where C  is the set of 
non-zero valued coalitions and 𝜖 > 0 , unless P = NP (Service & Adams, 2011a; Sandholm 
et al., 1999). Additionally, the establishment of any bound on solution quality requires con-
sidering at least O(2n−1) coalition structures (Sandholm et al., 1999). This computational 
complexity hinders producing high-utility coalition structures for large numbers of agents.

2  Coalition formation for multiple versus collective robot systems

Coalition formation has received much attention in the software multi-agent and multiple 
robot communities, where a software multi-agent system comprises two or more software 
agents, and a multiple robot system is two to fifty robots. Software multi-agent coalition 
formation cannot be transferred directly to robotic systems, as robots have different con-
straints and practical considerations (Vig & Adams, 2007). As embodied agents, robots 
have kinematic and dynamic constraints and relatively static, nontransferable capabilities 
(i.e., sensors and actuators) (Vig & Adams, 2007). Robots are also likely to have power 
constraints (Diehl & Adams, 2021b) and less available communication (Diehl & Adams, 
2021a), which coalition formation must accommodate.

Multiple robot coalition formation considers embodied agents; however, transferring 
algorithms to robotic collectives can be complicated by differences in scale, capabilities, 
and communication. Key differences between collective and multiple robot systems must 
be considered when designing collective coalition formation algorithms, as summarized in 
Table 1.

2.1  Agent architecture

Robotic collectives typically incorporate simple control models (Brambilla et  al., 2013) 
(e.g., repulsion, attraction, orientation (Hartman & Beneš, 2006), while multiple robot sys-
tem architectures are often more sophisticated (e.g., belief-desire-intention). A reason for 

CS∗ = argmax
CS

m∑

j=1

f (tj,Cj).
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this difference is design choice. Robotic collectives were inspired by biological collectives, 
which achieve complex tasks through cooperation, rather than individual sophistication 
(Brambilla et al., 2013). Another reason is scale. Robotic collectives have more robots, so 
the allowable monetary and time costs per robot are lower; thus, even as robot technology 
and collective design improve, collective robots are likely to be less capable than their mul-
tiple robot system counterparts and have less computation available for coalition formation.

2.2  System capabilities

System capabilities are the tasks that a multiple robot system or collective can perform as 
a product of the individual robots’ capabilities and interactions with other robots and the 
environment. Capabilities are relatively static when they correspond to hardware (e.g., sen-
sors and actuators) (Vig & Adams, 2007), but emergent behaviors can vary dynamically 
(Beni, 2005).

Multiple robot systems can exhibit emergent behaviors, especially as more advanced 
artificial intelligence is incorporated (e.g., Costa et al., 2019); however, emergent behavior 
is intrinsic to collectives. Biologically-inspired collective capabilities (e.g., target selection 
Reina et al., 2015) typically rely on emergent behaviors, and the use of reactive architec-
tures (see Sect. 2.1) renders interactions with the environment and other robots especially 
impactful (Hartman & Beneš, 2006). Collective coalition formation must adapt task assign-
ments quickly as emergent capabilities change.

2.3  System composition

Collective and multiple robot systems may be homogeneous (i.e., robots have identical 
capabilities) or heterogeneous (i.e., some robots have different capabilities). Collective 
research has primarily considered homogeneous systems (e.g., Reina et al., 2015; Prorok 
et al., 2017; Van Der Blom & Bäck, 2018), while multiple robot coalition formation has 
considered heterogeneity extensively (e.g., Guerrero et  al., 2017; Sen & Adams, 2013b; 
Zhang & Parker, 2012). Heterogeneous collectives enable more diverse applications 
(Defense Advanced Research Projects Agency, 2019; Clark et al., 2021; Prabhakar et al., 
2020); thus, collective coalition formation must also account for heterogeneity.

Multiple robot systems can be highly heterogeneous, as each robot may be manufac-
tured with unique capabilities (Hamann, 2018), while collectives’ larger scale means that 
robots are likely to be manufactured in batches, where each robot in a given batch has the 

Table 1  Comparison of multiple robot and robotic collective systems

Multiple robot system Robotic collective

Definition 2–50 robots > 50 robots
Agent architecture Sophisticated control Simple control
System capabilities Emergent behavior possible Emergent behavior by design
System composition Homogeneous or heterogeneous Homogeneous or reduced heterogeneity
Communication Fully connected network Location-dependent

Rich messages Small, simple messages
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same set of capabilities. Collective coalition formation algorithms may be able to lever-
age this reduced heterogeneity to decrease the required computation (Service & Adams, 
2011a).

2.4  Communication

Coalition formation often assumes fully connected communication networks in which each 
robot can communicate with every other robot directly (e.g., Jang et al., 2018; Tang, 2006). 
This assumption can be feasible for multiple robot systems, if the deployment domains 
have good network coverage (Diehl & Adams, 2021b); however, robotic collectives, like 
their biological counterparts, are likely to rely on distributed, local communication to facil-
itate scalability (Berman et al., 2009a; Hamann, 2018). Individuals in spatial swarms (e.g., 
bird flocks (Ballerini et al., 2008), fish schools (Couzin et al., 2005)) often communicate 
with only a subset of their neighbors (Ballerini et  al., 2008; Haque et  al., 2016; Couzin 
et  al., 2002; Strandburg-Peshkin et  al., 2013), while colonies (e.g., bees (Seeley, 2010), 
ants (Gordon, 1999)) generally have fully connected communication topologies within a 
central hub and no, limited, or spatial swarm-like, communication outside the hub (Reina 
et  al., 2015). Spatial swarms and colonies can theoretically approximate fully connected 
topologies by using local communication to propagate messages, but at the cost of delays 
and solution quality degradation; thus, collective robot coalition formation needs to rely 
primarily on local communication.

Many collective and multiple robot system applications will use temporary, deployable 
communication networks (e.g., ad hoc networks), due to damaged permanent infrastructure 
or remote deployment locations (Jahir et al., 2019; Legendre et al., 2011; Shah et al., 2019). 
Temporary network nodes (e.g., ground and aerial robots, satellites, balloons, blimps, tab-
lets, or smart phones (Jahir et al., 2019; Pandey & De, 2017)) cannot replace permanent 
infrastructure fully, given their comparatively limited power and bandwidth (Muralidhar 
& Madhavi, 2018). Thus, multiple robot systems may send only medium-sized, rich mes-
sages, while collective robots may send only small, simple messages, due to the collec-
tives’ scale (e.g., thousands of robots, large area coverage). Collective coalition formation 
will need to accommodate limited message sizes.

3  Background and related work

Collective robots and coalition formation have, until recently (Dutta et al., 2021; Czarnecki 
& Dutta, 2021), been treated as distinct research areas, leaving collective coalition forma-
tion relatively unstudied. Collective and multiple robot coalition formation algorithms are 
discussed, as well as additional background on coalition formation.

3.1  The services model

Coalition formation requires determining if a coalition is capable of completing a task, 
given the coalition members’ capabilities (Vig & Adams, 2007). There is a longstanding 
distinction between robot and software agent capability models, as hardware capabilities 
are not instantaneously transferable (Vig & Adams, 2007). Robots’ software capabili-
ties can also be more difficult to transfer, as software may be hardware-dependent (e.g., 
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sensor-dependent controllers), and only limited communication may be available if a trans-
fer is viable.

The robot services model considers high-level robot behaviors (e.g., surveillance) called 
services (Service & Adams, 2011a; Vig & Adams, 2007). Each robot has a service vec-
tor specifying the services that it can perform, and each task has a vector specifying the 
number of robots required to perform each service. A coalition can perform a task if there 
are sufficient robots to provide all required services, where each robot performs a single 
service at a time (Service & Adams, 2011a). This model is efficient when different sen-
sors or actuators produce the same behavior, which supports scalability (Service & Adams, 
2011a). Additionally, the services abstraction facilitates task design by users who are 
less familiar with robot hardware (e.g., tacticians (Defense Advanced Research Projects 
Agency, 2019)).

Three other common robot capabilities models exist. The robot types model, which 
considers sets of robots with identical capabilities, can be converted to the services model 
(Service & Adams, 2011a). The resources model considers tasks’ resource (i.e., sensor and 
actuator) requirements and if resources are collocated or provided by different robots (Vig 
& Adams, 2007). Certain problems (e.g., identifying the lowest cost coalition for a task) 
are more computationally difficult than with the services model (Service & Adams, 2011a), 
and more knowledge of robot hardware is needed for task design. The schema model deter-
mines the information flow from robots’ environmental sensors to code modules to actua-
tors (Tang & Parker, 2005). This model allows for very flexible task performance, but con-
siders only motion-based (i.e., not processing or sensing) tasks. This manuscript focuses on 
applying the services model.

3.2  Collective coalition formation

Coalition formation algorithms for robotic collectives, as opposed to smaller multiple 
robot systems, typically do not solve coalition formation as defined in Sect. 1.1. Instead, 
the algorithms solve biologically-inspired, reduced difficulty problems that consider inex-
act team sizes, which can be a fraction of the collective or depend on mission conditions 
(Huang & Robinson, 1992; Theraulaz et  al., 1998). The resulting problem formulations 
generally do not optimize mission utility. Recently, hedonic games have also been applied 
to collective coalition formation to solve problems more similar to Sect.  1.1, optimizing 
utility and specifying target team sizes. Approaches with inexact team sizes and leveraging 
hedonic games are surveyed.

3.2.1  Inexact team sizes

Many inexact team size coalition formation approaches model biological collectives’ 
behaviors. Stimulus–response is based on entomology (Theraulaz et al., 1998) and sociol-
ogy (Granovetter, 1978), in which each individual chooses from a set of mutually exclusive 
options based on a combination of individual preference and external stimuli. For example, 
individuals may or may not participate in a continuous resource-gathering task based on 
how close the collective is to its desired resource level (Castello et al., 2014; Krieger et al., 
2000; Rosenfeld et al., 2006; Yongming et al., 2010) or the amount of interference between 
robots (Pang et al., 2019). Stimulus–response algorithms have also been used for continu-
ous cooperative monitoring tasks (Low et al., 2004), and to distribute approximate num-
bers of robots to distinct task sites (Kanakia et al., 2016). These algorithms can scale well, 
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as they require little to no communication, and the computational requirements depend 
on the various specified thresholds, not the collective size; however, these models are not 
directly transferable to the target collective coalition formation optimization problem, as 
there is not an existing mapping from coalition formation’s characteristic function to stimu-
lus–response models’ thresholds and stimuli.

Algorithms that distribute approximate fractions of a collective among tasks have also 
incorporated the activator/inhibitor model that represents labor division in bee colonies 
(Huang & Robinson, 1992; Xiao & Wang, 2018). The algorithms’ agents are modeled as 
having an internal activator that causes them to progress through a task sequence, while 
progression can be inhibited by factors, such as the number of robots per task (Zahadat 
et al., 2015; Zahadat & Schmickl, 2016). These algorithms require relatively simple com-
putation and rely predominantly on distributed local communication; however, they do 
not solve the desired optimization problem, as they assume that all tasks will be assigned 
robots without considering task utility. Recall that optimizing task utility is important 
in the target domain, as it enables the collective to maximize its achievement of mission 
objectives.

Another notable algorithm family with inexact team sizes uses ordinary differential 
equations modeling the robots’ transition rates between tasks (e.g., Berman et al., 2009b; 
Elamvazhuthi et  al., 2018; Hsieh et  al., 2008; Mather & Hsieh, 2011). Individual robot 
controllers are derived from these equations and determine robots’ stochastic transitions 
between tasks. Equilibrium is reached when each task is assigned approximately the 
desired fraction of the collective. A key advantage of these algorithms is that the complex-
ity of the robots’ controllers does not increase with the collective size, facilitating scaling 
(Berman et al., 2009b). Some algorithms were evaluated with as many as 2,000 (Mather & 
Hsieh, 2011), and even 20,000 (Hsieh et al., 2008) simulated point-based robots. Addition-
ally, algorithm performance is distributed and requires no communication between robots 
when visually estimating the number of robots currently assigned to each task is possi-
ble. Otherwise, the robots at a task site must communicate with each other. However, the 
majority of these algorithms consider only homogeneous collectives, and none consider 
the services model. A service extension will likely be difficult, as the number of transitions 
that must be considered increase substantially with the number of services and services per 
robot. These algorithms also do not transfer directly to the coalition formation optimization 
problem, as they assign fractions of the collective to tasks without addressing task utilities. 
Finally, a key limitation is that robots travel between task sites during coalition formation. 
Quadcoptors can potentially travel quickly, but doing so wastes their already very limited 
battery lives (Diehl & Adams, 2021b). Conversely, ground robots generally have longer 
battery lives, but may require substantial time to travel between tasks, as the area of opera-
tion for the target applications can be large and highly deconstructed; thus, this family of 
algorithms is excluded from the empirical evaluation.

3.2.2  Hedonic games

Recent collective coalition formation leverages anonymous hedonic games, where coalition 
size determines utility, and each robot tries to optimize its individual utility by joining and 
leaving coalitions until Nash stability is reached (i.e., robots cannot benefit by individually 
changing coalitions) (Drèze & Greenberg, 1980). Centralized hedonic games (Czarnecki & 
Dutta, 2019, 2021) are not well-suited to collectives, as they require frequent communica-
tion with a centralized computer (Sect. 2.4). Distributed algorithms are most relevant.
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The distributed algorithms (Jang et al., 2019, 2018; Dutta et al., 2021) derived from the 
GRoup Agent Partitioning and Placing Event (GRAPE) algorithm (Jang et al., 2018), in 
which each robot joins its preferred coalition, sends the resulting coalition structure to its 
network neighbors, and updates its coalition structure based on neighbors’ messages. The 
GRAPE algorithm variations allow for homogeneous systems (Jang et  al., 2018), varia-
tions in the performance of a single service (Jang et al., 2019), or heterogeneity under the 
resources model (Dutta et al., 2021); however, no services model variant exists.

The GRAPE variations are fast (i.e., milliseconds with 50 robots) and use local com-
munication (Jang et  al., 2019, 2018; Dutta et  al., 2021); however, evaluation with large, 
heterogeneous collectives is an open problem. Additionally, individual robot utilities are 
not equivalent to coalition utilities, and differences may create suboptimal solutions (Jang 
et al., 2019, 2018).

3.3  Multiple robot coalition formation

Multiple robot coalition formation or ST-MR task allocation (i.e., a robot performs a Sin-
gle Task and a task is performed by Multiple Robots) is well-studied (Gerkey & Matarić, 
2004; Korsah et al., 2013). The pros and cons of the primary algorithms are outlined.

3.3.1  Exact and approximation algorithms

Exact algorithms return optimal solutions, while approximation algorithms return solutions 
within a known factor of optimal. These solution quality guarantees can be advantageous; 
however, exact and approximation algorithms have not been favored historically for multi-
ple robot coalition formation, due to coalition formation’s high computational complexity 
(Service & Adams, 2011a; Zhang & Parker, 2013).

These algorithm types are more feasible if the search space is constrained. Dynamic 
programming with a limited number of robot types, j < O(n) , produces optimal solutions 
with a O(n2jm) computational complexity (Service & Adams, 2011a), compared to the 
O(3n) otherwise required (Rothkopf et al., 1998). Limited robot types (see Sect. 2.3) can be 
a valid assumption; however, the dynamic programming algorithm is centralized, which is 
less compatible with collectives (see Sect. 2.4).

Adaptations of Shehory and Kraus’s distributed software multi-agent algorithm incor-
porate a maximum coalition size constraint, k < O(n) (Shehory & Kraus, 1995, 1998). The 
algorithms have two stages (Vig & Adams, 2007, 2006b). First, each robot calculates its 
possible coalitions’ values. Next, robots broadcast their best coalitions. The best overall 
coalition is greedily added to the coalition structure until all tasks have been assigned or no 
coalitions can perform the remaining tasks. The base computational complexity is O(nkm) , 
and the approximation ratio depends on the heuristic used to identify the best coalition 
(Shehory & Kraus, 1995, 1998).

There are three common heuristics. Maximum utility selects the highest utility coalition 
and finds solutions within a factor k + 1 of the optimal utility (Service & Adams, 2011a). 
Minimum cost selects the lowest cost (i.e., 1/utility) coalition and finds solutions within a 
factor O(k∕ log k) of the optimal cost (Shehory & Kraus, 1998). Average utility finds the 
coalition with the highest utility to size ratio, producing solutions within 2k of the optimal 
utility (Zhang & Parker, 2013). This heuristic is useful when smaller coalitions are favored, 
and the utility does not depend on coalition size.
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The resource-centric heuristic aims to prevent robots that are needed for many tasks 
from being assigned early (Zhang & Parker, 2013). The heuristic ranks coalitions based on 
utility and the degree to which their selection will limit future task allocation. The approxi-

mation factor is ( 2k + 2 ), and the computational complexity is O(min(n,m)m2

(
n

k

)2

) 

(Zhang & Parker, 2013).
Any algorithm variation can incorporate the Fault Tolerance Coefficient to balance 

assigning redundant robots, in case some fail to perform tasks, with the cost of using 
extra robots (Vig & Adams, 2006b). Additionally, other algorithm variations exist. Ser-
vice and Adams incorporated the services model and bipartite matching, reducing the 
computational complexity to O(n3∕2m) (Service & Adams, 2011a). Dutta et  al.’s one-to-
many bipartite matching-based algorithm has a O(nm) computational complexity and a 
(1∕(1 +max(k − Δ))) cost approximation ratio, where Δ ∈ {0, 1} ; however, it only allows 
for homogeneous systems (Dutta & Asaithambi, 2019).

The advantage of the greedy approximation algorithms is that they provide solution 
quality guarantees, are flexible in the objective functions that they can optimize, and facili-
tate heterogeneity. However, their reasonable computational complexities rely on a small 
maximum coalition size, k , which is unlikely given collectives’ scale. The algorithms also 
rely on all-to-all broadcasts to communicate coalition values among the robots, which may 
be infeasible with deployed disaster response and military networks. Thus, existing varia-
tions cannot be easily applied to collective coalition formation.

3.3.2  Auction algorithms

Auctions are a market-based resource allocation method, where buyers and sellers exchange 
information about the price at which they are willing to buy and sell goods (Phelps et al., 
2008). A seller aims to obtain a high price, while a buyer’s goal is to obtain goods for a low 
price. Auction algorithms are popular for multiple robot coalition formation, because they 
are an intuitive method of distributing resources. Existing algorithms vary based on the 
method of mapping tasks and robots to buyers and sellers, as well as the auction type.

Some algorithms have robots bid directly on tasks. First-price, one round auction-based 
algorithms auction off tasks in the order that they are received (Gerkey & Matarić, 2002; 
Sujit et al., 2008). An auctioneer broadcasts a task’s required resources to the robots, robots 
reply with the cost of their participation, and the auctioneer chooses the lowest cost coa-
lition that can perform the task. The advantage is fast runtimes relative to other auction 
mechanisms; however, a less valuable task received before a more valuable task is given 
precedence. Double auctions address this limitation by auctioning off all tasks at once 
(Guerrero et al., 2017; Xie et al., 2018). Robots in Guerrero et al.’s double auction algo-
rithm send task auctioneers information about their relevant abilities, and task auctioneers 
send back bids based on the utility of the tasks they represent (Guerrero et al., 2017), while 
in Xie et al.’s algorithm, the tasks start the auction process (Xie et al., 2018). These algo-
rithms allow tasks to compete for resources, at the cost of additional communication.

Robots can also bid on tasks through intermediaries. Project Manager-Oriented Coa-
lition Formation has robots elect project managers for each task, which select coali-
tions of their neighbors in the network topology (Oh et al., 2017). This approach ensures 
that robots in a coalition can communicate, but severely restricts the solution space. 
The Automated Synthesis of Multi-robot Task solutions through software Reconfigu-
ration (ASyMTRe) algorithm variants have robots form coalitions that bid on tasks 
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(Zhang & Parker, 2012; Tang & Parker, 2007). All ASyMTRe variations use the schema 
model. Finally, other algorithms have tasks bid on robot capabilities. The Robot Allo-
cation through Coalitions Using Heterogeneous Non-Cooperative Agents (RACHNA) 
approach uses an ascending auction, with tasks bidding on services via service agents 
(Vig & Adams, 2006a). A limitation is that robots can be unnecessarily reassigned. A 
simultaneous descending auction addresses this limitation, at the cost of an empirically 
higher runtime (Service et al., 2014).

Overall, auction-based approaches are more applicable to collectives than exact 
and approximation algorithms, as they do not make assumptions about coalition size 
or require communication with a central computer. However, the requirement that all 
robots communicate with the task auctioneers (or task agents with service agents) may 
be difficult for military and disaster response networks (Vig & Adams, 2006a; Service 
et  al., 2014). The communication required is substantial and can increase at least lin-
early with the collective size, potentially exceeding deployed network’s limited band-
width. Additionally, algorithms were generally not evaluated with large collectives, so it 
is necessary to assess scalability.

3.3.3  Biologically‑inspired algorithms

Early scalable robot coalition formation leveraged biologically-inspired optimization 
mechanisms. The simulated Annealing inspired ANT colony optimization (sA-ANT) algo-
rithm, which leverages ant colony optimization and simulated annealing, allocates only one 
task at a time (Sen & Adams, 2013b). Double-layered ant colony optimization addresses 
this limitation (Yeh & Sugawara, 2016). Additionally, particle swarm optimization and the 
Pareto Archived Evolution Strategy-based algorithm addressed multi-objective coalition 
formation (Agarwal et al., 2014; Mouradian et al., 2017).

Most algorithms were evaluated in simulation at or near the scale of collectives (Agar-
wal et al., 2014; Mouradian et al., 2017; Sen & Adams, 2013b); however, the algorithms 
are centralized and either allocate a single task at a time (Mouradian et al., 2017; Sen & 
Adams, 2013b) or their experimental run times indicate requiring over 15  min for even 
small collectives (Agarwal et al., 2014; Yeh & Sugawara, 2016).

Haque et al. proposed a decentralized algorithm based on alliance formation between 
male bottlenose dolphins (Haque et al., 2013); however, this algorithm restricts coalition 
sizes, which is not well suited to collectives.

3.4  Summary

The algorithm types most likely to be suitable for collectives, given the coalition formation 
optimization problem, are hedonic games and auctions. Hedonic games produce solutions 
quickly with multiple robot systems and can be distributed; however, distributed hedonic 
games have not been evaluated with large heterogeneous collectives (e.g., 1000 robots), 
and communication requirements have generally not been evaluated. Auctions are promis-
ing, given that some existing algorithms (e.g., Zhang & Parker, 2012; Xie et al., 2018; Vig 
& Adams, 2006a) are decentralized and consider heterogeneous systems; however, auc-
tions also have not been evaluated at the scale of collectives and may require excessive 
communication.
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4  Algorithms

Hedonic game and auction coalition formation algorithms were evaluated for the viabil-
ity of their use with collectives. Homogeneous GRAPE, a distributed hedonic game-based 
algorithm, is evaluated, as there is no services model variant (Jang et al., 2018). The dis-
tributed auction-based algorithms are RACHNA (Vig & Adams, 2007, 2006a) and simul-
taneous descending auction (Service et  al., 2014), which incorporate common auction 
protocols.

4.1  GRAPE

GRAPE incorporates an anonymous hedonic game, meaning that each robot joins the most 
individually profitable coalition, as determined based on coalition size, not the coalition 
members’ identities (Jang et al., 2018). During each iteration of GRAPE, robots select their 
highest valued coalition, broadcast their beliefs, about all robots’ current task assignments, 
and update their belief states based on messages from neighboring robots in the network 
topology. A robot’s message is given precedence if the robot’s belief state has been updated 
more times, or the same number of times and more recently, than the receiving robot’s. 
This precedence system serves as a distributed mutex that allows only a single robot to 
alter the valid coalition assignments during each iteration. The algorithm completes when a 
Nash stable partition is derived.

GRAPE requires O(m) computation and O(n) communication per iteration on a single 
robot, where m is the number of tasks, and n is the collective size (Jang et al., 2018). A 
Nash stable partition can be found in O(n2) iterations, given a fully connected network 
topology, resulting in O(n2m) computational and O(n3) communication complexities (Jang 
et al., 2018). Any connected network topology with a diameter dG has a O(n2mdG) compu-
tational complexity with a O(n3dG) communication complexity (Jang et al., 2018).

These complexities require that each robot’s reward for any given task decreases as coa-
lition size increases (Jang et al., 2018). This manuscript uses a peaked reward, or a system 
reward that is highest when a task is assigned a coalition with exactly the desired num-
ber of robots, divided evenly among coalition members (Jang et al., 2018). An individual 
robot’s reward for task tj with utility uj that requires nj robots and is assigned to coalition Cj 
is:

If multiple service types are available, this function cannot determine which robots will 
perform each service type; thus, GRAPE is considered only for homogeneous collectives 
with one service type.

4.2  RACHNA

RACHNA incorporates a combinatorial ascending auction, meaning that buyers bid on 
bundles of goods, and bids increase as the auction progresses (Vig & Adams, 2006a). The 
sellers are service agents (i.e., one agent per service type), and the buyers are task agents. 
Service agents sell a service type and track robots’ current salaries (i.e., rewards for coali-
tion membership) (Vig & Adams, 2006a). Task agents bid on service bundles, which they 

(1)utility(tj,Cj) =
uj

nj
× e

−
|Cj |
nj

+1
,
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are awarded if the bid is at least the robots’ salaries, plus |Cj| × �inc , where Cj is the task’s 
coalition and �inc is a fixed wage increase. A tasks’ maximum bid is its utility.

At most n(umax∕�inc) bidding rounds occur, where umax is the highest task utility, with 
O(m) bids per round. Task agents require O(n) computation to determine their bids, 
and the |S| service agents require O(n log n) computation to process bids, resulting in 
O(mn2 log n(umax∕�inc)) total computation. A service agent communicates with at most all 
task agents and robots per round (Vig & Adams, 2006a). Messages exchanged with task 
agents are size O(n) , and messages exchanged with the robots have size O(1) ; thus, the 
communication complexity is O(nm|S|) per round and O(n2 m|S|(umax∕�inc)) in total.

Prior evaluation of RACHNA treated �inc as a fixed parameter controlling the degree of 
competition (Vig & Adams, 2007, 2006a; Sen & Adams, 2013a). However, tasks for which 
|Cj| × 𝜖inc > uj cannot be assigned coalitions, even when sufficient robots exist. This limita-
tion is incompatible with collectives’ potentially large coalition sizes; thus, RACHNA must 
incorporate collective size into its �inci threshold dynamically. RACHNAdt denotes a new 
implementation of RACHNA where �inc = 1∕n .  RACHNAdt’s computational complexity is 
O(mn3 log n(umax)) , and the communication complexity is O(n3m|S|(umax)).

4.3  Simultaneous descending auction

Simultaneous descending auction, like RACHNA, incorporates a combinatorial auction 
with service and task agents. Each robots’ salary is set initially to the maximum task utility, 
plus �dec , where �dec is a fixed wage decrement. Robot’s salaries are decremented by �dec at 
the beginning of each bidding round, and task agents that still require additional services 
bid on service bundles. If the task’s utility is higher than the total salaries of all robots in 
the bundle, the task agent is able to afford a service bundle. The auction stops when all 
robots have been purchased or all salaries are zero.

Two implementations are considered. The first, simultaneous descending auction with 
a small coalition optimization (denoted  SDASCO), has task agents determine their bids by 
enumerating all coalitions that meet their service requirements. The computational com-
plexity is O(mnk) per iteration, where k is the maximum coalition size (Service et  al., 
2014). There are at most umax∕�dec iterations, resulting an an overall computational com-
plexity of O(mnkumax∕�dec) . This implementation is faster than the alternative with small 
coalitions, k ≤ 3 , and was evaluated in prior work (Service et al., 2014).

The second implementation, denoted  SDAM, determines task agents’ bids using 
weighted bipartite matching (Service et  al., 2014). The computational complexity is 
O(mn4umax∕�dec ), regardless of coalition size (Service et  al., 2014). This complexity is 
identical to  SASCO’s when k = 4 and faster when k > 4 (Service et al., 2014). Both imple-
mentations have communication complexities of O((m + n)|S|umax∕�dec) , as service agents 
communicate with at most all robots and task agents during each iteration. All considered 
algorithms’ reward/cost functions are summarized in Table 2.

5  Experimental design

A simulation-based experiment assessed each algorithm’s viability, where a viable algo-
rithm produces near-optimal solutions in near real-time for a range of collective coalition 
formation problems, as required for highly dynamic domains. The target thresholds are < 5 
min runtimes and > 95% utility solutions. Relaxed thresholds of < 10 min runtimes and 
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> 90% utility solutions are also considered to account for the fact viability is application-
dependent, and some deployments may have more lenient requirements.

Recall that communication resources in the target domains are often very limited and 
easily overwhelmed (Klinsompus & Nupairoj, 2015). For example, cellular communication 
was down for several days during the 2023 Maui wildfires, leaving responders with only 
minimal, deployable communication networks (Kelly, 2023). There is no standard thresh-
old for acceptable communication limits, as limits can depend on a number of factors (e.g., 
routing protocols, communication medium, network topology, developments in networking 
technology, the quantity of communication required for task performance); however, the 
objective in all instances is to use minimal communication, preserving resources for the 
transmission of data relevant to task performance. This manuscript assesses communica-
tion by comparing the algorithms. The total communication target is <  500 MB, corre-
sponding to the lowest maximum communication empirically required for the majority of 
the considered coalition formation problems. An algorithm that satisfies this target requires 
minimal communication in that it requires no more communication than the overall low-
est-communication algorithm. A relaxed < 600 MB total communication target was also 
considered.

The experiment considered achievable missions, meaning that the collectives’ robots 
offered sufficient services to perform all tasks simultaneously. Real-world collective 
deployments will ideally incorporate achievable missions but are unlikely to involve sub-
stantially more than the minimum required robots, due to the expense and logistical chal-
lenges of deploying large collectives. The experiment’s collectives possessed exactly the 
minimum number of robots required (i.e., coalition formation solutions must utilize all 
robots).

The independent variables were the algorithm, collective size, number of tasks, and col-
lective composition (see Table  3). The algorithms considered were GRAPE, RACHNA 

Table 2  Reward/cost function by 
algorithm

Algorithm Type Function

GRAPE Reward uj

nj
× e

−
|Cj |
nj

+1

RACHNA Cost (
∑

ai∈Cj
cost(ai)) + (�inc × �Cj�) , �inc = 1

RACHNAdt Cost (
∑

ai∈Cj
cost(ai)) + (

1

n
× �Cj�)

SDASCO Cost
∑

ai∈Cj
cost(ai) , �dec = 1

SDAM Cost
∑

ai∈Cj
cost(ai) , �dec = 1

Table 3  Independent variables Algorithms GRAPE, RACHNA, 
 RACHNAdt,  SASCO 
and  SAM

Collective Size 25, 50, 100, 500, 1000
Percent Tasks 1%, 10%, 50% (i.e., 

coalition sizes 100, 
10, 2)

Service Types 1, 5, 10
Services Per Robot 1, 5



 Swarm Intelligence

1 3

( �inc = 1 ),  RACHNAdt,  SDASCO ( �dec = 1 ), and  SDAM ( �dec = 1 ). The collective size varied 
from multiple robot systems (i.e., 25–50 robots) to collectives (i.e., 100–1000 robots). The 
numbers of tasks were 1%, 10%, and 50% the number of robots, corresponding to average 
coalition sizes 100, 10, and 2, respectively. 1% tasks corresponds to large-scale tasks (e.g., 
establishing network coverage or searching for survivors), while 10% tasks corresponds to 
medium-scale tasks (e.g., assessing a damaged building or creating a cordon). Examples of 
small-scale 50% tasks include guarding a building entrance or providing a medical evacu-
ation. 1% tasks (i.e., coalition size 100) was used only for collectives with > 100 robots, as 
a mission is only achievable if the number of robots per task is smaller than the collective 
size. Collective composition encompassed the number of service types and services per 
robot, where more capable robots had more services, and the number of service types and 
services per robot combinations determined the level of heterogeneity. A  collective was 
homogeneous if the numbers of service types and services per robot were equal. Other-
wise, the collective was heterogeneous.

GRAPE was considered only for homogeneous collectives with one service type, as 
GRAPE does not incorporate a services model. Additionally,  SDASCO was considered only 
for problems with multiple robot systems (i.e., 25 or 50 robots), due to the algorithm’s high 
computational complexity. The other algorithms were considered for all independent vari-
able value

The experiment used a centralized C++ simulator on a HP Z640 Workstation (Intel 
Xeon processor, 62 GB RAM) (Sen & Adams, 2013a). The simulator performed each 
algorithm iteration for each robot sequentially and assumed a fully connected communica-
tion topology. The robots’ embodiment was partially represented by the services model; 
however, the robots’ positions were not considered, as incorporating positions in the util-
ity function, when applicable, is highly dependent on the application environment and 
robot hardware. Twenty-five problem instances were randomly generated per independent 
variable combination, where a problem instance comprised sets of robots and tasks, each 
with associated services. Robots’ and tasks’ services were selected randomly, and each 
task was assigned a random integer utility in the range [1, 50]. Each trial, or problem, was 
allocated twelve hours to produce a solution. This time limit is too long for high tempo 
dynamic domains (e.g., disaster response) or even short term pre-mission planning (e.g., 
2–4 h breaks between mission deployments (Defense Advanced Research Projects Agency, 
2019)). All algorithms can produce partial solutions, but this capability was not evaluated.

The dependent variable success rate represents the ratio of problems for which algo-
rithms provided non-zero utility solutions within the time limit. A trial was unsuccessful if 
the computer’s memory limit was exceeded, the algorithm’s runtime exceeded the 12-hour 
time limit, or the algorithm was otherwise unable to assign any robots to tasks. Only suc-
cessful trials were considered when analyzing the other dependent variables, as unsuccess-
ful trials can cause less suitable algorithms to appear to perform well under certain metrics. 
For example, an algorithm that quickly exceeds the memory limit, resulting in no viable 
solution, will have a very low runtime, but is less suitable than an algorithm that produces 
a solution given a longer runtime.

The other dependent variables are runtime, total communication, and percent utility. 
Runtime is the time in minutes (min) and seconds (s) required for an algorithm to produce a 
solution. Total communication is the sum of all message sizes in megabytes (MB). Percent 
utility measures the solution quality of successful trials (i.e., solution utility/optimal util-
ity). Overall, higher success rates and percent utilities with lower runtimes and total com-
munication are preferred. It was hypothesized that none of the algorithms will perform well 
for all metrics across the range of collective sizes and compositions.
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6  Results

Results are presented for homogeneous and heterogeneous collectives. Box plots were 
used, as the data was not normally distributed. Non-parametric statistical methods assessed 
significance across each independent variable. Mann–Whitney–Wilcoxon tests compared 
the numbers of service types and the services per robot, while Kruskal-Wallis analysis with 
Mann–Whitney–Wilcoxon post-hoc tests compared across the collective sizes and percent 
tasks. All analysis included only independent variable combinations for which an algo-
rithm had successful trials across all independent variable values (e.g., percent task analy-
sis considered only 500 and 1000 robot collectives). An algorithm was deemed viable if it 
had consistently low runtimes and communication, as well as high percent utilities, for all 
independent variable values.

6.1  Homogeneous collective results

A total of 600 trials with homogeneous collectives were run for each of RACHNA, 
 RACHNAdt, and  SDAM. Recall that GRAPE’s analysis considered only the 300 trials with 
one service type, and SDASCO was considered for only the 200 multiple robot trials.

6.1.1  GRAPE

GRAPE produced optimal solutions for all trials with one service type, for a 50% overall 
success rate. Recall that GRAPE was unable to perform the 300 trials with five service 
types, or half the trials.

All successful trials had low runtimes, well within the < 5 min target (Fig. 1). Runt-
imes did increase substantially from multiple robot systems (<  1 s) to collectives (<  3 
min 53  s), as well as with percent tasks. The increases were significant with collective 
size (H(n = 50) = 238.94, p < 0.01) and percent tasks (H(n = 50) = 74.50 p < 0.01) , 

Fig. 1  GRAPE’s runtimes (min) with homogeneous collectives. GRAPE did not solve problems with 5 ser-
vice types and 5 services per robot. All multiple robot trials (i.e., 25–50 robots) completed in < 1 s. Note 
that the y-axis maximum is 4 min
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with significant post-hoc analyses (p < 0.01). The longest runtimes were for 1000 robot 
collectives with 50% tasks (i.e., the largest number of robots and tasks), consistent with 
GRAPE’s O(n2m) computational complexity. Nevertheless, all of GRAPE’s runtimes were 
sufficiently fast for high-tempo applications.

GRAPE’s total communication increased only with collective size (Table  4). This 
increase was significant (H(n = 50) = 249.00, p < 0.01) , with significant post-hoc analy-
ses (p < 0.01). Recall that GRAPE’s per iteration communication complexity is O(n) . Per-
cent tasks and problem instance did not impact the communication requirement, because 
all problems required n iterations (i.e., no robots deviated from their initially selected 
coalitions).

6.1.2  RACHNA and  RACHNAdt

RACHNAdt solved all problems, while RACHNA produced solutions for only 82.3% of tri-
als. All RACHNA trials with 1% tasks were unsuccessful, as well as 12% with 25 robots, 
10% tasks, and either collective composition. All unsuccessful trials considered problems 
in which every tasks’ required coalition size exceeded its utility, consistent with RACH-
NA’s known limitation.

RACHNA’s and  RACHNAdt’s runtimes differed by <  1 min (see Fig.  2). Both algo-
rithms had low runtimes with multiple robot systems (<  1 s), which increased substan-
tially for collectives (< 125 min 48 s). Runtimes also increased with percent tasks, consist-
ent with the O(mn3 log n) per iteration computational complexity. Additionally, runtimes 
increased with the number of service types, which corresponds to an increased number of 
service agents performing computation. The longest runtimes were for 1000 robots, 50% 
tasks, and five service types. These runtimes were much too long for high-temp domains.

RACHNA’s runtime increase with respect to collective size was significant 
(H(n25 = 44, n = 50) = 458.75, p < 0.01) , with significant post-hoc tests (p < 0.01). Note 
that the lower number of samples for a collective size of 25 is due to unsuccessful tri-
als. RACHNA’s runtime also increased significantly when the percent tasks increased from 
10% to 50% (p < 0.01) and the service types increased from one to five (p = 0.01).

RACHNAdt produced similar results.  RACHNAdt’s runtimes increased sig-
nificantly with collective size (H(n = 50) = 467.32, p < 0.01)) and percent tasks 
(H(n = 50) = 138.08, p < 0.01) . Post-hoc tests found that all differences were significant 
(p  <  0.01). A significant difference also existed for increased numbers of service types 
(p < 0.01).

RACHNA’s and  RACHNAdt’s communication results also had similar trends (Fig. 3), 
although  RACHNAdt required up to an additional 600 MB. Both algorithms’ communi-
cation increased substantially from multiple robot systems (≤70.81 MB) to collectives 

Table 4  GRAPE’s 
communication (MB) for 
homogeneous collectives with 
one service type. Communication 
was constant across problem 
instances with equal collectoive 
sizes and independent of other 
variables

Coll. Size Commu-
nication 
(MB)

25 1.87
50 7.5
100 30
500 750
1,000 3,000
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(≤27.25 GB), as well as with percent tasks and service types. 1,000 robot collectives with 
50% tasks and five service types required the most communication, consistent with the 
algorithms O(nm|S|) per iteration communication complexity.

RACHNA’s communication increase across collective sizes was significant 
(H(n25 = 44, n = 50) = 384.03, p < 0.01) , with significant post-hoc analyses (p  <  0.01). 
RACHNA’s communication also increased significantly from 10% to 50% tasks (p < 0.01) 
and one to five service types (p < 0.01). Note that a Mann–Whitney–Wilcoxon test was 

(a) RACHNA’s runtimes with homogeneous collectives.

(b) RACHNAdt’s runtimes with homogeneous collectives.

Fig. 2  RACHNA’s and  RACHNAdt’s runtimes (min) with homogeneous collectives. All multiple robot tri-
als (i.e., 25–50 robots) completed in < 1 s. RACHNA did not solve problems with 1% tasks. The y-axis 
maximum is 125 min (i.e., 2 h 5 min), and there are axis breaks
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used to assess significance with respect to percent tasks, as RACHNA had successful trials 
for only two values.

Similarly,  RACHNAdt’s communication increased significantly with collective size 
(H(n = 50) = 390.97, p < 0.01)) and percent tasks (H(n = 50) = 234.59, p < 0.01) . Post-
hoc tests identified significant differences between the collective sizes (p  <  0.01) and 

(a) RACHNA’s communication with homogeneous collectives.

(b) RACHNAdt’s communication with homogeneous collectives.

Fig. 3  RACHNA’s and  RACHNAdt’s communication (MB) with homogeneous collectives. All multiple 
robot trials (i.e., 25–50 robots) required < 70.81 MB. RACHNA solved no problems with 1% tasks. The 
y-axis maximum is 25,000 MB (25 GB)
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percent tasks (p  <  0.01). A significant increase from one to five service types was also 
identified (p < 0.01).

RACHNA produced near-optimal solutions for most problems (Table 5), but high vari-
ability resulted in low worst case utilities. Unassigned tasks were generally those requiring 
more robots than supported by the task utility, given RACHNA’s fixed threshold limitation. 
Such tasks occur more often with lower percent tasks (i.e., larger coalitions) and more sub-
stantially impact mission performance with fewer robots (i.e., fewer tasks for a given value 
of % tasks). Thus, multiple robot systems with 10% tasks (i.e., the lowest percent utility 
with successful trials) had the most variable percent utilities.

Significant differences existed across the collective sizes 
(H(n25 = 44, n = 50) = 53.16, p < 0.01) , specifically, between 25 and 100–1000 robots 
(p < 0.01), 50 and 100–1000 robots (p = 0.02 for collective size 100, p < 0.01, otherwise), 
and 100 and 1000 robots (p < 0.01). No significant difference was found between 25 and 
50 robots or 100 and 500 robots. 10% and 50% tasks also differed significantly (p < 0.01), 
while one and five service types did not.  RACHNAdt outperformed RACHNA, producing 
optimal solutions in all trials.

6.1.3  Simultaneous Descending Auction

The results for the SDAM and SDASCO simultaneous descending auction implementations 
are presented separately, due to vastly different performance. SDAM successfully produced 
optimal solutions in all trials.

Table 5  RACHNA’s 
percent utility statistics with 
homogeneous collectives

Service Percent Collective Percent Utilities
Types Tasks Size Median (Minimum, Maximum)

1 10 25 100.0 (66.67, 100.0)
50 99.17 (76.62, 100.0)
100 96.77 (88.02, 100.0)
500 96.39 (90.42, 99.040
1000 95.84 (92.94, 97.75)

50 25 100.0 (98.91, 100.0)
50 100.0 (99.6, 100.0)
100 99.89 (99.56, 100.0)
500 99.89 (99.8, 99.97)
1000 99.88 (99.76, 99.92)

5 10 25 100.0 (72.73, 100.0)
50 96.82 (80.91, 100.0)
100 97.66 (90.17, 100.0)
500 96.61 (92.88, 98.79)
1000 96.02 (94.02, 97.89)

50 25 100.0 (98.08, 100.0)
50 99.93 (99.34, 100.0)
100 99.84 (99.52, 100.0)
500 99.91 (99.74, 100.0)
1000 99.89 (99.83, 99.95)
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SDAM’s runtimes were within the < 5 min target for most trials, but increased substan-
tially for collectives with five service types (Fig. 4). Multiple robot trials had < 1 s runt-
imes, which increased for collectives with one service type to ≤ 6 min 29 s. Collectives 
with five service types had runtimes ≤ 26 min 24 s. The increase with the number of ser-
vice types can be attributed to the fact that task agents must consider each robot for more 
roles when determining their bids. Runtimes also decreased with the percent tasks, despite 
SDAM’s O(mn4) per iteration computational complexity. This trend can be explained by the 
fact that higher percent tasks correspond to smaller coalitions. The smaller coalitions are 
cheaper for the task agents, thus enabling tasks to bid in fewer iterations. The longest runt-
imes occurred with 1000 robots, five service types and 50% tasks.

The runtime increases across collective sizes (H(n = 50) = 465.37, p < 0.01) and tasks 
(H(n = 50) = 10.61, p < 0.01) were significant, as were the collective size post-hoc analy-
ses (p < 0.01); however, only differences between 10% and 50% tasks (p < 0.01) and 1% 
and 50% tasks (p = 0.01) were significant. No difference between 1% and 10% tasks was 
found. A significant increase from one to five service types was also identified (p < 0.01).

SDAM’s total communication was low with multiple robot systems (<  1.2 MB), but 
increased substantially for robotic collectives (see Fig.  5). Collectives with one service 
type used up to 86.29 MB total, while collectives with five service types used up to 428.03 
MB. The total communication also increased with service types and percent tasks, consist-
ent with the O((m + n)|S|) per iteration communication complexity. 1000 robot collectives 
with five service types and 50% tasks required the most communication.

Each of these trends was significant. Communication increased signifi-
cantly across collective sizes (H ( (H(n = 50) = 435.46, p < 0.01) and tasks (H 
( (H(n = 50) = 35.17, p < 0.01) , with significant post-hoc analyses (p  <  0.01). A signifi-
cant increase from one to five service types was also found (p < 0.01).

SDAM’s performance was generally better than SDASCO’s across all metrics. Recall that 
the SDASCO evaluation considered only the 200 problem instances with multiple robot sys-
tems (33.3% of all trials), due to SDASCO’s exponential computation requirement. SDASCO’s 
success rate with multiple robot systems was only 62.5%, for an overall success rate of 
20.8%.

Fig. 4  SAM’s runtimes (min) with homogeneous collectives. All multiple robot trials (i.e., 25–50 robots) 
completed in < 1 s. The y-axis maximum is 25 min



Swarm Intelligence 

1 3

The unsuccessful trials occurred when SDASCO exceeded either the computer’s mem-
ory limit or the 12-hour runtime limit. The memory limit was exceeded for the 25 trials 
with 50 robots, 10% tasks, and one service type. The runtime limit was exceeded for 
the 50 trials with five service types and 10% tasks, regardless of the number of robots. 
SDASCO produced optimal solutions for the remaining 125 trials.

SDASCO’s runtimes increased with the number of robots, service types, and decreased 
percent tasks, consistent with SDASCO’s O(mnk) per iteration computational complex-
ity (Table 6). Note that decreased service types decreases m, but also increases k. Each 
of the differences was statistically significant (p  <  0.01). Runtimes were also more 
variable.

The variation in runtimes was due to SDASCO’s sensitivity to differences in problem 
difficulty. SDASCO’s computational complexity is exponential in coalition size, and the 
longest runtimes for each independent variable combination were for the trials with 
the highest maximum coalition size. Variation in coalition size resulted in a worst case 

(a) Overview of SDAM ’s communication.

(b) Close-up with 1% and 10% tasks. (c) Close-up with 50% tasks.

Fig. 5  SDAM’s communication (MB) with homogeneous collectives. All multiple robot trials (i.e., 25–50 
robots) required < 1.2 MB. The y-axis varies between subfigures



 Swarm Intelligence

1 3

runtime (i.e., > 6 hours), much too long for high tempo applications or short term pre-
mission planning.

The communication increased with the number of robots, tasks, and service types 
(Table  7), consistent with SDASCO’s O((m + n)|S|) communication complexity. Each of 
these increases was significant (p < 0.01).

6.2  Homogeneous Collective Discussion

The homogeneous collective experiment assessed whether GRAPE, RAC-HNA, 
 RACHNAdt, SDAM, and SDASCO are suitable for very large homogeneous collectives in 
highly dynamic domains. The hypothesis that no algorithm fully satisfied the 100% success 
rate, < 5 min runtime, < 500 MB total communication, and > 95% utility criteria was sup-
ported. Algorithms also failed to meet the relaxed criteria (i.e., < 10 min runtime, < 600 
MB communication, > 90% utility), denoted as the reasonably close criteria in Tables 8, 9 
and 10.

SDASCO satisfied the evaluation criteria for the fewest independent variable combina-
tions (i.e., three out of twenty-four), as shown in Table 8. All criteria were satisfied for sin-
gle-service systems with 10% tasks and 25 robots, as well as 50% tasks and 25–50 robots. 
Relaxing the target runtime to < 10 min enables SDASCO to satisfy all criteria for one addi-
tional independent variable combination (i.e., five services, 50% tasks, 25 robots). This 
relaxation is relatively reasonable for near real-time coalition formation; however, there are 
no other independent variable combinations for which SDASCO can satisfy all criteria, short 
of ignoring both the runtime and communication requirements entirely, which cannot be 
done in near real-time domains.

SDASCO’s evaluation considered only multiple robot systems (i.e., ≤50 robots) due to 
a high computational complexity; however, it is clear from SDASCO’s poor performance 

Table 6  SDASCO’s runtimes 
with homogeneous multiple 
robot systems. Collective trials 
(i.e., 100–1000 robots) were not 
attempted. No other trials were 
successful

Service Percent Collective Runtime (min:s:ms)
Types Tasks Size Median (Minimum, Maximum)

1 10 25 1:16:195 (0:08:040, 1:41:884)
50 25 0:00:132 (0:00:72, 0:00:454)

50 0:03:141 (0:00:769, 1:45:969)
5 50 25 0:01:918 (0:00:483, 8:41:294)

50 1:4:711 (0:05:98, 400:34:373)

Table 7  SDASCO’s 
communication with 
homogeneous multiple robot 
systems. Collective trials (i.e., 
100–1000 robots) were not 
attempted. No other trials were 
successful

Service Percent Collective Communication (MB)
Types Tasks Size Median (Minimum, Maximum)

1 10 25 25.25 (2.92, 36.96)
50 25 48.25 (31.39, 56.74)

50 203.3 (165.96, 228.14)
5 50 25 239.83 (142.12, 280.6)

50 1,001.37 (860.66, 1,109.07)
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with 25 and 50 robots that the algorithm will not scale to collectives. SDASCO’s major 
limitation is the excessive memory and computation required to enumerate the possi-
ble coalitions for each task. The evaluation criteria were satisfied only when there were 
few possible coalitions (i.e., 25 robots, 50% tasks, 1 service type), while performance 
degraded substantially with higher numbers of possible coalitions (i.e., increased ser-
vice types, increased numbers of robots, decreased percent tasks). Homogeneous col-
lectives are expected to possess large numbers of robots, as well as be assigned tasks 
that require large coalitions (e.g., assessing damage to a city block), which will result in 
even worse performance than occurred with multiple robot systems. Thus, SDASCO is not 
a viable approach for near real-time coalition formation with homogeneous collectives.

The next least viable algorithm was RACHNA (Table  8). RACHNA fully satisfied 
the evaluation criteria for only six independent variable combinations (i.e., one or five 
services with 50% tasks and 25–100 robots). Relaxing the runtime requirement to < 10 
min and the utility requirement to > 90% enables RACHNA to satisfy all requirements 
for three additional independent variable combinations (i.e., one service with 10% tasks 

Table 8  Homogeneous results summary:  SDASCO and RACHNA. Each cell corresponds to a criterion for 
evaluating viability and an independent variable combination (i.e., an algorithm, services (S), percent tasks 
(T), and a collective size). A  means that the algorithm met the criterion for all trials with the independ-
ent variable combination, while a  means that all trials were reasonably close to meeting the criterion. An 

 means that the criterion was not met, or trials were not attempted due to known algorithm limitations. 
A - means that the independent variable combination is invalid
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and 500 robots, five services with 10% tasks and 100 robots, five services with 50% 
tasks and 500 robots). However, RACHNA cannot satisfy all evaluation criteria for the 
remaining independent variable combinations due to low percent utilities, as well as 
high worst-case runtimes and communication.

One of RACHNA’s limitations was its high runtimes and communication requirements 
with 500–1000 robots, which well exceeded the evaluation criteria. The other major limita-
tion was RACHNA’s inability to assign coalitions to tasks with lower utilities than required 
coalition sizes. This limitation prevented RACHNA from solving any coalition formation 
problems with 1% tasks (i.e., 100 robot coalitions), as well as satisfying the utility crite-
rion with 10% tasks (i.e., 10 robot coalitions). The limitation was masked somewhat for 
10% tasks with increased collective size, due to the increased number of tasks. However, 
the percent utilities and success rates were lower than  RACHNAdt’s, which, paired with 
comparable communication and runtimes, means that  RACHNAdt is generally preferable 
to RACHNA.

RACHNAdt satisfied all evaluation criteria for sixteen independent variable combina-
tions, including all combinations with multiple robot systems, as well as 100 robots (see 

Table 9  Homogeneous results summary:  RACHNAdt and GRAPE. Each cell corresponds to a criterion for 
evaluating viability and an independent variable combination (i.e., an algorithm, services (S), percent tasks 
(T), and a collective size). A  means that the algorithm met the criterion for all trials with the independ-
ent variable combination, while a  means that all trials were reasonably close to meeting the criterion. An 

 means that the criterion was not met, or trials were not attempted due to known algorithm limitations. A 
- means that the independent variable combination is invalid
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Table  9). All criteria were also satisfied for single-service collectives with 500 robots 
and 1–10% tasks, as well as 1000 robots and 1% tasks, and five service collectives with 
500 robots and 1% tasks. Relaxing the communication requirement to < 600 MB enables 
 RACHNAdt to satisfy the criteria for one additional independent variable combination (i.e., 
five services, 1% tasks, 100 robots).  RACHNAdt’s > 30 min runtimes and > 1 GB com-
munication with all other independent variable combinations far exceeded the acceptable 
limits for near real-time domains.

Table 10  Homogeneous results summary:  SDAM. Each cell corresponds to a criterion for evaluating viabil-
ity and an independent variable combination (i.e., services (S), percent tasks (T), and a collective size). A 

 means that  SDAM met the criterion for all trials with the independent variable combination, while a  
means that all trials were reasonably close to meeting the criterion. An  means that the criterion was not 
met. A - means that the independent variable combination is invalid
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RACHNAdt’s primary strength was that the success rate and utility criteria were always 
met, given sufficient time and communication. This performance makes  RACHNAdt well-
suited for applications in which pre-mission planning is possible (i.e., the tasks are known 
at least a few hours prior to deployment). However,  RACHNAdt’s runtime and communi-
cation with 500–1000 robots are not suitable for near real-time domains, as the runtime 
and communication requirements are only met for some percent tasks (i.e., coalition sizes) 
and number of services. The number of services will generally be known prior to deploy-
ment, but the percent tasks will not, as tasks arise dynamically; thus, it generally cannot be 
guaranteed that  RACHNAdt will be able to produce solutions within the runtime and com-
munication requirements during any deployment with very large homogeneous collectives.

GRAPE fully satisfied the evaluation criteria for fewer independent variable combina-
tions than  RACHNAdt (i.e., the six combinations with one service and 25–100 robots), as 
shown in Table 9. GRAPE’s primary limitation was its inability to solve any coalition for-
mation problems with multiple service types, due to its lack of a services model. However, 
GRAPE with only one service type satisfied the success rate, runtime, and percent utility 
requirements for all independent variable combinations. The number of service types will 
generally be known prior to deployment, so GRAPE, unlike  RACHNAdt, is suitable for 
deployment in near real-time domains, given single service collectives and sufficient com-
munication infrastructure. Deployed networks will require reducing GRAPE’s communica-
tion complexity, while multiple service collectives will require integration with a services 
model.

SDAM best satisfied the evaluation criteria, meeting all criteria for nineteen independent 
variable combinations (see Table 10). The success rate, communication, and utility criteria 
were satisfied for all independent variable combinations. The runtime requirement was also 
met with 25–500 robots, and relaxing the requirement to < 10 min enables SDAM to satisfy 
the criteria with 1000 robots and a single service type. However, SDAM’s runtimes with 
five service types and 1000 robots were too long for near real-time domains.

Overall, SDAM satisfied the domain criteria reasonably well for single service collec-
tives, and GRAPE produced solutions even more quickly, given sufficient communication 
infrastructure. However, no algorithm fully satisfied the performance criteria with five ser-
vice types and 1000 robots.

6.3  Heterogeneous Collective Results

A total of 900 heterogeneous collective trials were run for each of RACH-NA,  RACHNAdt, 
and SDAM. SDASCO was run for only the 300 trials with multiple robot systems (i.e., 25–50 
robots), due to its exponential computational complexity. Recall that GRAPE was not con-
sidered for heterogeneous collectives, as it does not incorporate the services model.

6.3.1  RACHNA and  RACHNAdt

RACHNA produced solutions for only 82.9% of trials. The 150 trials with 1% tasks were 
unsuccessful, due to RACHNA’s known limitation. The other four unsuccessful trials 
occurred with 25 robots and 10% tasks. Specifically, there was one unsuccessful trial with 
five services and one service per robot, two trials with ten services and one service per 
robot, and one trial with ten services and five services per robot.  RACHNAdt had a 100% 
success rate.
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RACHNA and  RACHNAdt’s runtimes differed by ≤6 min, as shown in Fig.  6. Both 
algorithms’ runtimes were low for multiple robot systems (< 1 s) and increased substan-
tially for collectives with ten service types and five services per robot (≤27 min 5 s). The 
runtimes were lower with five service types and one service per robot (≤ 2 min 16 s), as 
well as ten service types and one service per robot (≤ 53 s). Runtimes also increased with 
percent tasks, consistent with the algorithms’ O(mn2 log n) per iteration computational 
complexity. Additionally, the runtimes increased with services per robot and decreased ser-
vice types, as the number of services per robot divided by the service types determines the 
number of robots that each service agent must consider. The longest runtimes occurred 
with 1000 robots, ten service types, five services per robot, and 50% tasks.

(a) RACHNA’s runtimes with heterogeneous collectives.

(b) RACHNAdt’s runtimes with heterogeneous collectives.

Fig. 6  RACHNA’s and  RACHNAdt’s runtimes (min) with heterogeneous collectives. All multiple robot tri-
als (i.e., 25–50 robots) completed in < 1 s. RACHNA did not solve problems with 1% tasks. Note that the 
y-axis maximum is 25 min
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RACHNA’s runtime increase with respect to collective size was significant 
(H(n25 = 71, n = 75) = 627.11, p < 0.01) , with significant post-hoc analyses (p  <  0.01). 
RACHNA’s runtime also increased significantly with percent tasks (p < 0.01), decreased 
service types (p = 0.02), and services per robot (p < 0.01). Note that service type analysis 
compared five service types and one service per robot to ten service types and one service 
per robot. Similarly, services per robot analysis compared ten service types and one service 
per robot to ten service types and five services per robot.

RACHNAdt’s runtimes increased significantly across collective sizes 
(H(n = 75) = 637.45, p < 0.01) and tasks (H(n = 150) = 150.44, p < 0.01) , with signifi-
cant post-hoc analyses (p < 0.01). Significant differences between services (p < 0.01) and 
services per robot (p = 0.02) were also identified.

RACHNA’s and  RACHNAdt’s communication had similar trends (see Fig. 7), although 
 RACHNAdt required an additional <  500 MB. Communication increased substantially 
from multiple robot systems (≤78.62 MB) to collectives (≤27,601.14 MB or 27.6 GB), 
consistent with the O(n3m|S|) per iteration communication complexity. Communication 
also increased with percent tasks and services per robot. 1000 robot collectives with ten 
services, five services per robot, and 50% tasks required the most communication.

These trends were significant. RACHNA’s communication increased significantly 
across collective sizes (H(n25 = 71, n = 75) = 616.84, p < 0.01) , with significant post-hoc 
analyses (p < 0.01). RACHNA’s communication also grew significantly with percent tasks 
(p < 0.01) and services per robot (p < 0.01). No difference was identified between five and 
ten service types.

RACHNAdt produced similar results. Significant increases were identi-
fied across collective sizes (H(n = 75) = 626.14, p < 0.01) and percent tasks 
(H(n = 150) = 356.24, p < 0.01) , with significant post-hoc analyses (p < 0.01). Five and 
ten services per robot also differed significantly (p < 0.01). No difference was identified 
between five and ten service types.

RACHNA produced near-optimal solutions for most problems (Table 11), but high vari-
ability caused low worst-case utilities. Utilities were most variable with small collectives 
and 10% tasks, as with homogeneous collectives.

RACHNA’s utilities differed significantly across collective sizes 
(H(n25 = 71, n = 75) = 66.49, p < 0.01) . Specifically, post-hoc tests found significant dif-
ferences between 25 and 50–1000 robots (p < 0.01), 50 and 500–1000 robots (p < 0.01), 
and 100 and 1000 robots (p = 0.03). No significant differences between other collective 
sizes were identified. 10% and 50% tasks differed significantly (p < 0.01), while no sig-
nificant differences were found between five and ten services, or one and five services per 
robot.  RACHNAdt outperformed RACHNA, producing optimal solutions for all trials.

6.3.2  Simultaneous Descending Auction

SDAM’s and SDASCO’s results are presented separately, as they differ substantially. SDAM 
had a 100% success rate.

SDAM’a runtimes (Fig. 8) were low for multiple robot systems (< 1 s), but increased 
substantially for collectives (≤29 min 29 s), consistent with its O(mn4) per iteration com-
putational complexity. Additionally, runtimes increased with services per robot, as robots 
were considered for more roles. 1% and 10% tasks performed similarly, but had higher 
runtimes than 50% tasks. The decrease in runtime can be attributed to smaller coalitions 
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(a) RACHNA’s communication with heterogeneous collectives.

(b) RACHNAdt’s communication with heterogeneous collectives.

Fig. 7  RACHNA’s and  RACHNAdt’s communication (MB) with heterogeneous collectives. All multiple 
robot trials (i.e., 25–50 robots) required < 78.62 MB. RACHNA did not solve any problems with 1% tasks. 
The y-axis maximum is 27,600 MB (i.e., 27.6 GB)
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(i.e., higher percent tasks) being cheaper, thus requiring fewer bidding iterations. There 
was no detectable difference between five and ten service types.

The increases across collective sizes (H(n = 75) = 694.31, p < 0.01) and percent 
tasks (H(n = 150) = 24.23, p < 0.01) were significant. Post-hoc tests revealed significant 
differences between all collective sizes (p  <  0.01), as well as 1–10% and 50% tasks 
(p < 0.01); however, 1% and 10% tasks did not differ significantly. A significant increase 
between one and five services per robot was also identified (p < 0.01). No difference 
between five and ten service types was found. The longest runtimes occurred with 1000 
robots, ten service types, and five services per robot.

SDAM’s total required communication (Fig. 9) was < 2 MB with multiple robot sys-
tems and increased to as much as 661.39 MB with collectives. The total communication 
also increased with percent tasks, service types, and service types per robot, consistent 

Table 11  RACHNA’s 
percent utility statistics with 
heterogeneous collectives

Service Types Percent Coll RACHNA
(Per Robot) Tasks Size Median (Min, Max)

5 (1) 10 25 100.0 (61.29, 100.0)
50 93.9 (77.42, 100.0)
100 97.56 (85.13, 100.0)
500 96.5 (94.59, 98.76)
1000 95.83 (93.13, 98.31)

50 25 100.0 (99.27, 100.0)
50 100.0 (99.51, 100.0)
100 99.92 (99.54, 100.0)
500 99.91 (99.8, 99.98)
1000 99.87 (99.81, 99.94)

10 (1) 10 25 100.0 (80.43, 100.0)
50 94.57 (82.54, 100.0)
100 96.85 (87.77, 100.0)
500 96.6 (93.41, 98.64)
1000 96.26 (93.81, 97.81)

50 25 100.0 (98.39, 100.0)
50 100.0 (99.5, 100.0)
100 99.92 (99.37, 100.0)
500 99.89 (99.77, 99.97)
1000 99.87 (99.8, 99.94)

10 (5) 10 25 100.0 (73.17, 100.0)
50 97.32 (81.74, 100.0)
100 96.67 (88.99, 100.0)
500 95.52 (92.47, 98.69)
1000 96.04 (93.37, 97.69)

50 25 100.0 (98.48, 100.0)
50 100.0 (99.12, 100.0)
100 99.92 (99.28, 100.0)
500 99.89 (99.71, 99.98)
1000 99.89 (99.76, 99.96)
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with SDAM’s O((m + n)|S|) per iteration communication complexity. 1000 robot collec-
tives with ten service types, five services per robot, and 50% tasks required the most 
communication.

Significant differences were identified across collective sizes 
(H(n = 75) = 693.91, p < 0.01) and percent tasks (H(n = 150) = 153.99, p < 0.01) , with 
significant post-hoc analyses (p < 0.01). The increases with service types (p = 0.04) and 
services per robot (p < 0.01) were also significant.

Fig. 8  SDAM’s runtime (min) with heterogeneous collectives. All multiple robot trials (i.e., 25–50 robots) 
completed in < 1 s. The y-axis maximum is 30 min

Fig. 9  SDAM’s communication (MB) with heterogeneous collectives. All multiple robot trials (i.e., 25–50 
robots) required < 2 MB. The y-axis maximum is 650 MB
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SDAM derived optimal solutions with one service per robot, as well as five services per 
robot and 1% or 10% tasks. The percent utilities with five services per robot and 50% tasks 
(Table 12) were lower, but still near optimal.

The difference in utility with one and five service types per robot was significant 
(p  <  0.01), as was the difference across collective sizes (H(n = 75) = 12.39, p = 0.01) . 
Post-hoc tests identified significant differences between collective sizes 25 and 500–1000 
(p < 0.01), 50 and 500–1000 (p = 0.02 and p = 0.03, respectively), and 100 and 500–1000 
(p = 0.03 and p = 0.04, respectively). No significant difference was found between other 
collective sizes, five and ten service types, or across percent tasks.

SDASCO performed worse than SAM, completing only 64.7% (i.e., 194) of the 300 mul-
tiple robot system trials. Specifically, SDASCO failed to solve any of the 75 trials with 50 
robots and 10% tasks, due to exceeding the runtime limit. Additionally, SDASCO with ten 
service types and five services per robot exceeded the time limit for all 25 trials with 25 
robots and a 10% tasks, as well as 6 of the 25 trials with 50 robots and a 50% tasks. The 
remaining multiple robot trials were completed successfully. SDASCO’s evaluation did not 
include the 600 trials with collectives, for an overall 32.3% success rate.

SDASCO’s runtimes increased with collective size, services per robot, and decreased 
percent tasks (Table 13). Significant differences were identified between 25 and 50 robot 
collectives (p < 0.01), 10% and 50% tasks (p < 0.01), and one and five services per robot 
(p  <  0.01) No significant difference existed between five and ten service types. These 
trends resulted in a maximum runtime (i.e., 1 h 33 min) that is much too long for the near 
real-time allocation necessary to support high tempo applications, but short enough to sup-
port short term pre-mission planning for multiple robot systems.

The communication requirements increased significantly with collective size (p < 0.01), 
as shown in Table  14. As well, the amount of needed communication was significantly 

Table 12  SDAM’s percent utilities 
with heterogeneous collectives 
with ten service types, five 
services per robot, and 1% tasks. 
SAM produced optimal solutions 
for all other independent variable 
values

Coll Percent Utility
Size Median (Minimum, Maximum)

25 99.78 (98.29, 100.0)
50 99.94 (99.55, 100.0)
100 99.99 (99.87, 100.0)
500 100.0 (100.0, 100.0)
1000 100.0 (100.0, 100.0)

Table 13  SDASCO’s runtimes 
with heterogeneous multiple 
robot systems. Collective trials 
(i.e., 100–1000 robot)s were not 
attempted. No other trials were 
successful

Service Services Percent Coll Runtime (min:s:ms)
Types Per Robot Tasks Size Median (Minimum, Maximum)

5 1 10 25 1:22:659 (0:08:932, 1:38:643)
50 25 0:00:172 (0:00:116, 0:00:442)

50 0:02:979 (0:01:906, 1:54:099)
10 1 10 25 1:26:369 (0:38:337, 1:44:126)

50 25 0:02:185 (0:00:123, 0:01:124)
50 50 0:02:887 (0:00:988, 0:14:159)

10 5 50 25 0:05:673 (0:00:679, 16:58:993)
50 22:50:884 (0:11:952, 93:05:483)
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higher based on the percent tasks (p < 0.01), services types (p < 0.01), and services per 
robot (p = 0.04).

SDASCO derived optimal solutions for all successful trials with five services and one 
service per robot, as well as all ten services and one service per robot. The median per-
cent utilities with ten services, five services per robot, and 50% tasks are 99.28 (mini-
mum  =  96.0, maximum  =  100.0) with 25 robots, and 99.82 (minimum  =  99.27, maxi-
mum = 100.0) with 50 robots. These utilities are lower than for other compositions, but 
still near optimal.

6.4  Heterogeneous collective discussion

The heterogeneous collective experiments assessed the algorithms’ ability to produce 
near-optimal solutions (i.e., > 95% utility) for very large collectives in near real-time 
(i.e., <  5 min) and using minimal communication (i.e., <  500 MB), where relaxed 
thresholds (i.e., < 10 min, < 600 MB, > 90% utility) were considered reasonably close 
to satisfying the criteria. The hypothesis that none of GRAPE, RACHNA,  RACHNAdt, 
SDAM, and SDASCO fully satisfied all criteria was supported, even with the relaxed 
thresholds.

GRAPE was unable to address coalition formation for heterogeneous collectives, as 
it lacks a services model. SDASCO had the next worst performance, meeting all criteria 
for only five of the thirty-six independent variable combinations (see Table 15). Spe-
cifically, all criteria were satisfied for three independent variable combinations with five 
service types and one service per robot (i.e., 10% tasks and 25 robots, 50% tasks and 
25–50 robots), two with ten service types and one service per robot (i.e., 10%-50% tasks 
and 25 robots), and none with ten service types and one five services per robot. Relax-
ing the criteria to < 10 min, < 600 MB, and < 90% utility does not enable SDASCO to 
satisfy the criteria for any additional variable combinations.

SDASCO’s poor performance with multiple robot systems (i.e., 25–50 robots) dem-
onstrated that the algorithm will not scale to collectives. SDASCO’s worst case runtimes 
are far too long for near real-time domains and are expected to increase significantly 
with collectives. Additionally, SDASCO’s O(nmkumax∕�dec) computational complexity 
made SDASCO very sensitive to variations in coalition size k, resulting large variations in 
runtimes. High and variable runtimes, coupled with high communication complexities, 
prevent SDASCO from scaling to collectives.

Table 14  SDASCO’s 
communication with 
heterogeneous multiple robot 
systems. Collective trials (i.e., 
100–1000 robots) were not 
attempted. No other trials were 
successful

Service Services Percent Coll Communication (MB)
Types Per Robot Tasks Size Median (Minimum, Maximum)

5 1 10 25 50.7 (17.05, 63.1)
50 25 154.63 (101.83, 173.27)

50 639.48 (495.05, 724.42)
10 1 10 25 77.06 (15.98, 99.72)

50 25 256.22 (200.42, 325.74))
50 1,142.34 (964.76, 1,337.88)

10 5 50 25 384.42 (306.88, 440.69.74)
50 1,579.02 (1,535.6, 1,622.44)
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RACHNA satisfied all criteria for nine independent variable combinations (i.e., 50% 
tasks and 25–100 robots, regardless of the collective composition). Relaxing the percent 
utility criteria to > 90% enables RACHNA to meet all criteria for two additional inde-
pendent variable combination (i.e., 10% tasks, 500 robots, five or ten service types, and 
one service per robot). Relaxing the runtime and communication requirements to < 10 
min and < 600 MB respectively, does not increase the number of independent variable 
combinations for which RACHNA satisfies all criteria. RACHNA’s primary limitations 
were the same as with homogeneous collectives, namely high runtimes and communica-
tion with 500–1000 robots, as well as an inability to assign coalitions to tasks requiring 
more robots than their utilities support.

RACHNAdt performed much better than RACHNA, satisfying all criteria for twenty-
six independent variable combinations, as shown in Table  16. These independent varia-
ble combinations included all those with multiple robot systems, as well as all those with 
100 robots. Additionally,  RACHNAdt with five or ten service types and one service per 
robot satisfied all criteria with 1% tasks and 50–1000 robots, as well as 10% tasks and 500 
robots.  RACHNAdt also satisfied all criteria with ten service types, five services per robot, 
1% tasks, and 500 robots. Relaxing the criteria does not enable  RACHNAdt to satisfy all 
criteria for any additional variable combinations.

Table 15  Heterogeneous results summary:  SDASCO and RACHNA. Each cell corresponds to a criterion for 
evaluating viability and an independent variable combination (i.e., an algorithm, services (S), services per 
robot (R), percent tasks (T), and a collective size). A  means that the algorithm met the criterion for all 
trials, while a  means that all trials were reasonably close to meeting the criterion. An  means that the 
criterion was not met, or trials were not attempted due to known algorithm limitations. A - means that the 
independent variable combination is invalid
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RACHNAdt’s primary strengths are its high success rates and percent utilities, which, 
combined with  RACHNAdt’s low runtimes with one service per robot, mean that the algo-
rithm can be suitable for near real-time domains, given sufficient communication; however, 
deployed networks will necessitate reducing the communication requirement. Additionally, 
 RACHNAdt’s runtimes and communication with five services per robot are not suitable for 
near real-time domains, especially with 1000 robots.

SDAM was the best performing algorithm, meeting all criteria for twenty-nine independ-
ent variable combinations (Table 16). Relaxing the runtime criterion to < 10 min and the 
communication to < 600 MB enabled SDAM to satisfy all criteria for four additional tri-
als. The three independent variable combinations for which SDAM did not satisfy even the 
relaxed criteria were ten service types, five services per robot 1%-50% tasks, and 1000 
robots.

Overall, SDAM met the near real-time domains’ coalition formation needs reasonably 
well for collectives with one service per robot. Additionally,  RACHNAdt was suitable for 
collectives with one service per robot, given sufficient communication. However, no algo-
rithm fully satisfied the criteria for very large collectives (i.e., 1000 robots) with five ser-
vices per robot.

Table 16  Heterogeneous results summary:  RACHNAdt and  SDAM. Each cell corresponds to a criterion for 
evaluating viability and an independent variable combination (i.e., an algorithm, services (S), services per 
robot (R), percent tasks (T), and a collective size). A  means that the algorithm met the criterion for all 
trials, while a  means that all trials were reasonably close to meeting the criterion. An  means that the 
criterion was not met, or trials were not attempted due to known algorithm limitations. A - means that the 
independent variable combination is invalid



 Swarm Intelligence

1 3

7  Discussion

Coalition formation is important for enabling robotic collectives in applications, such as 
military and disaster response, to perform tasks efficiently. These applications are high-
tempo and require operating in highly dynamic domains; thus, high-quality coalition for-
mation solutions must be derived in near real-time (i.e., < 5 min). The applications also 
typically rely on distributed, low-bandwidth networks, necessitating the use of minimal, 
distributed communication. A viable collective coalition formation algorithm will be 
required to satisfy these requirements for very large collectives, across a range of tasks.

This manuscript surveyed existing multiple robot coalition formation algorithms and 
found that no algorithm was known to scale to very large collectives. Some algorithms 
were poorly suited to collectives, due to centralization or limited solution spaces, while 
others’ viability was unknown, due to evaluations that considered only < 100 robots or did 
not consider communication.

Auctions and hedonic games were identified as the most likely to be viable. Some auc-
tions are decentralized and consider heterogeneous systems but had not previously been 
evaluated with large collectives. Meanwhile, some hedonic games can be distributed and 
were shown to produce solutions for multiple robot systems in real-time, but did not incor-
porate a services model.

A simulation-based evaluation assessed auctions’ and hedonic games’ viability. The 
auction-based RACHNA,  RACHNAdt, SDAM, and SDASCO algorithms were selected due to 
their common auction protocols. The hedonic game-based GRAPE algorithm was selected, 
as it is distributed and most compatible with the services model. The hypothesis that none 
of the algorithms fully satisfy the coalition formation evaluation criteria (i.e., 100% suc-
cess rate, < 5 min runtimes, < 500 MB total communication, > 95% utilities) with very 

Table 17  Results summary table. A  means that a viability criterion was satisfied for > 90% of homoge-
neous  (Hmo.) or heterogeneous  (Htr) independent variable combinations. A  means that a criterion was 
satisfied for >  80%, while an  means that a criterion was satisfied for ≤80%. Only independent vari-
able combinations with collectives (i.e., > 50 robots) are considered. Independent variable combinations for 
which an algorithm satisfied a relaxed constraint are counted as 1/2
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large collectives was supported, as shown in Table 17. In fact, there were collective compo-
sitions for which no algorithm was viable.

Recall that SDASCO was unable to satisfy many of the performance criteria, even with 
smaller multiple robot systems. SDASCO’s inability to scale to large multiple robot systems 
(i.e., 50 robots) demonstrates that the algorithm will not scale to very large collectives (i.e., 
1000 robots).

RACHNA’s performance was also poor, due to the algorithm’s inability to assign 
large coalitions to lower utility tasks; however,  RACHNAdt addressed this limitation 
successfully.  RACHNAdt’s strength with both homogeneous and heterogeneous collec-
tives was its high success rates and percent utilities.  RACHNAdt satisfied the runtime 
criteria for < 80% of independent variable combinations with homogeneous collectives, 
but > 90% with heterogeneous collectives. The difference can be attributed to the num-
ber of robots that each service agent considered. Homogeneous collectives require all 
service agents to consider all robots, resulting in additional computation, while hetero-
geneous collectives only require each service agent to consider a subset of the robots. 
This observation is consistent with the fact that  RACHNAdt satisfied the runtime criteria 
for all collectives with one service per robot and not for some collectives with five ser-
vices per robot. Overall,  RACHNAdt performed well to heterogeneous, single-service 
collectives, given sufficient communication. However,  RACHNAdt’s communication 
requirements and its runtimes with other collective compositions were excessive for 
near real-time domains.

GRAPE performed poorly overall, as it was only able to address homogeneous, single-
service collectives. However, GRAPE, when applicable, performed well in terms of suc-
cess rate, runtime, and percent utility. GRAPE has the potential to be one of the better per-
forming algorithms, if a services model can be integrated without substantially increasing 
its runtimes. GRAPE’s communication requirement will also need to be reduced.

SDAM was the best performing algorithm, meeting most criteria for > 90% of independ-
ent variable combinations. SDAM’s primary limitation was its long worst case runtimes. 
SDAM had worse runtimes for homogeneous collectives than heterogeneous collectives; 
however, the underlying cause was the number of services per robot. SDAM’s runtimes 
were longer when there were multiple services per robot, as task agents had to consider 
each robot for multiple roles, thus requiring more computation. The result was that SDAM 
performed well with homogeneous and heterogeneous collectives of single-service robots, 
but had runtimes that were too long with multiple-service robots.

These results were generated using a centralized simulator, in which robots’ computa-
tion was performed iteratively; however, robots in real-world collectives can perform their 
computation in parallel. All of the algorithms’ runtimes are expected to benefit from paral-
lelization. GRAPE is expected to benefit the most, as GRAPE’s computation is divided 
evenly among the robots, while most of the auction algorithms’ computation occurs on the 
task and service agents, which are a small portion of the collective’s agents. Paralleliza-
tion is not expected to substantially impact any algorithms’ success rate, communication, 
or solution quality. Changes to the network topology may have a more substantial impact, 
as the topology is known to impact GRAPE’s performance (Jang et al., 2018), and such 
changes have not been studied for the auction-based algorithms. Spatial aspects can also 
impact real-world deployments. The robots’ embodiment is addressed through the use of 
the services model, and robots’ positions can be incorporated into the utilities (Jang et al., 
2018). However, robots’ position in the environment can impact their access to communi-
cation (e.g., limited broadcast distance, obstacles blocking network signals), which may 
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result in lower utilities for all algorithms if robots disconnect from the network during coa-
lition formation.

Overall, no algorithm fully satisfied the performance criteria for very large homoge-
neous or heterogeneous collectives. Single-service collective coalition formation can be 
addressed by SDAM or, given sufficient communication, GRAPE. Additionally, coalition 
formation for heterogeneous collectives with single-service robots can be addressed by 
SDAM or, given sufficient communication,  RACHNAdt. However, no algorithm success-
fully addresses the stated coalition formation performance criteria for homogeneous or het-
erogeneous collectives with multiple service robots.

Future work must develop faster, low-communication algorithms in order to address 
these collective compositions. SDAM was the best-performing algorithm with other col-
lective compositions, but it is unlikely that modifying SDAM will suffice. The underly-
ing bipartite matching algorithm is responsible for much of the computation, limiting the 
potential runtime gains.  RACHNAdt is similarly limited by the the computation required 
to determine whether to accept bids, while SDASCO’s and RACHNA’s performance results 
indicate that they are not well-suited to collectives. These results suggest that a potential 
path forward is to consider auctions in which computation is distributed more evenly across 
the collective (i.e., not combinatorial auctions). Modification of GRAPE may also be a via-
ble path forward, if the services model can be incorporated without substantially increas-
ing runtime. This option likely requires reducing GRAPE’s communication, although field 
testing is required to determine how real-world application and network factors (e.g., rout-
ing protocols, communication medium, network topology, developments in networking 
technology, the quantity of communication required for task performance) impact accept-
able communication thresholds. It is plausible that the communication reduction can be 
achieved by relaxing the requirement that only one robot modify the coalition structure 
during an iteration, thus reducing the number of times communication occurs. A successful 
near-real time, minimal communication coalition formation algorithm for multiple service 
collectives will facilitate more diverse and sophisticated collective applications.

8  Conclusion

Robotic collectives in the military and disaster response domains will require scalable real-
time coalition formation algorithms that produce high quality solutions and use little com-
munication. This manuscript assessed existing algorithms’ applicability to homogeneous 
and heterogeneous collectives with up to 1000 robots and identified distributed hedonic 
games and auctions as the most promising algorithm types. A simulation-based evalua-
tion of a hedonic game, GRAPE, and auction-based algorithms, RACHNA, the novel vari-
ant  RACHNAdt, SAM, and SASCO found that no algorithms consistently met the require-
ments for collective coalition formation with achievable missions. SDAM,  RACHNAdt, and 
GRAPE each showed promise with certain collective compositions, but no algorithm fully 
addressed the needs of collectives with multiple service robots. Future collective coalition 
formation algorithms will need lower computation and communication in order to address 
these needs.
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