
Vol.:(0123456789)

Swarm Intelligence (2024) 18:167–185
https://doi.org/10.1007/s11721-023-00230-7

1 3

Improved decentralized cooperative multi‑agent path
finding for robots with limited communication

Abderraouf Maoudj1 · Anders Lyhne Christensen2

Received: 29 November 2022 / Accepted: 16 October 2023 / Published online: 12 December 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Multi-agent path finding (MAPF) holds significant practical relevance in numerous real-
world applications involving fleets of mobile robots. The efficiency of such systems is
directly determined by the quality of the paths calculated. Accordingly, extensive effort
has been directed toward creating effective algorithms to address the MAPF problem. Yet,
many existing MAPF algorithms still depend on offline centralized planning, paired with
often unrealistic assumptions—such as robots having complete observability of the envi-
ronment and moving in a deterministic fashion. The resultant plans are typically unsuitable
for direct implementation on real robots where these assumptions do not usually apply.
Aiming for more effective robot coordination under realistic conditions, we introduce an
enhanced decentralized method. In this method, each robot coordinates solely with neigh-
bors within a limited communication radius. Each robot attempts to follow the shortest
path from its starting point to its designated target, addressing conflicts with other robots as
they occur. Our method also incorporates path replanning, local motion coordination, and
mechanisms to avoid robots becoming trapped in livelocks or deadlocks. Simulation-based
results from various benchmark scenarios confirm that our enhanced decentralized method
is both effective and scalable, accommodating up to at least 1000 robots.

Keywords Multi-agent path finding · Partial observability · Decentralized coordination ·
Livelock · Deadlock

1 Introduction

Nowadays, fleets of mobile robots are increasingly being adopted in industrial envi-
ronments, such as logistic distribution systems and automated warehouses, to meet the
growing transportation and cargo sorting needs, e.g., transporting goods and materials

 * Abderraouf Maoudj
 abderraouf.maoudj@kfupm.edu.sa

 Anders Lyhne Christensen
 andc@mmmi.sdu.dk

1 Interdisciplinary Research Center for Intelligent Manufacturing and Robotics (IRC-IMR), King
Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia

2 SDU UAS Center, MMMI, University of Southern Denmark (SDU), Odense, Denmark

http://crossmark.crossref.org/dialog/?doi=10.1007/s11721-023-00230-7&domain=pdf

168 Swarm Intelligence (2024) 18:167–185

1 3

between workstations and storage pipes. The increased use of robot fleets has given rise
to a number of challenging optimization problems, such as multi-agent path finding
(MAPF) (Dingding et al., 2022) and multi-robot routing and scheduling (Bobanac &
Bogdan, 2008).

The MAPF problem is of significant practical relevance in several real-world applica-
tions of multi-robot systems and receives a great deal of attention as the setup of industrial
warehouses matches some of the assumptions commonly used in the MAPF literature, e.g.,
a large fleet of robots must perform transportation tasks in a known environment repre-
sented as a regular square lattice (Varambally et al., 2022). The MAPF problem consists
of computing collision-free paths for fleets of agents from their current locations to their
respective targets.

MAPF remains a major challenge, and it has been widely studied in the literature (Rei-
jnen et al., 2020; Stern et al., 2019). Numerous algorithms have been developed to achieve
efficient coordination of fleets of robots in shared environments, such as CBS (Sharon
et al., 2015; Li et al., 2021c), Lazy-CBS (Gange et al., 2019), Multi-label A* (Grenouil-
leau et al., 2019), M* (Wagner & Choset, 2011), and prioritized planning (Ma et al., 2019).
However, most of the proposed algorithms are offline centralized planners, and they can-
not be directly applied in the real world as they rely on unrealistic assumptions (Varam-
bally et al., 2022). In real-world scenarios, the number of mobile robots can reach hun-
dreds (Lian et al., 2020; Zhao et al., 2020) and they do not always move at constant speeds.
The biggest drawback of centralized approaches is the lack of scalability, as computational
complexity tends to grow exponentially with the robot count and map dimensions (Dra-
ganjac et al., 2020). Scenarios involving large numbers of robots thus rule out simple
adaptation of the offline compute-intensive algorithms, and scalable online approaches are
appealing for such settings (Okumura et al., 2022).

In our previous work, we proposed the decentralized cooperative multi-agent path-find-
ing (DCMAPF) approach (Maoudj & Christensen, 2022) to solve the MAPF problem. In
DCMAPF, each agent autonomously plans its path using A* while initially ignoring the
other agents and then, resolves conflicts as they occur. However, DCMAPF proved to have
two shortcomings in highly constrained maps: (i) robots could get stuck in livelock situ-
ations where a pattern of movement is repeated indefinitely, and (ii) in rare cases, robots
could end up in deadlocks situations where no solution could be found. In this paper, we
extend our previous work on DCMAPF and propose improved decentralized coopera-
tive multi-agent path-finding (IDCMAPF), where we introduce mechanisms to deal with
DCMAPF’s shortcomings, which improve robot coordination and enable large-scale fleets
of autonomous mobile robots to operate effectively and reliably in highly constrained envi-
ronments. These mechanisms facilitate the coordination of robots with a high degree of
robustness to uncertainties and variations in the speeds of the robots. Moreover, IDCMAPF
does not require the robots to have complete information about each other. Instead, we
consider that robots operate in a partially observable world, where each robot can only
communicate with neighbors within its vicinity. To use IDCMAPF on physical robots, the
robots would thus only need a map of the environment, the ability to localize themselves
within that environment [e.g., via SLAM (Beinschob & Reinke, 2015), radio (Kammel
et al., 2022), or fiducial markers (Varambally et al., 2022)], and the ability to communicate
locally with other robots.

The subsequent sections of this paper are structured as follows: Sect. 2 formalizes the
MAPF problem. Section 3 discusses state-of-the-art methods for solving MAPF prob-
lems. Section 4 presents the proposed decentralized approach. Section 5 reports on the
experiments we conducted to evaluate IDCMAPF against state-of-the-art planners and its

169Swarm Intelligence (2024) 18:167–185

1 3

robustness to variations in the speeds of the robots in a fleet. Section 7 provides conclu-
sions and lays out directions for future work.

2 Problem formulation

In many practical applications, such as automated warehouses, the layout of industrial envi-
ronments is fixed, and robots can only move along a predefined roadmap (Dingding et al.,
2022). Figure 1 illustrates an example of an automated warehouse, modeled as a 35× 15
grid map, in which a set of m mobile robots {r1, ..., rm} must perform their assigned pickup
and delivery tasks. In real-world scenarios, wireless communication can be noisy, in par-
ticular over long distances, and all robots may not always be able to communicate with one
another (Damani et al., 2021; Stephan et al., 2017). We therefore assume that each robot
has a limited communication range and can only access the state of its neighboring robots
within a range of two squares, as illustrated in Fig. 2.

A warehouse layout can be abstracted into an undirected graph G = (V ,E) , where nodes
V correspond to locations arranged in the grid and the edges E correspond to straight lines
between locations that can be traversed by the robots. The robots are assumed to know the
graph and their own position and target location in the graph. At every time step t, each

Free space Obstacle Robot Target

Fig. 1 Example of a warehouse layout modeled as a 35× 15 grid map

Fig. 2 Communication range of a
robot (r

4
) in the environment

r6r5r4

r1

r3

r7

r2

170 Swarm Intelligence (2024) 18:167–185

1 3

robot ri occupies one of the graph nodes nt
i
 , referred to as the location of that robot at time-

step t and can choose to perform an action ai from one time-step to the next one. The action
can be either wait in its current node or move to an adjacent free node in one of the car-
dinal directions. At each time step, if robot rj is in communication range of robot ri , we say
that robot rj is in robot ri ’s neighborhood j ∈ Nt

i
.

A free node is a location on the map that is neither an obstacle nor occupied by a robot.
Robots can traverse free nodes without colliding with other robots or obstacles. A conflict
is defined as a situation where two or more robots attempt to move to the same node (inter-
section conflict) or to traverse the same edge (opposite conflict) in the same discrete time
step. A conflict between two agents ri and rj thus occurs if and only if:

The MAPF problem is concerned with planning a path for each robot from its starting point
to its target location in a given environment. The aim is to ensure that no two robots occupy
the same node or cross the same edge in the same time step, as this would result in a colli-
sion. The objective considered in this work is to minimize the sum-of-costs, that is, the sum
over all agents of the time steps required to reach their target locations (Surynek et al., 2016).

3 Related work

MAPF is NP-hard to solve optimally (Yu & LaValle, 2013). Numerous approaches to solv-
ing this problem have been proposed, and the state-of-the-art algorithms can be catego-
rized into four main groups (Li et al., 2021a):

Systematic search algorithms, which are centralized planning approaches, can identify
all possible solutions, including an optimal one. In this category, several algorithms have
been proposed, including the branch-and-cut-and-price (BCP) algorithm (Lam & Le Bodic,
2020), pairwise symmetry reasoning (Li et al., 2021b), conflict-based search (CBS) algo-
rithms (Sharon et al., 2015) and their variants (Li et al., 2021b, c) — which are currently
among the most popular algorithms for solving the MAPF problem optimally. Although
these planners achieve optimal or bounded sub-optimal solutions, they often suffer from
exponential computational complexity as the problem size grows.

Rule-based algorithms, in which the agents follow ad hoc rules as they move toward
their respective targets step-by-step (Okumura et al., 2022). Examples include the graph
abstraction approach (Ryan, 2008), the conflict classification-based algorithm (Zhang
et al., 2017), biconnected graphs (Surynek, 2009), and parallel-push-and-swap (PPS) (Sajid
et al., 2012). These algorithms are polynomial-time but can still fail to find solutions within
a reasonable amount of time for large instances.

Learning-based algorithms use reinforcement learning techniques for finding coopera-
tive and competitive behaviors for solving conflicts (Reijnen et al., 2020). Different learn-
ing-based algorithms have been proposed in literature to solve the MAPF problem (Sar-
toretti et al., 2019; Damani et al., 2021). Even though learning-based approaches have
proven to be more robust to uncertainties in practical applications than the algorithms dis-
cussed above, they do not provide guarantees on solution quality (Okumura et al., 2022;
Sartoretti et al., 2019).

Priority-based algorithms, in which the MAPF problem is decomposed into a series
of single-agent path planning problems, where the agents plan their paths sequentially

nt+1
i

= nt+1
j

(intersection conflict) , or

nt+1
i

= nt
j
∧ nt+1

j
= nt

i
, (opposite conflict).

171Swarm Intelligence (2024) 18:167–185

1 3

according to a priority scheme. Popular algorithms include the prioritized planning algo-
rithm (Rathi & Vadali, 2021), searching with consistent prioritization (Ma et al., 2019),
the hierarchical cooperative A* approach (HCA), and priority inheritance with backtrack-
ing (Okumura et al., 2022). The prioritized planning algorithm provides a practical solu-
tion to applications with large numbers of robots. However, the quality of the resulting
solutions depends on the choice of the prioritization scheme, especially in dense environ-
ments with limited path choices (Van Den Berg & Overmars, 2005).

The algorithms described above mainly focus on offline centralized planning, which
may not be viable for all automation systems (Skrynnik et al., 2022; Maoudj et al., 2023),
and are based on simplistic assumptions: (i) most of them ignore the robots’ kinematic con-
straints, (ii) assume that robots always move at equal and constant speeds, (iii) assume that
robots have full observability of the environment, often requiring expensive external sen-
sors to track the state of all the robots of the fleet in real-world applications and this may
increase the cost of implementation and maintenance, and (iv) do not take into account
imperfect plan-execution issues (Hönig et al., 2016). In real-world scenarios, a robot may,
for instance, need to slow down or come to a complete halt when facing a challenging
situation, such as entering a narrow corridor or turning on the spot. The execution will
therefore deviate from the plan found offline, and variations in the robots’ speeds can thus
significantly affect the applicability of these offline approaches. Additionally, in real-world
applications, such as transporting packages in an automated warehouse, whenever an agent
reaches a target, it often receives a new one, and a new path should then be planned in real-
time (Okumura et al., 2022). In many practical scenarios where the environment and robot
behavior are not completely deterministic, online approaches become desirable.

In this paper, we propose IDCMAPF, an improved decentralized cooperative multi-
agent approach to cope with the aforementioned issues. IDCMAPF extends our previous
decentralized approach, DCMAPF (Maoudj & Christensen, 2022). In the new version pre-
sented in this paper, robots are given the capacity to detect potential deadlocks and live-
locks, allowing them to replan their paths on-the-fly to circumvent these issues. Since con-
flicts are resolved as they occur, delaying robots during plan execution does not affect the
applicability of IDCMAPF, and it can thus coordinate large fleets of mobile robots with a
high degree of robustness to uncertainties and variations in the robots’ speeds. Moreover,
IDCMAPF is a deliberative planner suitable for scenarios where agents have a sequence of
targets. This feature is especially promising for practical situations where robots are con-
tinuously assigned new tasks and must plan paths online (Damani et al., 2021).

4 The proposed approach: IDCMAPF

In this section, we introduce IDCMAPF, our improved decentralized cooperative multi-
agent path-finding approach. This approach integrates path planning and motion coordi-
nation capabilities with mechanisms to detect and circumvent livelocks and deadlocks.
The motion coordination strategy is built upon a set of priority rules, facilitating effective
conflict resolution. Moreover, local negotiation within the limited communication range
ensures scalability to large fleets of robots. IDCMAPF, as detailed in Algorithm 1, operates
using the following variables, each maintained locally by every robot:

– pathHistory: is the history of the nodes that the robot has passed through. In this data
set, we store the robot’s visited nodes at each time step.

172 Swarm Intelligence (2024) 18:167–185

1 3

– remainingNodes: the local list of remaining nodes in the planned path n0
i
, ..., nT

i
 for

robot i. The list is updated at each time step (a node is removed) and during conflict
resolution (nodes are added if a robot needs to give way).

– giveWayNode: a free neighboring node that can be used by a robot to move out of the
way and allow another, higher priority robot to pass.

– numberRequestsMyNode: the number of robots having their nt+1
i

 or nt+2
i

, ∀i ∈ {1, ...,m} ,
equal to the robot’s nt

id
.

– numberFollowers: the number of followers of the robot.

In IDCMAPF, we introduce a leader–follower concept for adjacent robots moving in
the same direction to reduce the complexity of local coordination. Robot rk is a follower
of robot ri at time step t if nt+1

k
= nt

i
 . With the purpose of achieving effective coordina-

tion between robots in conflict, the leader negotiates on behalf of itself and its followers.
A leader can have an arbitrary number of followers, where the followers of robot ri consist
of its immediate follower rk and its followers. Communication between a leader and its fol-
lowers outside of its communication range is facilitated through message passing among
interconnected followers.

Algorithm 1 The proposed IDCMAPF approach

173Swarm Intelligence (2024) 18:167–185

1 3

To avoid deadlocks, each robot tracks the consecutive time steps during which it
encounters a conflict, and its resulting action is wait. If the number of consecutive waits
exceeds a configurable threshold (waitingThreshold), the robot re-plans its path while add-
ing a virtual obstacle in each occupied neighboring node. If all of a robot’s neighboring
nodes are occupied and no alternative path is identified (as shown in Fig. 3), the robot
queries nearby robots for free nodes and subsequently re-plans its path using a randomly
selected free node.

To address livelocks, we adopt the concept of pathHistory, wherein the robot’s location
(node) at each time step is stored in memory. A robot can then detect livelock situations by
checking for repeated nodes in its pathHistory. Should a robot ri repeatedly visits the same
set of nodes, it re-plans an alternative path treating the last visited node, nt−1

i
 , as a virtual

obstacle.
IDCMAPF operates in two phases: (i) Path planning and (ii) Execution and motion

coordination. In the first phase, each robot independently plans the shortest path from its
initial position to its assigned target location using A* and without taking into account
other robots or their paths. In the second phase, robots follow their planned paths while
resolving local conflicts as they arise. Resolving conflicts between robots as they occur
makes IDCMAPF robust to uncertainty in the speeds of robots during the plan execution.

At the beginning, all the robots are located in their initial nodes (n0
i
, ∀i ∈ {1, ...,m}).

Each robot knows the graph representing the warehouse layout and its target location in
the graph. Upon starting the execution, each robot plans its shortest path and then, starts
executing its plan. In every time step, each robot first checks its last visited nodes stored
in its pathHistory and re-plans its path if it visits the same set of nodesThreshold nodes
more than repetitionThreshold times. Second, the robot ensures that it does not stay
trapped in a deadlock by re-planning its path if the number of consecutive waits exceeds
the waitingThreshold.

After that, each robot ri identifies its neighbors and sends them its local data nec-
essary to identify and resolve potential conflicts, such as its next node nt+1

i
, remain-

ingNodes, and numberFollowers. Upon receiving data from its neighbors, the robot
checks for potential conflicts. Conflict detection and handling is thus done exclusively
online, and only the robot’s next node nt+1

i
 is used for conflict detection. If a conflict is

detected, the robots coordinate to solve the conflict as described in Algorithms 2 and 3
(details can be found in Sect. 4.1). Each robot then calculates its action ai and updates
its remainingNodes and pathHistory accordingly.

Target

Free space

Obstacle

Robot

r1

r2 r3r4

r5

T1

T2T3

T4

T5

Fig. 3 Example of a situation where the robots are at risk of getting trapped in a deadlock situation. Robots
r
3
 and r

4
 can re-plan their respective paths immediately, because they both have adjacent free nodes. How-

ever, since robots r
1
 , r

2
 , and r

5
 do not have any free neighboring node, they must ask their neighboring

robots if they have any free neighboring node, and then, re-plan their respective path through a randomly
picked free node received

174 Swarm Intelligence (2024) 18:167–185

1 3

If no conflict is detected and if a robot has followers, it checks if its immediate fol-
lower’s path is longer than its own. If so, the robot gives way to its follower if it has a
free neighboring node. The objective of this behavior is to prevent deadlocks in certain
regions, such as narrow corridors, see example in Fig. 4. In the example, robots r1 and
r2 have free neighboring nodes and must give way to their immediate followers (robots
r2 and r3 , respectively), otherwise the robots will enter a deadlock when r1 reaches its
target.

In the subsequent step, the robot’s action ai and its updated remainingNodes list
will be used in a solution validation process, see Algorithm 2. This process is exe-
cuted by the robots involved in resolving conflicts in the previous steps to check for
further potential conflicts resulting from their previous decisions. In this process,
detected conflicts are resolved using the same steps and algorithms as described
above. Afterward, the robots involved in the negotiation process send their calculated
action ai and next node nt+1

i
 (∀i ∈ Nt

i
) to their neighbors. Accordingly, leaders ensure

that their followers adapt their actions to the outcome of the negotiation process.
Once a robot ri has calculated its ai and updated its remainingNodes, the robot moves
to nt+1

i
 if ai = move and stores nt+1

i
 in its pathHistory, or remains stationary in its cur-

rent node nt
i
 if ai =wait. The steps presented in Algorithm 1 are reiterated until each

robot has reached its target.

r1 r2 r3

T1

T2

T3

r1 r2

r3

T1

T2

T3

r1

r3 r2

T1

T2

T3

(a) t = 0 (b) t = 1 (c) t = 2

r1

r2r3

T1

T2

T3

r1r2

r3

T1

T2

T3

r1

r3

r2

(d) t = 3 (e) t = 4 (f) t = T

Fig. 4 Example of how deadlocks are prevented in narrow corridors. a Initial configuration, b robots r
1
 and

r
2
 give way to their immediate follower, c–e the robots’ position after second, third and fourth time step,

respectively, and f the last step when robots reach their targets

175Swarm Intelligence (2024) 18:167–185

1 3

4.1 Conflict detection and cooperative conflict handling

According to the movement direction of robots during plan execution, conflicts can be
divided into two types as illustrated in Fig. 5: (i) intersection conflict and (ii) opposite con-
flict (swapping conflict). The intersection conflict occurs when two or more robots have
planned to pass through the same node at the same time step, see Fig. 5a. In this type
of conflict, there is only one critical node, which is the shared next node in the robots’
paths. On the other hand, an opposite conflict occurs when two robots moving in opposite

Algorithm 2 PostCoordination

Critical node

r1

r2

r1 r2

r1

r2

r3

r4

r1

r2

r3

T2 T1 T2 T1

T1T2

T3

T4

T3T1

T2

Critical nodes

r1 r2 T1T2

tciflnocetisoppO)b(stciflnocnoitcesretnI)a(

Fig. 5 Conflict illustrations and critical nodes. a Intersection conflicts: two or more robots attempt to move
to the same node at the same discrete time step. In this type of conflict, there is only one critical node,
which is the shared next node. b Opposite conflict: two robots attempt to traverse the same edge at the same
discrete time step. In this type of conflict, the robots’ current nodes are the critical nodes

176 Swarm Intelligence (2024) 18:167–185

1 3

directions are located at two adjacent nodes, see Fig. 5b. In this type of conflict, the robots’
current nodes are the critical nodes.

The conflict resolution strategy for both types of conflicts consists of two steps. First,
the robots negotiate to determine the highest priority robot (see below) that will pass first.
In the second step, the other robots calculate their actions to give way to the highest prior-
ity robot and to then pass through the critical node one-by-one. In the following, we pre-
sent the local rules that determine robot priorities and therefore which robot should pass
and which robot(s) should give way.

4.1.1 Priority rules

To effectively coordinate the robots’ movements when conflicts occur, priority rules
are designed to guide the robots’ decisions by determining the highest priority robot in
resolving conflicts. The procedure for determining the highest priority robot is based
on seven priority rules that prevent congestion and allow to reduce the number of addi-
tional giveWayNodes necessary for the robots to pass through the critical node one-by-one
without collision. Giving priority to a robot i means that it will move first, and any robot
occupying its next node nt+1

i
 must give way. The following rules are applied, in order to

determine priority:

– rule1: a robot occupying a critical node is given priority.
– rule2: a robot moving out of another robot’s way is given priority.
– rule3: the robot in conflict with another robot having a free adjacent node is given

priority.
– rule4: the robot with the largest numberFollowers is given priority.
– rule5: a robot having its node nt+2

i
 free is given priority.

– rule6: the robot having the largest numberRequestsMyNode is given priority.
– rule7: the robot with the longest remaining path is given priority.

While the first three rules prevent collisions and ensure progress, the last four rules reduce
the number of additional giveWayNodes introduced in the robots’ path during conflict reso-
lution. In an intersection conflict, all priority rules are applied, in an opposite conflict, only
rule2, rule3, rule4, rule6, and rule7 are applied.

4.1.2 Conflict‑dependent action selection

Intersection conflict: Algorithm 3 details the action selection process to solve inter-
section conflicts. Once the highest priority robot (priorityRo-
bot) has been determined, nt+2

priorityrobot
 is either free or occupied

by another robot. In the first case, the robot with higher priority
passes through the critical node first and the other robots have
to wait in their current nodes for one time step (as illustrated in
Fig. 6, top). However, in the second case, the robot occupying
the node nt+2

priorityRobot
 must give way to the robot with higher pri-

ority to pass and the other robots wait for one time step (Fig. 6,

177Swarm Intelligence (2024) 18:167–185

1 3

bottom). The robot requested to move out of the way chooses a
free neighboring node. If no free neighboring node is found, the
robot chooses the node of another robot from its neighbors and
informs the concerned neighbor to move out of the way, and so on.
As shown in Fig. 6(top), robot r1 has the longest remaining path,
so it will have priority. Since nt+2

1
 is free, robot r1 will pass first,

and robot r2 must wait in its current node. Whereas in Fig. 6(bot-
tom), the highest priority robot is robot r2 and its nt+2

2
 is occupied

by robot r1 . As a result, robot r1 will move to a free adjacent node
and robot r2 will pass. It should be noted that any giveWayNode
calculated during the conflict resolution process will be inserted as
the first elements in the remainingNodes list of the robot. Accord-
ingly, if the robot’s action is move, then the robot selects the first
node in its remainingNodes.

Opposite conflict: The approach to solve an opposite conflict is shown in Algorithm 4.
The robot with priority passes (i.e., its action ← move) and the
other robot moves out of the way to a free neighboring node.
If no free neighboring node is found, the robot with lower prior-
ity chooses the node of its follower robot (move backward) and
informs the follower to move out of the way.

Algorithm 3 SolveIntersectionConflict

r1r2

T1

T2 r2 r1 T2

T1 r1

r2 T2

T1

r1r2T1 T2

r1

r2T1 T2

r1

r2T1 T2 r2r1T1

Fig. 6 Intersection conflict examples. Top row: node nt+2
1

 of the highest priority robot (robot r
1
) is free, it

passes and robot r
2
 must wait. Bottom row: node nt+2

2
 of the highest priority robot (robot r

2
) is not free,

which requires robot r
1
 to give way (move to a free neighboring node and then robot r

2
 passes)

178 Swarm Intelligence (2024) 18:167–185

1 3

5 Simulation‑based results and performance analysis

This section is devoted to the empirical evaluation of IDCMAPF. We first perform a set of
preliminary experiments to tune the parameters of IDCMAPF. We then perform two sets
of performance experiments. In the first set of experiments, we compare IDCMAPF’s per-
formance to that of state-of-the-art planners. In the second set of experiments, we evaluate
IDCMAPF’s robustness against uncertainties in the speed of the robots.

5.1 Benchmarks and setup

To evaluate the effectiveness of IDCMAPF, four standard MAPF benchmark maps
from Stern et al. (2019) are used with varying sizes, obstacle densities, and numbers of
robots. Specifically, we use the maps: empty-48-48, random-32-32-20, random-64-64-20,
and warehouse-20-40-10-2-2. Table 1 summarizes the characteristics of the benchmark
maps. In the experiments, we use the random scenarios from the MAPF benchmark, which
yield 25 instances for each combination of map and number of robots. The results pre-
sented in this section are thus the means of 25 runs for each combination. We evaluate
performance in terms of success rate (the percentage of the MAPF instances for which the
planner can find a solution), and sum-of-costs (the sum over all robots of the time steps
required to reach their target locations).

5.2 Parameter tuning

In this section, we conduct preliminary experiments to optimize the parameters in IDC-
MAPF that safeguard robots against livelocks and deadlocks. These parameters are: wai-
tingThreshold (WT), nodesThreshold (NT), and repetitionThreshold (RT). We evaluate
the performance of IDCMAPF in terms of success rate and sum-of-costs on the highly
constrained map random-64-64-20, where our previous decentralized MAPF solver,

Table 1 Summary of the
characteristics of the benchmark
maps

Benchmark Map size Number of robots

empty-48-48 48 × 48 From 50 to 400
random-32-32-20 32 × 32 From 50 to 200
random-64-64-20 64 × 64 From 50 to 400
warehouse-20-40-10-2-2 164 × 340 From 50 to 1000

Algorithm 4 SolveOppositeConflict

179Swarm Intelligence (2024) 18:167–185

1 3

DCMAPF, performed poorly as the number of robots increased. The selection of the WT
value necessitates particular care, as it directly influences the behavior of the robots during
conflict resolution, a process that may require some robots to wait for others. It is critical
that the threshold is not set so low as to be exceeded during a standard conflict resolution
process. The same consideration applies to the selection of values for NT and RT. During
conflict resolution, robots often must give way to one or more higher-priority robots and
therefore need to return to previously visited nodes to continue their paths. To ensure good
performance, we conducted systematic testing of these parameter values, focusing specifi-
cally on the range of {3, 4, 5}.

We have plotted the results for a selection of the combinations in Fig. 7. Upon examin-
ing the results both in terms of success rate and sum-of-costs, we selected the parameter
combination (WT, NT, RT) = (4,4,3), where IDCMAPF attained a success rate of 100%
and comparatively low sum-of-costs.

5.3 Comparison against state‑of‑the‑art planners

We compare IDCMAPF to the following state-of-the-art planners: EECBS (Li et al.,
2021c), a state-of-the-art bounded sub-optimal search-based planner, DCMAPF (Maoudj &
Christensen, 2022), a decentralized planner, and PIBT, and PIBT+ (Okumura et al., 2022)
as prioritized planners. These four baselines represent a diverse set of state-of-the-art plan-
ners for solving MAPF problems that have been shown to perform well on various MAPF
benchmarks, covering both centralized and decentralized approaches as well as different
types of prioritization and conflict resolution strategies. The source code for the EECBS,
PIBT and PIBT+ planners is available in [1]. EECBS, PIBT and PIBT+ are centralized
planners, where robots have full observability of the environment, whereas DCMAPF and
our proposed IDCMAPF are decentralized planners, where robots rely exclusively on local
observations and cannot access the whole state of the system. For centralized planners, we
use the results presented in Okumura et al. (2022), where they were run on a laptop with
Intel Core i9 2.3 GHz CPU and 16 GB RAM. The offline planners were given a time limit
of 30 s to plan the robots’ paths, where an execution was considered unsuccessful if the
robots failed to resolve a conflict or a planner failed to provide a solution within the time
limit.

Figure 8 shows the results of the experiments on the benchmark maps considered.
Based on these results, we conclude that IDCMAPF provides promising performance as it

Fig. 7 Performance examples of IDCMAPF in the highly constrained map random-64-64-20, with different
combinations of values for waitingThreshold (WT), nodesThreshold (NT), and repetitionThreshold (RT).
Note that we have only included a selection of the possible combinations values in the plot. Left: success
rate, right: sum-of-costs

180 Swarm Intelligence (2024) 18:167–185

1 3

can achieve a success rate of 100% in all considered maps and thus, is effective for solving
MAPF problems in a fully decentralized manner. The same high performance in terms of
success rate can be observed for the centralized PIBT+, whereas the performance of the
decentralized DCMAPF and centralized PIBT decreases in some cases as the obstacle den-
sity of the map increases. On the empty-48-48 map, all planners perform exceedingly well.
In contrast, on the maps with high contention due to higher obstacle densities or higher
numbers of robots, DCMAPF sometimes fails to achieve a success rate of 100% (see ran-
dom-64-64-20) due to its inability to detect and avoid deadlocks. In scenarios involving

Fig. 8 Comparative results in terms of success rate and sum-of-costs between IDCMAPF, DCMAPF,
EECBS, PIBT, and PIBT+ on four benchmark maps for different fleet sizes

181Swarm Intelligence (2024) 18:167–185

1 3

more than 150 robots on the random-32-32-20 map, EECBS performs significantly worse,
achieving a low success rate. As the results show, IDCMAPF and PIBT+ outperform the
other planners in terms of success rate in the highly constrained maps random-64-64-20
and random-32-32-20. Additionally, interesting results can be observed on the large-scale
map warehouse-20-40-10-2-2, where all planners achieve a success rate of 100%.

Regarding the sum-of-costs metric, we observed that the performance of IDCMAPF
compares well to that of centralized planners, except for a few scenarios with very high
robot densities. The exception is the particularly constrained scenarios of the small map
random-32-32-20, where IDCMAPF’s sum-of-costs is higher than that of the centralized
planners, specifically when the robot count exceeds 150. It is evident from the results that
the sub-optimal EECBS planner consistently surpasses the other planners across all maps.
However, the warehouse-20-40-10-2-2 map is an exception, where IDCMAPF yields simi-
lar results in terms of sum-of-costs to those of the sub-optimal planner EECBS. Although
EECBS outperforms other planners in most maps, its performance significantly depends on
the map size and robot count (see Fig. 8b where it achieves a low success rate). Addition-
ally, even though IDCMAPF employs a strategy of re-planning paths to avoid livelocks and
deadlocks, it consistently yields better results in terms of path cost than the decentralized
planner DCMAPF across most maps. While IDCMAPF’s strategy to avoid livelocks and
deadlocks can cause deviations from the initially planned optimal paths, the approach still
yielded effective solutions in terms of both sum-of-costs and success rate.

5.4 Sensitivity analysis to the presence of uncertainties in robot speeds

Many state-of-the-art MAPF planners are based on the assumption that the robots move
in a deterministic manner. However, in many real-world scenarios, robots cannot precisely
follow the offline planned paths due to small variations in their speeds and unexpected
events. In the second set of experiments, we therefore evaluate the robustness of IDC-
MAPF to uncertainties in robot speeds. Specifically, we assess how well IDCMAPF can
tolerate random delays in robot movements. For this assessment, we use the challenging
maps random-32-32-20 and random-64-64-20 and assign each robot a probability of 30%
of experiencing a delay at every time step, thus keeping it stationary at its current node for
that time step (but still counting the time step toward the sum-of-costs if the robot has not
yet reached its target).

The results of these experiments are shown in Fig. 9. The results show that IDCMAPF
achieves a 100% success rate on both maps and thus is able to tolerate stochastic delays.
Moreover, as the number of robots increases on both maps, we observe a gradual drop
in solution quality. Indeed, introducing stochastic delays inevitably leads to an increase in
the sum-of-costs, particularly in scenarios with high robot density. As the robot density is
increased, robots are more likely to have followers or to be engaged in resolving a conflict,
which means each delayed robot is more likely to indirectly delay other robots. On the
highly constrained small map random-32-32-20, the observed increase in the sum-of-costs
was from 30% and 46% when the fleet size was increased from 50 robots to 150 robots. For
a fleet size of 200 robots, the increase in sum-of-costs was 68% . Comparatively, for the map
random-64-64-20, there is a consistent increase in the cost, reaching 54% when 400 robots
are involved. Although delaying robots at each time step inevitably affects the plan cost,
IDCMAPF was still able to maintain a 100% success rate on both maps, showing that IDC-
MAPF is able to efficiently coordinate large fleets of mobile robots in highly constrained

182 Swarm Intelligence (2024) 18:167–185

1 3

maps with a high degree of robustness to stochastic delays. Example runs can be found in
the supplementary video: https:// youtu. be/ PrhIZ_ mQp5I.

6 Discussion

Our results show that IDCMAPF consistently displays a high performance in terms of suc-
cess rate across all considered benchmark maps and compares very well with the central-
ized planners in terms of solution quality. IDCMAPF is able to handle stochastic delays
because of its decentralized and cooperative approach to conflict handling, and the perfor-
mance of IDCMAPF degraded gracefully when stochastic robot delays were considered.
A potential drawback of entirely decentralized approaches is that deadlocks and livelocks
can arise, which we also observed for our previously proposed approach to decentralized
cooperative multi-agent path finding, DCMAPF (Maoudj & Christensen, 2022). The two
new mechanisms introduced in IDCMAPF were empirically shown to be effective avoiding
livelock and deadlock situations. In future work, we plan to investigate if theoretical guar-
antees for reachability and completeness can be established for IDCMAPF.

Centralized approaches offer the potential advantage of optimality (Sharon et al.,
2015) or bounded sub-optimality (Li et al., 2021c). However, aside from potential scal-
ability issues, centralized approaches often require that the environment is static and
completely known so that conflicts are avoided at planning time. In our decentralized
approach, each robot optimistically plans its path and then, handles conflicts on the fly
as they arise. This means that issues, such as stochastic robot delays can be handled
seamlessly. The same holds true if a robot breaks down; in our approach, other robots

Fig. 9 Robustness of IDCMAPF: comparison between scenarios in which robots move at equal and con-
stant speeds, and scenarios with stochastic delays. Stochastic delays are introduced by randomly deciding,
at each time step, whether a robot remains in its current node with a probability of 30%

https://youtu.be/PrhIZ_mQp5I

183Swarm Intelligence (2024) 18:167–185

1 3

could consider the malfunctioning robot as a new obstacle similarly to how virtual
obstacles are introduced to handle livelocks. A decentralized approach, such as IDC-
MAPF, thus also offers robustness and flexibility.

In this paper, we focused on the MAPF problem where each agent must move from
its initial position to a given goal location. However, given that IDCMAPF is based on
on-the-fly local conflict resolution, it would be straightforward to extend our approach
to a lifelong version of the MAPF problem, called the multi-agent pickup and deliv-
ery (MAPD) problem (Ma et al., 2017), where agents are constantly engaged with new
tasks.

7 Conclusions

We have contributed to the MAPF literature by proposing a fully decentralized approach
to coordination that integrates effective path planning and motion coordination capabili-
ties. The proposed IDCMAPF approach, which relies solely on short-range local commu-
nication, is less susceptible to communication issues compared to methods dependent on
long-range communication. The motion coordination uses priority rules to ensure reliable
and effective conflict resolution. Moreover, IDCMAPF includes specific mechanisms to
detect and prevent livelocks and deadlocks. To assess the performance of IDCMAPF, we
conducted extensive simulation-based experiments on MAPF benchmark maps. Our results
show that IDCMAPF is effective, that it exhibits a consistent high performance across all
maps, and that in many cases, it can match or even exceed the performance of the state-
of-the-art centralized planners. IDCMAPF scales well to large numbers of robots, and it is
robust to stochastic robot delays during execution. Future work will focus on expanding the
application domain of IDCMAPF to non-highly controlled dynamic environments, where
obstacles stochastically appear and disappear.

Another avenue for future research is to incorporate a probabilistic model of commu-
nication noise into our simulations and assess the reliability of our system under different
noise levels. Finally, it is necessary to conduct experiments with physical robots in a real-
world scenario to fully validate the proposed approach.

Acknowledgements This work was supported by the Independent Research Fund Denmark under grant
0136-00251B.

Author contributions AM contributed to conceptualization, methodology, software, validation, writing,
review, and editing. ALC contributed to conceptualization, methodology, software, validation, writing,
review, editing, and supervision. All authors read and approved the final manuscript.

Funding This work was supported by the Independent Research Fund Denmark under Grant 0136-00251B.

Data availability Not applicable

Declarations

Conflict of interest The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

Ethical approval Not applicable.

Consent for publication Not applicable.

184 Swarm Intelligence (2024) 18:167–185

1 3

References

Beinschob, P., & Reinke, C. (2015). Graph SLAM based mapping for AGV localization in large-scale ware-
houses. In 2015 IEEE International conference on intelligent computer communication and processing
(ICCP), (pp. 245–248). IEEE.

Bobanac, V., & Bogdan, S. (2008). Routing and scheduling in multi-AGV systems based on dynamic banker
algorithm. In Proceedings of the 16th mediterranean conference on control and automation, (pp.
1168–1173). IEEE.

CBS, EECBS and PIBT. https:// github. com/ Jiaoy ang- Li/ CBSH2- RTC, https:// github. com/ Jiaoy ang- Li/
EECBS, and https:// github. com/ Kei18/ pibt2

Damani, M., Luo, Z., Wenzel, E., & Sartoretti, G. (2021). PRIMAL
2
 : Pathfinding via reinforcement and

imitation multi-agent learning-lifelong. IEEE Robotics and Automation Letters, 6(2), 2666–2673.
Draganjac, I., Petrović, T., Miklić, D., Kovačić, Z., & Oršulić, J. (2020). Highly-scalable traffic management

of autonomous industrial transportation systems. Robotics and Computer-Integrated Manufacturing,
63, 101915.

Gange, G., Harabor, D., & Stuckey, Peter J. (2019). Lazy CBS: Implicit conflict-based search using lazy
clause generation. In Proceedings of the international conference on automated planning and schedul-
ing, (Vol. 29, pp. 155–162). AAAI Press.

Grenouilleau, F., van Hoeve, W.-J., & Hooker, J. N. (2019). A multi-label A* algorithm for multi-agent
pathfinding. In Proceedings of the international conference on automated planning and scheduling,
(Vol. 29, pp. 181–185). AAAI Press.

Hönig, W., Kumar, T.K., Cohen, L., Ma, H., Xu, H., Ayanian, N., & Koenig, S. (2016). Multi-agent path
finding with kinematic constraints. In Proceedings of the twenty-sixth international conference on
automated planning and scheduling (ICAPS), (pp. 477–485). AAAI Press.

Kammel, C., Kögel, T., Gareis, M., & Vossiek, M. (2022). A cost-efficient hybrid UHF RFID and odome-
try-based mobile robot self-localization technique with centimeter precision. IEEE Journal of Radio
Frequency Identification, 6, 467–480.

Lam, E., & Le Bodic, P. (2020). New valid inequalities in branch-and-cut-and-price for multi-agent path
finding. In Proceedings of the international conference on automated planning and scheduling
(ICAPS), (pp. 184–192). AAAI Press.

Li, J., Chen, Z., Harabor, D., Stuckey, P. J., & Koenig, S.(2021a). Anytime multi-agent path finding via large
neighborhood search. In International joint conference on artificial intelligence, (pp. 4127–4135).
IJCAI.

Li, J., Harabor, D., Stuckey, P. J., Ma, H., Gange, G., & Koenig, S. (2021). Pairwise symmetry reasoning for
multi-agent path finding search. Artificial Intelligence, 301, 103574.

Li, J., Ruml, W., & Koenig, S. (2021c). EECBS: A bounded-suboptimal search for multi-agent path finding.
In Proceedings of the AAAI conference on artificial intelligence, (pp. 12353–12362). AAAI Press.

Lian, Y., Xie, W., & Zhang, L. (2020). A probabilistic time-constrained based heuristic path planning algo-
rithm in warehouse multi-AGV systems. IFAC-PapersOnLine, 53(2), 2538–2543.

Ma, H., Harabor, D., Stuckey, P. J., Li, J., & Koenig, S. (2019). Searching with consistent prioritization for
multi-agent path finding. In Proceedings of the AAAI conference on artificial intelligence, (pp. 7643–
7650). AAAI Press.

Ma, H., Li, J., Kumar, T. K., & Koenig, S. (2017). Lifelong multi-agent path finding for online pickup and
delivery tasks. In Proceedings of the international conference on autonomous agents and multiagent
systems (AAMAS), (pp. 837–845). IFAAMAS.

Maoudj, A., & Christensen, A. L. (2022). Decentralized multi-agent path finding in warehouse environ-
ments for fleets of mobile robots with limited communication range. In 13th international conference
on swarm intelligence (ANTS2022), (pp. 104–116). Springer.

Maoudj, A., Kouider, A., & Christensen, A. L. (2023). The capacitated multi-AGV scheduling problem
with conflicting products: Model and a decentralized multi-agent approach. Robotics and Computer-
Integrated Manufacturing, 81, 102514.

Okumura, K., Machida, M., Défago, X., & Tamura, Y. (2022). Priority inheritance with backtracking for
iterative multi-agent path finding. Artificial Intelligence, 310, 103752.

Rathi, A., & Vadali, M. (2021). Dynamic prioritization for conflict-free path planning of multi-robot sys-
tems. arXiv preprint arXiv: 2101. 01978

Reijnen, R., Zhang, Y., Nuijten, W., Senaras, C., & Goldak-Altgassen, M. (2020). Combining deep rein-
forcement learning with search heuristics for solving multi-agent path finding in segment-based lay-
outs. In 2020 IEEE symposium series on computational intelligence (SSCI), (pp. 2647–2654). IEEE.

Ryan, M. R. K. (2008). Exploiting subgraph structure in multi-robot path planning. Journal of Artificial
Intelligence Research, 31, 497–542.

https://github.com/Jiaoyang-Li/CBSH2-RTC
https://github.com/Jiaoyang-Li/EECBS
https://github.com/Jiaoyang-Li/EECBS
https://github.com/Kei18/pibt2
http://arxiv.org/abs/2101.01978

185Swarm Intelligence (2024) 18:167–185

1 3

Sajid, Q., Luna, R., & Bekris, K. (2012). Multi-agent pathfinding with simultaneous execution of single-
agent primitives. In International symposium on combinatorial search, (pp. 88–96). AAAI Press.

Sartoretti, G., Kerr, J., Shi, Y., Wagner, G., Kumar, T. S., Koenig, S., & Choset, H. (2019). Primal: Pathfind-
ing via reinforcement and imitation multi-agent learning. IEEE Robotics and Automation Letters, 4(3),
2378–2385.

Sharon, G., Stern, R., Felner, A., & Sturtevant, N. R. (2015). Conflict-based search for optimal multi-agent
pathfinding. Artificial Intelligence, 219, 40–66.

Skrynnik, A., Andreychuk, A., Yakovlev, K., & Panov, A. I. (2022). POGEMA: partially observable grid
environment for multiple agents. arXiv preprint arXiv: 2206. 10944

Stephan, J., Fink, J., Kumar, V., & Ribeiro, A. (2017). Concurrent control of mobility and communication in
multirobot systems. IEEE Transactions on Robotics, 33(5), 1248–1254.

Stern, R., Sturtevant, N. R, Felner, A., Koenig, S., Ma, H., Walker, T. T., Li, J., Atzmon, D., Cohen, L.,
Satish Kumar, T.K. et al. (2019). Multi-agent pathfinding: Definitions, variants, and benchmarks. In
Symposium on combinatorial search (SoCS), (pp. 151–158). AAAI Press.

Surynek, P. (2009). A novel approach to path planning for multiple robots in bi-connected graphs. In 2009
IEEE international conference on robotics and automation, (pp. 3613–3619). IEEE.

Surynek, P., Felner, A., Stern, R., Boyarski, E. (2016). Efficient SAT approach to multi-agent path finding
under the sum of costs objective. In Proceedings of the Twenty-second European conference on artifi-
cial intelligence, ECAI, (pp. 810–818). IOS Press.

Van Den B., Jur P., & Overmars, M. H. (2005). Prioritized motion planning for multiple robots. In 2005
IEEE/RSJ international conference on intelligent robots and systems, pp 430–435. IEEE.

Varambally, S., Li, J., & Koenig, S. (2022). Which MAPF model works best for automated warehousing?
In Proceedings of the international symposium on combinatorial search, (Vol. 15, pp. 190–198). IOS
Press.

Wagner, G., & Choset, H. (2011). M*: A complete multirobot path planning algorithm with performance
bounds. In 2011 IEEE/RSJ international conference on intelligent robots and systems, (pp. 3260–
3267). IEEE.

Dingding, Yu., Xianliang, H., Liang, K., & Ying, J. (2022). A parallel algorithm for multi-AGV systems.
Journal of Ambient Intelligence and Humanized Computing, 13(4), 2309–2323.

Yu, J., & LaValle, S.M. (2013). Structure and intractability of optimal multi-robot path planning on graphs.
In Proceedings of the twenty-seventh AAAI conference on artificial intelligence, (pp. 1443–1449).
AAAI Press.

Zhang, Z., Guo, Q., & Yuan, Peijiang. (2017). Conflict-free route planning of automated guided vehicles
based on conflict classification. In 2017 IEEE international conference on systems, man, and cybernet-
ics (SMC), (pp. 1459–1464). IEEE.

Zhao, Y., Liu, X., Wang, G., Shaobo, W., & Han, S. (2020). Dynamic resource reservation based collision
and deadlock prevention for multi-AGV. IEEE Access, 8, 82120–82130.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

http://arxiv.org/abs/2206.10944

	Improved decentralized cooperative multi-agent path finding for robots with limited communication
	Abstract
	1 Introduction
	2 Problem formulation
	3 Related work
	4 The proposed approach: IDCMAPF
	4.1 Conflict detection and cooperative conflict handling
	4.1.1 Priority rules
	4.1.2 Conflict-dependent action selection

	5 Simulation-based results and performance analysis
	5.1 Benchmarks and setup
	5.2 Parameter tuning
	5.3 Comparison against state-of-the-art planners
	5.4 Sensitivity analysis to the presence of uncertainties in robot speeds

	6 Discussion
	7 Conclusions
	Acknowledgements
	References

