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Abstract
Collective consensus forming in spatially distributed systems is a challenging task. In pre-
vious literature, multi-option consensus-forming scenarios, with the number of options 
being smaller or equal to the number of agents, have been well studied. However, many 
well-performing decision-making strategies on a few options suffer from scalability when 
the number of options increases, especially for many-option scenarios with significantly 
more options than agents. In this paper, we investigate the viabilities of discrete decision-
making strategies with ranked voting (RV) and belief fusion (DBBS) decision mechanisms 
in many-option scenarios with large decision spaces compared to the number of agents. We 
test the investigated strategies on an expanded discrete collective estimation scenario where 
the decision space can be expanded using two factors: a higher number of environmental 
features and/or finer decision space discretization. We have used a continuous collective 
consensus forming strategy, linear consensus protocol (LCP), as a baseline. Our experi-
mental results have shown that, although susceptible to environmental influences, discrete 
decision-making strategies can reliably outperform those of LCP in terms of error and con-
vergence time at the tested sizes of decision space. We have also shown that the two factors 
that lead to the expansion of the decision space have different impacts on performances for 
both RV and DBBS strategies, due to differences in the correlations between the discrete 
options. When facing a higher number of features, both discrete strategies experience a 
smaller error and a significant increase in decision time, while a finer decision space dis-
cretization has a negative influence on all considered metrics.
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1  Introduction

With recent advancements in hardware technologies, miniaturized robotic platforms 
become increasingly viable systems in dealing with complex real-world problems (Dorigo 
et  al., 2021). To counter the inevitable limitations to their capabilities imposed by their 
small sizes, cooperative deployment of these robotic platforms in large groups can be an 
effective design paradigm in the future. However, it is a challenging task to coordinate and 
control the collective intelligent system effectively. One crucial building block of intel-
ligent collective behavior is collective decision-making. It refers to the process where a 
group of agents come to a global decision without a centralized control mechanism. Such 
processes can be found in the behaviors of many naturally existing systems, such as that of 
molecules in physical and chemical reactions (Glansdorff et al., 1973), cells in biological 
organisms (Karsenti, 2008), as well as animal herd behavior (Couzin & Krause, 2003). 
In such systems, agents rely on local interactions among themselves as well as with the 
environment to achieve decision-making behaviors that alter the global state of the collec-
tive (Camazine et al., 2001). Researchers have been attempting to replicate such processes 
on self-organized artificial swarm intelligence systems, which can potentially exhibit high 
robustness, flexibility, and scalability (Şahin, 2005).

Among the collective decision-making behaviors, consensus forming is important in 
ensuring the coherent operation of any decentralized system, and thus has received much 
attention in the study of both natural and artificial swarm intelligence systems (Leadbeater 
& Chittka, 2007; Brambilla et  al., 2013). Depending on the size of the decision space, 
consensus-forming approaches have been divided into discrete approaches and continu-
ous approaches, each designed to tackle the corresponding scenarios. Among the two cat-
egories, discrete consensus-forming problems are also referred to as best-of-n problems 
(Parker & Zhang, 2009), where agents collectively select the best decision out of a discrete 
set according to the associated qualities. Such decision-making scenarios are prevalent in 
natural intelligent swarms, including house-hunting behaviors of honey bees (Reina et al., 
2017) and path-finding behaviors of ants (Goss et  al., 1989). On the other hand, exam-
ples of continuous consensus formation problems include velocity matching (Olfati-Saber, 
2006) and altitude alignment (Bauso et al., 2003) when controlling decentralized dynamic 
systems.

Regarding decision-making scenarios of different levels of complexity, different col-
lective decision-making strategies have been proposed. Among best-of-n decision-making 
scenarios with fewer potential options than involved agents, the dominant category of 
methodology is opinion-based approaches (Valentini et al., 2017). This category of deci-
sion-making strategies draws inspiration from the decision-making behaviors of various 
insect species and is characterized by individual agents having an explicitly chosen option, 
usually with an individually computed associated quality. The agents will then attempt to 
recruit their peers to their opinion during the decision-making process, while also verifying 
the quality of their options via individual interaction with the environment. The process 
continues until a consensus is achieved. Various opinion-based approaches differ in terms 
of the method with which the agents exchange information and change their opinions. Pop-
ular decision-making strategies here include voter model (Valentini et al., 2014), majority 
rule (Valentini et al., 2015), cross inhibition (Reina et al., 2015), and k-unanimity (Schei-
dler et al., 2015). Due to the limitation of individual agents to singular opinions, opinion-
based strategies suffer from a lack of scalability when the number of options approaches 
that of the number of agents, and coverage of all options cannot be ensured by the available 
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agents during the decision-making process, as observed in works on discrete collective 
estimation problem (Shan & Mostaghim, 2021; Shan et al., 2021). In such instances, ran-
domness can be introduced to the decision-making processes of opinion-based strategies 
and ensure decision-making accuracy at the cost of speed. Attempts of adapting opinion-
based strategies to scenarios with higher numbers of options usually still keep them below 
the number of available agents in the swarm (Reina et al., 2017; Talamali et al., 2019).

Another effective way to tackle more complex multi-option collective consensus-form-
ing scenarios, where the number of options is on the same scale as the number of agents, is 
to consider and compare multiple options in parallel during the decision-making process. 
One such approach is to use ranked voting systems to enable the agents to exchange their 
relative preferences among the potential options (Shan et  al., 2021). This approach also 
enables consensus-formation regarding the ranking of available options, also referred to as 
collective preference learning problem, where a much-extended decision space of size n! 
is tackled but with constraints on the construction of the consensus scenario (Crosscombe 
& Lawry, 2021; Shan & Mostaghim, 2023). Another parallel approach is for the agents 
to compute the qualities of the potential options directly, while utilizing opinion pooling 
(Lee et al., 2018a, b) or belief fusion (Shan & Mostaghim, 2020, 2021) to maximize the 
accuracy of the quality estimation. The performances of both aforementioned strategies 
when facing multi-option scenarios, with the number of options ranging from a few to on 
the same order of magnitude to the number of agents, have been well tested in previous lit-
erature (Shan & Mostaghim, 2021; Shan et al., 2021; Lee et al., 2018b). They are shown to 
be superior to opinion-based approaches in such scenarios when keeping a constant com-
munication bandwidth constraint (Shan & Mostaghim, 2022).

On the other hand, continuous consensus-forming problems have been extensively stud-
ied from the perspective of decentralized multi-body vehicle control, in terms of unifying 
the speed, direction or location of the constituent vehicles(Ren & Beard, 2008). Similar 
methodologies can be applied to forming consensus regarding environmental features, such 
as in continuous collective estimation problems (Strobel et al., 2020). In continuous con-
sensus scenarios, there is an ordinal ordering between different decisions, as well as a cor-
relation in associated quality between decisions that are in proximity within the decision 
space. In addition, due to the continuous nature of the decision space, the decision qualities 
cannot be fully enumerated. Instead, agents assume a convexity of quality in the decision 
space and interpolate the desired result from those sampled by their peers.

The gap between the two categories encompasses many-option consensus-forming sce-
narios, where the decision space is still discrete, but its size exceeds that of the swarm, thus 
negatively affecting the performances of consensus approaches that rely on the enumera-
tion of potential options. In this paper, we investigate the relative viabilities of approaching 
such a many-option consensus-forming scenario by extending both existing multi-option 
consensus-forming approaches and continuous consensus-forming approaches. The inves-
tigated scenario is a many-option discrete collective estimation scenario, which is extended 
compared to those used in previous related works (Shan & Mostaghim, 2021, 2022). This 
is a collective perception-based decision-making scenario (Valentini et al., 2016), and has 
proven to be capable of flexible configuration of decision-making problems of different lev-
els of complexity and difficulty. As a benchmark continuous consensus strategy, we com-
pare the performances of the considered discrete decision-making strategies with those of 
linear consensus protocol, a classic continuous consensus forming strategy for multi-agent 
systems (Olfati-Saber & Murray, 2004), and keep the implementation similar to previous 
literature on continuous collective estimation (Strobel et  al., 2020). We also investigate 
the performances of the considered algorithms when facing both unordered and ordered 
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options by constructing experimental scenarios whose number of options can be changed 
in two ways: changing the number of features and changing the level of decision space dis-
cretization, respectively.

2 � Related works

Binary collective perception problem has been proposed by Valentini et  al. (2016). The 
experimental setting consists of an arena filled with tiles of two colors. A series of opin-
ion-based approaches are tested on a swarm of mobile robots with the aim of collectively 
determining the prevalent color out of the two. In the classical version of the problem, 
there are two available decisions and the respective fill ratios of the two colors are the 
associated qualities. This problem has since then been extended to multi-feature scenarios 
(Ebert et  al., 2018; Bartashevich & Mostaghim, 2021), where the number of colors and 
thus potential options is extended to more than 2. It has been demonstrated that both opin-
ion-based and belief fusion approaches can effectively handle multi-option scenarios.

Another extension to classical collective perception scenarios is collective estimation, 
where the robots aim to collectively determine the exact fill ratio of observed colors in the 
experimental arena (Strobel et al., 2018, 2020). Limiting the collective estimation problem 
into discrete fill ratio hypotheses has enabled the application of parallel discrete consensus-
forming techniques such as belief fusion (Shan & Mostaghim, 2020, 2021) and ranked vot-
ing (Shan et al., 2021). In addition, parallel decision-making approaches have the benefit 
of enabling positive feedback within the decision-making process, which ensures fast and 
accurate convergences compared to the opinion-based approaches which are more con-
strained in terms of the speed versus accuracy trade-off.

Majority rule is a way to generate consensus in many naturally existing intelligent 
swarms and has been an important decision-making strategy for opinion-based approaches 
(Montes de Oca et al., 2011). It has been applied to various best-of-n problems, such as 
site selection (Valentini et al., 2015) and collective perception (Valentini et al., 2016). In 
best-of-n problems, majority rule decision-making strategies are usually implemented as 
follows. Individual agents have the capability to independently verify the quality of their 
current options during exploration. They will then seek to switch their current options to 
those of their peers if the majority of them possess a particular opinion. In order for the 
swarm to converge to the desired option, the frequency of opinion dissemination is modu-
lated with respect to the computed option quality by the individual agent, such that agents 
with high-quality options spread their opinions further. The modulation can either be done 
by modifying the lengths of the control loops of the agents (Valentini et al., 2015) or by 
adding delays for opinion dissemination after the adoption of new opinion (Montes de Oca 
et al., 2011).

For multi-option scenarios, the majority rule decision-making mechanism can be 
extended using ranked voting to accommodate more potential options. Such approaches 
have been tested on discrete collective estimation scenarios (Shan et al., 2021). Different 
from single-vote implementations, the ranked voting strategy enables the agents to con-
vey the relative qualities of the potential options via explicit message passing, thus reduc-
ing the necessity of dissemination frequency modulation. This leads to higher hardware 
requirements but also better performances compared to opinion-based approaches (Shan & 
Mostaghim, 2022).
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Belief fusion decision-making strategies have their origins in consensus-forming tech-
niques for artificial multi-agent systems, such as sensor networks (Hoballah & Varshney, 
1989), that are capable of complex communication. They have also seen applications in 
site selection problems (Lee et al., 2018a, b) as well as discrete collective estimation prob-
lems (Shan & Mostaghim, 2020, 2021). In such strategies, the agents use both individual 
exploration and communication with their peers to obtain accurate estimates of the option 
qualities, which are then used by the agents to pick the desired option individually.

Comparison of opinion-based and parallel decision-making approaches while holding 
communication bandwidths constant has also been performed in order to provide a fair 
comparison of their performances (Shan & Mostaghim, 2022). It has been demonstrated 
that spending limited communication capacity on transmitting information regarding the 
relative qualities of multiple options is justified in terms of decision-making performances.

For any discrete consensus-forming strategy, non-linear positive feedback is crucial 
in ensuring fast and stable consensus (Leonard et  al., 2024). It is defined as an increase 
in commitment by an individual agent to a particular decision as the number of already 
committed agents increases in a collective (Nicolis et al., 2011). Its benefit has also been 
supported by previous studies on discrete collective estimation. However, it has also been 
observed that strong positive feedback can cause the swarm to converge to a particular 
opinion without adequate environmental exploration, leading to erroneous results in con-
sensus-forming tasks regarding global environmental features (Shan & Mostaghim, 2021).

Both ranked voting and belief fusion approaches face scaling communication and com-
putation complexities as the number of options increases. Thus, when facing more com-
plex decision-making scenarios, it becomes increasingly costly to track the qualities of all 
potential options exactly, especially transmitting the option qualities during the decision-
making process. This limits the application of the aforementioned parallel collective deci-
sion-making approaches in more complex many-option to continuous collective decision-
making scenarios.

For continuous consensus scenarios, the classical approach has been linear consensus 
strategies (Olfati-Saber et  al., 2007). Such strategies iteratively update the decision vari-
ables by a value that linearly scales with the agent’s level of opinion divergence with its 
neighbors. Newer approaches build on top of linear consensus approaches by addressing 
their shortcoming when facing lower connectivity (Beal, 2016), non-linear system dynam-
ics (Hui et al., 2008) or system delays (Xiao & Wang, 2008). When applied to a collective 
estimation problem with no constraints by the agents to change their decisions, we follow 
previous literature and apply a basic version of continuous consensus: the linear consensus 
protocol (Strobel et al., 2020). In the control of multi-body intelligent systems, a coherent 
collective behavior often requires that the agents’ velocities to be inexact consensus when 
responding to perturbations (Cavagna et al., 2022). However, in the investigated discrete 
collective perception problem, such effects are not modelled, therefore we simplify the 
problem of continuous consensus and only look at the accuracy, speed and uniformity of 
the consensus to gauge the performances of the investigated algorithms.

3 � Problem statement

In this paper, we have extended the discrete collective estimation scenario investigated 
in previous related works (Shan & Mostaghim, 2020, 2021; Shan et  al., 2021; Shan & 
Mostaghim, 2022) in terms of the problem complexity. The experimental arena is as shown 
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in Fig. 1. The environment is filled with tiles composed of mixtures of different features 
represented using different colors, whose intensity s varies from 0 to 1 in every tile. The 
mean intensity of a particular color across all tiles is referred to as the fill ratio of that par-
ticular color.

All tiles of the experimental arena can be expressed as follows:

For a tile on the ath row and bth column, the composition of colors is expressed using vec-
tor T

a,b
 . sc represents the intensity of the color c for all C colors present. The intensities on 

a single tile sum up to 1:

A group of mobile robots roam the arena, and their goal is to collectively determine the fill 
ratios for all observed colors. For the discrete collective decision-making strategies inves-
tigated, this is done to a predetermined decision space discretization precision P, which is 
varied together with the number of colors C to change the number of options the robots 
face. Different from the multi-feature decision-making scenario in Ebert et al. (2018), both 
the intensities of all colors in a single cell and the fill ratios of all colors sum to 1. Thus, in 
our experiments, there is a correlation among the observed color intensities, as encounter-
ing one color reduces the expected probability of encountering other colors. We therefore 
interpret a single decision by agent i regarding the fill ratios of the arena as an estimation of 
those of all present colors in the form of d

i
=
[
di,0 di,1 ... di,C−1

]
 . The decision space is 

a high-dimensional right-angle simplex, where the number of dimensions is C − 1 and the 
number of possible options per dimension is 1/P. The whole decision space has N distinct 
fill ratio options. N has the scale of O( 1

P

C
).

The number of potential options scales exponentially with the number of features C 
and inversely with the level of discretization precision P. We investigate both methods of 
changing the number of options. The key distinction between increasing the number of 
features and the level of discretization precision is that the former introduces unordered 
and weakly correlated decisions in terms of quality by expanding the decision space, while 
the latter introduces ordered and strongly correlated decisions in terms of quality by more 

(1)ArenaTiles =

⎡⎢⎢⎢⎣

T
0,0

T
0,1

T
0,2

...

T
1,0

T
1,1

T
1,2

...

T
2,0

T
2,1

T
2,2

...

...

⎤⎥⎥⎥⎦
.

(2)T
a,b

=
[
s0 s1 s2 ... sC−1

]
,
∑

s = 1.

Fig. 1   Example of the experi-
mental environment investigated 
in this paper; Red/yellow shows 
the pattern of the arena floor; 
Black shows the mobile robots 
roaming the arena (Color figure 
online)
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finely dividing an existing decision space. Details of the generation of experimental envi-
ronments are shown in Sect. 5.1

The robots are assumed to be simple reactive agents with limited communication, 
sensory and processing capabilities. They can only communicate with their peers within 
a limited distance, and also only detect the color of the arena ground directly beneath 
themselves.

4 � Methodology

In this section, we present the details of the decision-making strategies investigated in 
this paper. We start with the introduction of the control mechanisms used for environmen-
tal exploration, which are shared by all considered strategies. We then present the three 
considered decision-making strategies applied to the aforementioned discrete collective 
estimation problem, namely iterative ranked voting (RV), discrete Bayesian belief shar-
ing (DBBS) and linear consensus protocol (LCP). The former two are discrete consensus-
forming strategies, while the latter is a continuous consensus-forming strategy.

4.1 � Control mechanisms for environmental exploration

For all considered decision-making strategies, the robots use the same mechanism to 
explore the environment and obtain their own estimates of the fill ratio of the observed 
colors. Individual robots explore the experimental environment and form their own estima-
tions, while communicating with their peers in order to converge to a consensus.

The low-level mechanism that controls the movement of the robots during their envi-
ronmental exploration is a finite-state machine with two possible motion states A and B, 
which alternate after each other, as shown in Table 1. They correspond to moving forward 
in a straight line and turning in place in a random direction respectively. The transitions are 
controlled by timers with randomly distributed lengths sampled from exponential distribu-
tion exp(40)s for A �→ B and uniform distribution U(0, 4.5)s for B �→ A . Robot in motion state 
A will also switch to motion state B when an obstacle is detected in front of it, in order to 
avoid collisions.

For both discrete decision-making strategies, RV and DBBS, the decision space is dis-
cretized into a list of potential hypotheses with respect to the decision space discretization 
precision P. The robots use the following Bayesian statistics-based method to compute the 
likelihoods of the available hypotheses. The implementation here is similar to in previous 
literature on discrete collective estimation (Shan & Mostaghim, 2021; Shan et al., 2021; 
Shan & Mostaghim, 2022) but extended to accommodate more than 2 colors. Every robot 
stores a list of potential fill ratio hypotheses of all colors in a matrix H of size N × C (we 
do not require N = C ) as shown:

Table 1   Low-level control 
mechanism used to implement 
random walk

Motion Transition condition

A. Moving forward Timer exp(40) s or 
obstacle detected

B. Turn in random direction Timer U(0, 4.5) s
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Every row is a hypothesis consisting of the fill ratio combinations of all C considered 
colors, and is a potential option by the agents. They are computed using both the number 
of colors C and the discretization precision P by enumerating all possible fill ratios for 
individual colors from 0 to 1 and excluding the entries where the sum of fill ratios exceeds 
1. It is assumed that the number of colors c and the discretization precision P are known 
beforehand, and thus this calculation is done before deployment.

During its environmental exploration, robot i stores the beliefs for every hypothesis 
computed from its environmental exploration in array �

i
 of length N as follows:

Every entry l represents the computed likelihood of a single hypothesis. All entries are 
initialized to value 1/N at the start of an experimental run when the robot does not have any 
information regarding the environment.

At every control loop, a robot makes an observation of the color of the ground beneath 
itself, if it is moving forward in motion state A. Observation collection is limited to during 
forward motion in order to prevent an agent from collecting multiple observations at the 
same location. The robot detects a random color present in the tile beneath it. The intensi-
ties of the colors on that tile are used as weights to determine which color is detected. The 
result is stored in an array of size C, with only the entry associated with the detected color 
being 1 while the others being 0. This can be represented as a weighted sampling operation 
from a set of vectors as follows:

The likelihood of making a color observation, given that a particular hypothesis is true, is 
the fill ratio of the color in the hypothesis, hence can be computed as H ⋅ ob . Therefore, 
after each observation, the belief of robot i �

i
 is modified by iteratively performing ele-

ment-wise product (represented as ◦ ) of the observation likelihoods as follows:

The iterative updates allow the belief of individual robots to gradually converge to the most 
likely fill ratio hypothesis.

For LCP, robot i only records the number of instances where each color is observed in 
array counter

i
 of size C. It is updated after every observation as:

(3)H =

⎡⎢⎢⎢⎣

h
0

h
1

...

h
N−1

⎤⎥⎥⎥⎦
where h

n
=
�
hn,0 hn,1 ... hn,C−1

�
.

(4)�
i
=
[
l0 l1 l2 ... lN−1

]T

(5)�
i,0

=
[
1∕N 1∕N 1∕N ... 1∕N

]T
.

(6)When the robot is on coordinate (a,b): ob ∈R

⎧⎪⎨⎪⎩

⎡⎢⎢⎢⎣

1

0

...

0

⎤⎥⎥⎥⎦
,

⎡⎢⎢⎢⎣

0

1

...

0

⎤⎥⎥⎥⎦
...

⎡⎢⎢⎢⎣

0

0

...

1

⎤
⎥⎥⎥⎦

⎫⎪⎬⎪⎭

(7)Sampling weights: T
a,b

=
[
s0 s1 ... sC−1

]
respectively.

(8)�
i,t
= normalize(�

i,t−1
◦(H ⋅ ob)).
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From here, the estimation proportion of colors can be easily calculated as:

 For all considered strategies, we assume a separate process of determining whether con-
sensus has been achieved runs in parallel on all robots and terminates the decision-making 
process when consensus is reached for a certain period of time.

4.2 � Decision‑making strategies investigated

In this section, we present the details of the decision-making strategies investigated in this 
paper. We will cover the decision-making mechanisms of each strategy considered, how we 
are tuning the decision-making behavior of each strategy via parameters, and how we are 
controlling the communication bandwidth to achieve a fair comparison.

4.2.1 � Iterative ranked voting

Algorithm  1 shows our implementation of a ranked voting-based (RV) decision-making 
strategy. We consider the best-performing voting system investigated in previous work on 
the subject (Shan et al., 2021), Borda count. We have modified the decision-making mech-
anism to suit a many-option scenario compared to previous implementations in discrete 
collective estimation works (Shan et al., 2021; Shan & Mostaghim, 2022), and is similar to 
the implementation in another previous work tackling the collective ranking problem (Shan 
& Mostaghim, 2023).

Algorithm 1   Iterative Ranked Voting (RV)

Input: Hypotheses matrix H of size N × C
Output: Converged decisions di for every robot i
Set parameters: re, η and broadcasting probability φ
balloti is initialized as an array of −1s with length N
ρ
i
is initialized as an array of 1/Ns with length N

1: while Convergence not detected do
2: if Robot i is moving forward in motion State A then
3: ob = CollectObservation
4: ρ

i
= normalize(ρ

i
◦ (H · ob))

5: With probability re: balloti = argsort2(balloti + argsort2(−ρ
i
))

6: end if
7: ballotj = CollectRandomNeighborBallot
8: if ballotj collected then
9: balloti = argsort2(balloti + ballotj)

10: end if
11: Broadcast balloti truncated at length ηN , randomly at probability φ
12: di = H[argmin(balloti), :]
13: end while

(9)counter
i,t
= counter

i,t−1
+ ob.

(10)r
i
= counter

i
∕||counter

i
||1.
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Under RV decision-making strategy, robot i stores its current preference among the poten-
tial options in a ranked ballot ballot

i
 , which is initialized as an array of −1 s representing that 

none of the options has been ranked. The robot starts a control loop by collecting an observa-
tion on the color of the arena floor beneath itself (line 3). Its environmental observations are 
stored in terms of the likelihoods of the potential options in �

i
 (line 4). With the probability of 

the evidence rate re , the robot updates its ballot ballot
i
 with that computed from its observa-

tions �
i
 . �

i
 is first converted to the ranking of the potential options with respect to the com-

puted qualities via two consecutive argsort operations, which returns the indices that would 
sort the input elements in ascending order. The ranking is then combined with the robot’s cur-
rent ballot via a Borda count ranked voting system. In implementation, the sorting operation 
has to give random rankings when facing tied options, such that no option is given a bias (line 
5).

The robots then exchange their ballots with each other by broadcasting and receiving them 
through peer-to-peer communication (line 7 and 11). The ballots transmitted are limited in 
length to �N , where the unranked options represent those with the least preference and are 
given the highest ranking of �N when the election is conducted. Robot i performs a pairwise 
election using its own ballot and the received ballot from robot j, if one is received (line 8–9). 
The combination of the two ballots is done in the same Borda count ranked voting system 
during environmental exploration (line 9). The robot spends the rest of the control loop broad-
casting its ballot randomly at a probability � , which is computed from � and works to keep the 
communication bandwidth between robots at the required level (line 11). The chosen decision 
of the robot d

i
 is then obtained by choosing the hypothesis ranked first in the robot’s ballot 

(line 12).
The behavior of the RV decision-making strategy is controlled via the two parameters re 

and � . r2 controls the relative frequency, and thus importance, between environmental explo-
ration and communication with peers in the decision-making process. A higher re leads to a 
greater emphasis on individual exploration and vice versa. While � controls the strength of 
consensus enforcement within the robot swarm. As � increases, the number of considered 
options, thus weakening the consensus enforcement. At the same time, since the communica-
tion frequency � is inversely correlated with � , a higher � value reduces the frequency of com-
munication between robots and has the similar effect of weakening consensus enforcement.

4.2.2 � Discrete bayesian belief sharing

Algorithm  2 shows our implementation of belief fusion decision-making strategy, discrete 
Bayesian belief sharing. It is similar to in previous related works (Shan & Mostaghim, 2021, 
2022), with modifications made mainly to improve the stability of the algorithm.

Under this strategy, a robot computes the likelihoods for every considered hypothesis h 
given past observations ob. From Bayes’ theorem, we can obtain the following:

Both the prior probability P(h) and the marginal likelihood P(ob0...obt−1) are assumed to 
be the same for all hypotheses. We can then apply the chain rule as follows:

Assume the observations ob0 to obt−1 are all independent of each other, we have as follows:

(11)P(h|ob0...obt−1) =
P(ob0...obt−1|h)P(h)

P(ob0...obt−1)
.

(12)P(ob0...obt−1|h) = P(ob0|h)P(ob1|h, ob0)...P(obt−1|h, ob0...obt−2).
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Here P(ob|h) is the probability of making an observation ob when hypothesis h is true, and 
is equal to the fill ratio of the associated color under that hypothesis.

The robot thus computes the quality array for decision making �∗
i
 as the likelihoods 

of all considered hypotheses by taking an element-wise product of the probabilities of 
seeing the observed colors in the past observations by itself and its peers, as follows:

Here ob are observations made by the robot itself, while ob′ are observations made by the 
robot’s peers. The latter is applied with a weight w that is adjustable via the algorithm’s 
parameters to control the strength of consensus enforcement in the swarm.

Algorithm 2   Discrete Bayesian Belief Sharing (DBBS)

Input: Hypotheses matrix H of size N × C
Output: Converged decisions di for every robot i
Set parameters: λ, µ and broadcasting probability φ
ρ
i
and ρ′

i
are both initialized as arrays of 1/N with length N

1: while Convergence not detected do
2: if Robot i is moving forward in motion State A then
3: ob = CollectObservation
4: ρ

i
= normalize(ρ

i
◦ (H · ob))

5: ρ
i
[ρ

i
< 0.001/N ] = 0.001/N

6: end if
7: ξ

j
= CollectRandomNeighborOpinion

8: if ξ
j
collected then

9: ρ′
i
= (ρ′

i
× λ+ ln(ξ

j
))−mean(ρ′

i
× λ+ ln(ξ

j
))

10: end if
11: ξ

i
= ln(ρ

i
) + ρ′

i
× µ

12: Broadcast ξ
i
randomly at probability φ

13: di = H[argmax(ln(ρ
i
) + ρ′

i
), :]

14: end while

In our implementation, the robot starts its control loop with a similar environmental 
exploration compared to in RV strategy. The difference is that the computed quality esti-
mates �

i
 are bounded to a minimum value of 0.001/N to avoid underflow during the 

subsequent belief fusion process (line 5). During peer-to-peer communication, the 
robots exchange � with each other (line 7 and 12). It is computed from a robot’s own 
quality estimates �

i
 and its record of previously received quality estimates from its peers 

�′
i
 , with the latter subjected to a decay coefficient � . Both � and �′ are stored on a loga-

rithmic scale to ensure numerical stability and prevent underflow (line 11). If received, 
�
j
 will be used to update the quality estimates record of robot i �′

i
 , with the original 

value subjected to decay coefficient � . The normalization here is done by shifting all 
entries such that their mean is 0 (line 9). The decision is computed by taking the 

(13)P(ob0...obt−1|h) = P(ob0|h)P(ob1|h)...P(obt−1|h).

(14)�∗
i
=

(∏
t

H ⋅ ob
t

)(∏
t�

H ⋅ ob�
t�

)w

.
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hypothesis with the highest quality when combining � and �′ according to Equation 13 
(line 13).

The decision-making behavior of the DBBS algorithm is controlled by the two decay 
coefficients � and � , which change the weight (w in Equation 13) of the neighbors’ opin-
ions in the decision-making process of any robot. They have the same effects as in previ-
ous related works (Shan & Mostaghim, 2021, 2022). A higher value in either coefficient 
increases the strength of consensus enforcement, � via increasing the weight of previous 
observations, while � via increasing the weight of neighbors’ opinions.

4.2.3 � Linear consensus protocol

To gauge the validity of using the aforementioned discrete decision-making strategies in 
the investigated scenarios with high numbers of options, we employ the linear consensus 
protocol (LCP) as a baseline algorithm. We keep a similar implementation as in Strobel 
et al. (2020).

Algorithm 3   Linear Consensus Protocol (LCP)

Output: Converged decisions: di for every robot i
Set decision-making cycle length l and broadcasting probability φ
Initialize counteri to array of zeros with length C
Initialize record of neighbor opinions R as empty
1: while Convergence not detected do
2: if Robot i is moving forward in motion State A then
3: ob = CollectObservation
4: counteri = counteri + ob
5: ri = counteri/||counteri||1
6: if di is empty then
7: di = ri
8: end if
9: end if

10: dj = CollectRandomNeighborOpinion
11: if dj collected then
12: Add dj to R
13: if Size of R = l then
14: di = mean(di, ri, dj∀j ∈ R)
15: Clear R
16: end if
17: end if
18: Broadcast di randomly at probability φ
19: end while

Different from the aforementioned discrete decision-making strategy, under LCP an 
individual robot stores its estimation of the fill ratios of every color in an array r

i
 of size C, 

while the collected observations are stored in an array counter
i
 of the same length. When 

an observation is collected during environmental exploration, counter
i
 is updated by adding 

1 to the occurrence of the observed color (line 4). The estimated fill ratios r
i
 are obtained 

by computing the proportion of each color observed (line 5). Convergence to a consensus 
is encouraged within the swarm by the exchange of the robots’ decision arrays d

i
 (line 10 
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and 18), which are collected to update a robot’s own decision d
i
 via a numerical average of 

the robot’s previous decision, the fill ratio estimates from environmental exploration r
i
 and 

all collected decisions from its peers stored in the set R. The size of R is the parameter l 
and is used to control the decision-making frequency of the swarm. A higher l means less 
frequent decision-making and each collected message has a lower impact on the computed 
final decision, leading to weaker consensus enforcement.

5 � Experiments and results

In this section, we present our experiments in detail. We first introduce our experimental 
setup, focusing on the environmental settings and the parameter settings. Then, we show 
our experimental results, followed by analysis.

5.1 � Experimental setup

Our experiments are done in a simulated physics-based environment constructed using 
Python.1 The 20 simulated robots have the physical specification of e-pucks (Mondada 
et al., 2009) with a linear speed of 0.16 m/s, a rotational speed of 0.75 rad/s, a communica-
tion range of 0.5 m and a control loop length of 1 s. To maintain similar levels of data trans-
mission between the compared strategies, we have utilized similar assumptions regarding 
the communication bandwidths as in previous related works (Shan & Mostaghim, 2022) 
shown in Table 2 and varies the communication probability � for the investigated strategies 
to control the communication bandwidth used. Our simulated communication paradigm 
seeks to model the operation of short-ranged peer-to-peer communication methods such as 
infrared (Kahn & Barry, 1997). The communication is strictly peer-to-peer, and is only in 
the form of one robot broadcasting a message and another robot receiving it. An individual 
robot has no uniquely identifying indices. If multiple robots within a neighborhood are 
broadcasting at the same time, a random message would be picked up by a receiving robot. 
The interference between a communicating pair and other robots is assumed to be minimal.

Table 2   Assumptions on the 
message format and sizes for all 
considered strategies

Decision-making strategy Message format

RV � × N× short int ( 16N� bits)
DBBS N× float (32N bits)
LCP C× float (32C bits)

1  Our codes are available at: https://​github.​com/​Qihao-​Shan/​SI_​DCE_​Many-​option_​Public

https://github.com/Qihao-Shan/SI_DCE_Many-option_Public
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Algorithm 4   Generation of experimental environment

Input: Number of colors C; required fill ratio of every color [fr0, fr1, ..., frC−1];
Pattern=Random/Concentrated; level of concentration α; Size=[Length,Width]
Output: Color composition of every tile in the environment of size C×Length×Width
1: ArenaTiles = array of zeros with size C × Length×Width
2: if Pattern=Random then
3: for c=0:C-1 do
4: Array1 = sample Length×Width numbers from U(0, 1)
5: Array2 = empty array of equal size to Array1
6: Array2[Array1 ≥ frc] = sample for every entry from U(0, frc)
7: Array2[Array1 < frc] = sample for every entry from U(frc, 1)
8: ArenaTiles[c, :, :] = Array2
9: end for

10: Normalize the color distribution in every tile in ArenaTiles so that they sum
up to 1

11: else
12: # Pattern=Concentrated
13: MaxDiff = 1 ; c = 0
14: while MaxDiff > 0.01 do
15: Array1 = empty array of size Length×Width
16: (a∗, b∗) = random position in the arena
17: for every entry in Array1 with coordinates (a,b) do
18: Dist = Euclidean distance from (a, b) to (a∗,b∗)
19: Array1[i, j] = MaxDiff× 10× exp(−Dist× α)
20: end for
21: ArenaTiles[c, :, :] = ArenaTiles[c, :, :] + Array1
22: Normalize the color distribution in every tile in ArenaTiles so that they

sum up to 1
23: MaxDiff = compute the highest deviation between current fill ratio and

required fill ratio among considered colors
24: c = color with the highest deviation between current fill ratio and required

fill ratio
25: end while
26: end if

The experimental environment is extended to a higher number of environmental features 
and potential options compared to previous studies on the subject (Shan & Mostaghim, 
2021; Shan et al., 2021). The environment is a 2-dimensional 2m × 2m arena covered by 
400 tiles. Each tile has a mix of the considered colors of different proportions that sum 
up to 1, as shown in Fig. 2. We generate the experimental environments with an iterative 
approach to maintain the constraints of local color intensities while reaching the required 
fill ratio for the whole arena, as shown in Algorithm 4.

In line with previous related works, we have experimented on environments with dif-
ferent distributions of features, namely random distribution (Fig. 2a, b) and concentrated 
distribution (Fig. 2c). The generation of the two categories of environments is controlled 
by the parameter Pattern in Algorithm 4, while the level of concentration is controlled by 
parameter � . Environments with randomly distributed features are generated by randomly 
generating a color distribution for every color at every tile that has the mean equal to the 
desired fill ratio across the entire arena (line 4–7), and then normalizing all colors at every 
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tile such that they sum up to 1 (line 10). On the other hand, a concentrated pattern of distri-
bution is generated through an iterative process, where layers of radially distributed color 
blocks are placed at random locations and bring the fill ratios progressively closer to the 
required fill ratio (line 13–24). In this paper, the level of concentration � is set to 0.5 for all 
experiments with concentrated feature distributions.

Before the decision-making process, the decision space for every robot is computed. 
For LCP, it is the real number space of d

i
∈ ℜ,

∑
d
i
= 1 . For RV and DBBS, the decision 

space is discretized with respect to the required decision precision P into 
[
0 1P 2P ... 1

]
 

representing the fill ratio hypotheses for each individual color. The hypotheses are concat-
enated to form the fill ratio hypotheses of all considered colors, with those having a sum 
greater than 1 across all colors removed from the hypotheses list.

In order to compare the performances of both discrete and continuous collective deci-
sion-making strategies considered. We measure the performances using three metrics, scat-
ter at convergence, error at convergence, and convergence time.

The scatter of all robots’ opinions at time t is defined as the sum of Euclidean distances 
between the centroid of all decisions regarding the fill ratios within the swarm and the indi-
vidual decisions of the robots.

Convergence is achieved when the scatter is at a minimum during an experimental run, 
limited to a time limit of 1200 s. The scatter at convergence can be represented as follows.

The error at convergence is defined as the total absolute error between all robot’s fill ratio 
decisions and the true fill ratios fr at the time of convergence.

Finally, convergence time is defined as the time taken to reach 90% of the minimum scatter 
value from the maximum scatter value during the experiment.

(15)Scattert =
∑
∀i�

(mean∀i(di,t) − d
i� ,t
)2

(16)ConvScatter = min(Scattert)

(17)t ∗=argmint(Scattert)

(18)ConvError =
∑
∀i

abs(fr − d
i,t∗
)

Fig. 2   Examples of the experimental environments used a environment with 2 colors b environment with 
three colors c environment with concentrated distribution of features (Color figure online)
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The fill ratios tested for every considered number of features are shown in Table 3. For 
every number of features, two different fill ratio configurations are tested, with 40 experi-
mental runs conducted for each fill ratio scenario at every parameter configuration of the 
considered strategies, as shown in Table  4. The aggregate across the two fill ratio con-
figurations is used to determine the performances of the considered strategies at the cor-
responding parameter configurations. The performances of the considered strategies at dif-
ferent parameter settings are used to gauge the trade-offs between different performance 
metrics at different decision-making difficulty levels. To this end, we have employed a sim-
ilar multi-objective analysis framework as in previous related works (Shan & Mostaghim, 
2021; Shan et al., 2021; Shan & Mostaghim, 2022) and pay attention to the Pareto fronts 
of the performances in the error versus convergence time speed. To quantify the extent of 
the trade-off, we measure the spread of the Pareto fronts, which is computed as the volume 
bounded by the extreme points on the Pareto front. A higher spread means a more signifi-
cant trade-off between speed and accuracy in the decision-making process, while a spread 
of 0 means the existence of a single best parameter configuration for the algorithm in that 
particular scenario.

(19)ConvTime = min(t)∀t∶ Scattert ≤ 0.9min(Scattert) + 0.1max(Scattert)

Table 3   Fill ratios tested for every considered number of features and the resulting number of options at dif-
ferent discretization precision levels

Color id Number of options given 
precision

Fill ratios 0 1 2 3 4 0.1 0.05 0.02 0.01

Number of features 2 0.3 0.7 11 21 51 101
0.9 0.1

3 0.1 0.3 0.6 66
0.8 0.1 0.1

4 0.1 0.2 0.3 0.4 286
0.7 0.1 0.1 0.1

5 0.1 0.1 0.2 0.2 0.4 1001
0.6 0.1 0.1 0.1 0.1

Table 4   Parameter values used in the experiments for all considered strategies

Decision-making strategy Parameter settings used

Iterative ranked voting (RV) r
e
= [0.2, 0.5, 1];� = [0.05, 0.1, 0.2, 0.5]

Distributed Bayesian belief sharing (DBBS) � = [0.5, 0.7, 0.9];� = [0.2, 0.4, 0.6, 0.8]

Linear consensus protocol (LCP) l = [5, 10, 15, 20, 30, 40, 60, 80]
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5.2 � Performances of the considered strategies with respect to different numbers 
of environmental features

In this subsection, we present the performances of the considered algorithms at differ-
ent numbers of environmental features, i.e. different numbers of colors in the arena. 
The error versus convergence speed Pareto fronts of the considered strategies’ mean 
performances at different parameter configurations are shown in Fig.3a. The solid mark-
ers show the error versus convergence time performances at parameter configurations on 
the Pareto fronts, with the solid lines showing the Pareto fronts. The transparent mark-
ers show the position of the performances in the 3D space when considering scatter.

Comparing the performances of both discrete strategies RV and DBBS versus those 
of LCP in Fig.3a, it can be shown that discrete decision-making strategies have superior 
performances in terms of the error versus convergence time trade-off, as they outper-
form the Pareto fronts of LCP for all tested scenarios. RV and DBBS also produce lower 
scatter at convergence, showing a stronger ability to reliably reach consensus compared 
to LCP. In Fig.3a when the environmental features are randomly distributed, as the 
number of environmental features increases, the performances of both discrete strate-
gies experience a significant drop in terms of convergence speed. On the other hand, 
LCP’s performances experience a drop in convergence speed on the top-left side of the 
Pareto fronts. As observed in Fig.3b, its performances also experience a slight drop in 
accuracy when facing more environmental features.

In order to get a clearer view of the impact of the number of features on the perfor-
mances of the individual strategies, Fig. 3b shows the scatter plot of error versus conver-
gence time performances at different axis scales in terms of error. It can be seen more 
clearly that for both discrete strategies RV and DBBS, a higher number of environmen-
tal features diminishes the extent of the speed versus accuracy trade-off. For a higher 
number of features, there exists a singular best parameter configuration, as opposed to 
a Pareto front of equally good configurations observed at a lower number of features. 
On the other hand, LCP consistently displays speed versus accuracy trade-offs for all 
numbers of features. Between the two discrete strategies, RV sees more variations in its 
performances at different parameter settings when facing a higher number of features 
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Fig. 3   Performances of the considered strategies in all metrics when facing different numbers of randomly 
distributed environmental features a Error versus convergence time Pareto fronts, 3D space also includes 
scatter at convergence b Scatter plot for all tested parameter settings in terms of error versus convergence 
time; bandwidth=32 bits/s, decision space discretization precision=0.1
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compared to DBBS, which produces performances that are clustered together for differ-
ent parameter settings.

To quantify the impact of the number of environmental features on the extent of speed 
versus accuracy trade-off, Table 5 shows the spread of the Pareto fronts for the considered 
strategies at different number of features and at different bandwidth levels. In addition, the 
minimum mean error values indicate the positions of the Pareto front and show the limits 
of the performances of the considered strategies. For LCP, it can be observed that the main 
influence on the spread of Pareto front and the extent of speed versus accuracy trade-off 
comes from the bandwidth level. It also sees a slight increase in the spread of the Pareto 
front and a worsening of the accuracy at the extreme point of the Pareto front, as the num-
ber of features increases. This trend is, however, reversed for RV and DBBS, both of which 
show a drop in Pareto front spread when the number of features increases. Both discrete 
decision-making strategies can also maintain very low error at the extreme point of the 
Pareto fronts as the number of features increases.

The box plots of the convergence times produced by the considered algorithms under 
the best parameter configurations in random environments are shown in Fig.  4. The 
parameter configurations chosen here are those corresponding to the center points on the 
Pareto frontiers of error versus convergence time performances. As a baseline, LCP gen-
erally experiences an increase in convergence speed when the communication bandwidth 
increases, and a decrease in convergence speed when the number of features increases. The 
latter holds for both multi-objective decision-making strategies, coupled with an increase 
in the variation of the convergence time. On the other hand, an increase in communication 
bandwidth does not have as strong a positive influence on the convergence speed of both 
discrete strategies, especially when facing a higher number of features. This causes the 
convergence speed of RV and DBBS to be close to that of LCP at high number of features 
and high bandwidths.

Figure  5 shows the performances of the considered strategies when facing differ-
ent numbers of concentrated features. A similar trend to that in random environments is 
observed. Concentrated feature distribution further reduces the convergence speed of the 
discrete decision-making strategies compared to LCP. For RV, further instability with 

Table 5   Error vs convergence time spread and minimum mean error of the Pareto front of the considered 
strategies at different number of features; decision space discretization precision=0.1



233Swarm Intelligence (2024) 18:215–241	

1 3

0

100

200

300

400

500
C

on
ve

rg
en

ce
 ti

m
e 

s
2 features

0

100

200

300

400

500
3 features

Bandwidth bits/s

0

100

200

300

400

500

C
on

ve
rg

en
ce

 ti
m

e 
s

4 features

8 16 32 64 8 16 32 64

8 16 32 64 8 16 32 64
Bandwidth bits/s

0

100

200

300

400

500
5 features

Fig. 4   Box plots showing the distribution of the convergence time of the considered algorithms at the best 
parameter configurations facing different number of features at different bandwidth levels; Red: LCP, Blue: 
RV, Black: DBBS; decision space discretization precision=0.1 (Color figure online)

(a)

0 0.2 0.4
0

50

100

150

200

250

300

350

400

450

C
on

v 
tim

e 
/s

LCP

0 0.05
Error at conv

0

50

100

150

200

250

300

350

400

450
RV

0 0.05 0.1
0

50

100

150

200

250

300

350

400

450
DBBS

2

3

4

5

N
um

be
r o

f f
ea

tu
re

s

(b)

Fig. 5   Performances of the considered strategies in all metrics when facing different numbers of concen-
trated environmental features a Error versus convergence time Pareto fronts, 3D space also includes scatter 
at convergence b Scatter plot for all tested parameter settings in terms of error versus convergence time; 
bandwidth=32 bits/s, decision space discretization precision=0.1
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respect to parameter settings is introduced, causing the bi-objective performances in error 
and convergence time when facing three features to exceed those when facing two features. 
Both discrete decision-making strategies also see a greater extent of error versus conver-
gence time trade-off compared to random environments, while LCP does not see a signifi-
cant reduction in performances.

The results above have shown that when considering error, convergence time and scat-
ter, both tested discrete approaches, RV and DBBS, have superior performances compared 
to the LCP baseline decision space with a high number of features. This indicates that the 
parallel consideration of multiple potential options by RV and DBBS, when accounting for 
the increased bandwidth costs, is justified in terms of the decision-making performances.

At the same time, it is observed that an increase in the number of environmental features 
has a positive effect on the accuracy performances of the considered discrete decision-
making strategies, especially DBBS. This is seen together with a significant decrease in the 
spread of the observed Pareto fronts, hence making the algorithms more sensitive in terms 
of parameter settings, but also presenting singular best configurations and reducing the 
trade-offs faced. This is in contrast to the behavior displayed by LCP, which sees a worsen-
ing in performance across all metrics when facing a higher number of features.

5.3 � Performances of the considered strategies with respect to different decision 
space discretization precision

In this subsection, we present the performances of the considered strategies at different 
levels of decision space discretization. It is the second way where the number of poten-
tial options can be changed for the discrete decision-making strategies. For LCP, with its 
continuous decision space, the level of discretization has no effect on the decision-making 
performances.

Figure 6 shows the performances of the considered strategies in randomly distributed 
environments when facing different levels of discretization precision. It can be observed 
that compared to the previous subsection for different numbers of features, the level 
of discretization precision has a smaller impact on the decision speed for the discrete 
decision-making strategies, but a bigger impact on the scatter and error. Notably, as 
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Fig. 6   Performances of the considered strategies in all metrics when randomly distributed environmental 
features at different levels of discretization precision a Error versus convergence time Pareto fronts, 3D 
space also includes scatter at convergence b Scatter plot for all tested parameter settings in terms of error 
versus convergence time; bandwidth=32 bits/s, number of features=2
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shown in Fig. 6a, at finer discretization precision, both RV and DBBS show a signifi-
cant increase in scatter at convergence, exceeding those produced by LCP. As shown in 
Fig. 6b, as the discretization precision becomes finer, both discrete strategies produce 
higher errors and shorter error versus convergence time Pareto fronts.

Table  6 shows the quantification of the changes in the Pareto fronts for RV and 
DBBS. It can be observed that for both RV and DBBS, there is a region with respect 
to precision and bandwidth settings where the error versus convergence time spread 
reaches a maximum, centered around precision of 0.05 and bandwidth of 32 bits/s. 
While for other scenarios, the spread of the Pareto fronts decreases. On the other hand, 
the minimum mean error increases steadily as precision decreases for both discrete 
strategies, while not being significantly affected by the bandwidth levels. These results 
show that a finer discretization precision has a negative impact on the decision-making 
accuracy of both discrete strategies. This is opposite to the impact of a higher number of 
features shown in the previous subsection. This negative impact is also not easily miti-
gated by allowing a higher frequency of communication or by parameter tuning of the 
decision-making strategy.

The distribution of the convergence time of the considered strategies is shown in 
Fig. 7. It can be confirmed that compared to different number of features shown in the 
previous subsection, decision precision has a smaller impact on both the median and 
the variation of the decision speed of the discrete strategies. As such, even at the small-
est tested decision precision of 0.01, both discrete strategies are still significantly faster 
than the LCP baseline. For every decision precision tested, increasing the communica-
tion bandwidth also has a positive impact on the decision speed. 

Lastly, the performances of the considered algorithms when facing concentrated 
environmental features at different levels of discretization precision are shown in Fig. 8. 
For both discrete strategies, as discretization precision becomes finer, a similar trend of 
increasing error and convergence time is observed. The increase in convergence time 
at finer discretization precision is more significant than observed when facing random 
environmental features and makes the decision speed of the discrete strategies on par 
with that of LCP at the discretization precision of 0.01. On the other hand, LCP’s per-
formances still do not significantly decrease compared to when facing random environ-
mental features.

Table 6   Error vs convergence time spread and minimum mean error of the Pareto front of the considered 
strategies at different levels of discretization precision; number of features=2
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Fig. 8   Performances of the considered strategies in all metrics when facing concentrated environmental fea-
tures at different levels of discretization precision a Error versus convergence time Pareto fronts, 3D space 
also includes scatter at convergence b Scatter plot for all tested parameter settings in terms of error versus 
convergence time; bandwidth=32 bits/s, number of features=2
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6 � Discussion

Based on the experimental results presented in the previous section, we can make the fol-
lowing judgments. Firstly, in the decision-making scenarios investigated that go up to 101 
options with two features and 1001 options with five features, parallel discrete consensus-
forming strategies have an edge in terms of accuracy and speed compared to continuous 
consensus-forming strategies. This, coupled with the fact that continuous consensus-form-
ing strategies have an inherent difficulty in forming an exact consensus in distributed sys-
tems (Elhage & Beal, 2010), means, that for continuous consensus forming, the discretiza-
tion of the decision space and the adoption of discrete decision-making strategies can often 
be the best approach in reaching an accurate consensus, even if a moderate level of discre-
tization precision is required.

The operation of parallel discrete decision-making strategies in a larger decision space, 
however, can be negatively impacted by the number of potential options. Based on the 
experimental results, both investigated discrete decision-making strategies, RV and DBBS, 
produce a smaller error and a higher convergence time when facing a larger decision space 
caused by a higher number of features, while showing a larger error and a less signifi-
cant increase in the convergence time when facing a larger decision space caused by finer 
discretization precision. This distinction is caused by the differences in the correlations 
between the existing options and the new options introduced by the two different expan-
sions to the decision space. When the number of features increases, the decision space 
expands in the number of dimensions, leading to unordered and weakly correlated options 
being added to the existing pool of potential options. It is thus less likely to mislead the 
swarm to erroneous options, but rather only increases the number of options the robots 
need to process. Thus, the impact of a higher number of features is similar to that of a 
smaller communication bandwidth, in that the decision-making process is slowed down but 
made more accurate due to the added time to explore the environment, as observed in Shan 
and Mostaghim (2021, 2022).

On the other hand, a finer discretization precision increases the number of options in 
the existing decision space, thus introducing many options that are correlated with the 
existing ones in terms of option qualities. These options can easily mislead the swarm and 
cause it to converge to an erroneous option, thus increasing the error, which is a simi-
lar effect to that caused by concentrated feature distribution (Shan & Mostaghim, 2021; 
Shan et al., 2021; Shan & Mostaghim, 2022). In addition, both sources of expansion of the 
decision space also reduce the extent of the speed versus accuracy trade-off, thus making 
the decision-making process more invariant with respect to parameter settings. This is a 
direct result of the expanded list of options, which makes it increasingly difficult to reach a 
fast consensus even when not considering the accuracy. This distinguishes scenarios with 
larger decision spaces from those with concentrated distribution of features. Its impact on 
the viability of discrete decision-making strategies in large decision spaces is two-fold: it 
reduces the need to make an additional judgment regarding parameter settings with respect 
to trade-offs between different decision-making metrics; however, it is also more impor-
tant to select the best parameter settings to ensure good performances of the concerning 
strategies.

In previous literature on discrete collective estimation (Shan & Mostaghim, 2021, 
2022), it has been observed that belief fusion approaches tend to have a stronger level of 
positive feedback than ranked voting approaches and can thus lead to faster but less accu-
rate consensus. This trend is confirmed here, as DBBS tends to be faster and less accurate 
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than RV in all experiments. However, it is more prevalent when facing more finely discre-
tized options compared to a higher number of features. This highlights the importance of 
parameter tuning to restrict the strength of positive feedback in consensus-forming pro-
cesses when facing ordered and correlated options.

Lastly, both discrete consensus strategies see more significant performance drops in 
terms of decision speed and accuracy when facing concentrated feature distributions com-
pared to random feature distributions. As observed in previous literature (Bartashevich 
& Mostaghim, 2019; Shan & Mostaghim, 2021), the effect of a concentrated feature dis-
tribution is a dispersion of the individual robots’ opinions obtained from environmental 
exploration. In our experiments, LCP displays a more stable process in unifying the robots’ 
opinions, while both discrete strategies face increased difficulty as shown by an increased 
decision time and scatter at convergence. This is also caused by the stronger positive feed-
back effect in the discrete consensus strategies, which causes agents in physical proxim-
ity to reinforce the opinions of each other, thus preventing consensus with the rest of the 
swarm.

7 � Conclusion

In this paper, we investigate the performances of discrete collective decision-making strate-
gies in many-option consensus-forming scenarios with significantly more options than the 
number of agents. We have employed two discrete strategies: iterative ranked voting (RV) 
and distributed Bayesian belief sharing (DBBS). We have used linear consensus protocol 
(LCP) as a baseline. The considered strategies are experimented on an extended discrete 
collective estimation scenario, that accounts for expansion of the decision space due to 
two different factors: a higher number of environmental features and finer decision space 
discretization precision. The considered strategies are compared using three metrics: error, 
convergence time, and scatter at convergence, to measure the accuracy, speed and level of 
consensus of the strategies respectively. Trade-offs between the metrics are considered as 
we compare the Pareto fronts of the considered strategies’ performances.

Our results have shown that the investigated discrete decision-making scenarios can 
perform well in scenarios with a high number of options. Compared to the performances of 
LCP, adopting a discrete strategy has the benefit of producing, in general, lower error, con-
vergence time and scatter at convergence. However, the performances of the discrete strate-
gies are easily influenced by the environment. They respond differently to the different fac-
tors causing the expansion of the decision space. When facing a higher number of features, 
both RV and DBBS experience a decrease in error but an increase in convergence time. On 
the other hand, when facing a finer discretization precision, both discrete strategies expe-
rience an increase in error and a less significant increase in decision time, together with 
an increase in scatter. The distinction between the two effects is due to the differences in 
the correlation between potential options. Overall, discrete decision-making strategies are 
shown to be a viable alternative to continuous consensus-forming strategies if the nature of 
the decision-making problem allows discretization of the decision space. However, atten-
tion needs to be paid to the influence of environmental settings on their performances.

For future work, we plan to investigate ways to trim the number of potential options 
during many option decision-making scenarios, such that the limited communication 
bandwidths can be efficiently utilized, and the decision-making process can be more scal-
able and less negatively affected by the large decision space. At the same time, this paper 
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touches only the straightforward interpretation of consensus regarding environmental per-
ception in terms of accuracy speed and uniformity. This framework favors strong consensus 
enforcement via positive feedback. However, in the behaviors of natural intelligent swarms, 
effective collective behavior often does not mean exact uniformity. Therefore, ways to 
quantify collective cohesion without relying on level of uniformity need to be investigated 
for collective environmental perception scenarios.
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