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Abstract
Individual agents in natural systems like flocks of birds or schools of fish display a remark-
able ability to coordinate and communicate in local groups and execute a variety of 
tasks efficiently. Emulating such natural systems into drone swarms to solve problems in 
defense, agriculture, industrial automation, and humanitarian relief is an emerging tech-
nology. However, flocking of aerial robots while maintaining multiple objectives, like 
collision avoidance, high speed etc., is still a challenge. This paper proposes optimized 
flocking of drones in a confined environment with multiple conflicting objectives. The 
considered objectives are collision avoidance (with each other and the wall), speed, cor-
relation, and communication (connected and disconnected agents). Principal Component 
Analysis (PCA) is applied for dimensionality reduction and understanding of the collective 
dynamics of the swarm. The control model is characterized by 12 parameters which are 
then optimized using a multi-objective solver (NSGA-II). The obtained results are reported 
and compared with that of the CMA-ES algorithm. The study is particularly useful as the 
proposed optimizer outputs a Pareto Front representing different types of swarms that can 
be applied to different scenarios in the real world.
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1 Introduction

Collective behavior is pervasive in nature and is frequently observed in diverse organisms 
ranging from microscopic bacteria (Allison and Hughes 1991) to large-scale flocking of 
birds and insects (Nagy et al. 2010; Czaczkes et al. 2015). While researchers still hypoth-
esize the underlying mechanisms behind such behavior, moving in groups can offer several 
advantages like avoiding predators or carrying collective cargo (Ron et al. 2018). Emulat-
ing these natural systems has gained popularity in the past few years, and the development 
of a robust, fault-tolerant and generalized swarm of robots is now a widely regarded prob-
lem among researchers (Saffre et al. 2021; Coppola et al. 2020). Aerial swarms, owing to 
their high maneuverability and speed, find a number of applications in various industries. 
They can be deployed as counter-drone measures (Brust et al. 2017) or for basic surveil-
lance operations in a defense scenario. In Abraham et  al. (2019), the authors utilize the 
sensing capability of multiple robots to yield topographical and population density maps 
of a disaster-afflicted area. In Tosato et  al. (2019), a centralized swarm architecture was 
proposed for measuring air pollution. A system like this could reduce measurement error 
due to the bigger sample size and distributed data points over the coverage volume. Mixed 
aerial and ground swarms have also been used to automate construction tasks (Krizmancic 
et al. 2020). In Ju and Son (2018), multiple UAVs have been shown to outperform a single 
UAV for tasks like agricultural sensing and monitoring by measuring multiple metrics like 
energy consumption, flight time, and area coverage. In general, drone swarms can be clas-
sified into three categories in order of increasing complexity (Kumar 2020):

• Coordinated: This refers to the collective movement with basic environmental aware-
ness and collision avoidance.

• Cooperative: Here, the robots work together to achieve a particular goal using fewer 
resources than a single drone.

• Collaborative: This refers to multiple drones working together irrespective of their 
nature, i.e., heterogeneous collaboration.

This paper proposes a methodology to solve the drone swarm coordination problem with 
multiple conflicting objectives. This document uses the terms drone, UAV, and aerial robot 
interchangeably.

Developing a robust velocity controller that allows multiple drones to self-organize 
comes with its challenges. According to the taxonomy defined in Coppola et al. (2020), 
the control of velocities is one of the methods under classical Swarming Behavior, i.e., 
deciding on a high-level control policy with shared information across each agent’s 
neighbors. The challenge is to take this shared information (the agent’s state as well 
as states of neighbors) and come up with controllers (functions) that output an instan-
taneous velocity vector for each agent. Over time, each agent’s velocity gives rise to 
various patterns and mutual interactions that can potentially emerge into self-organizing 
behavior. Conventionally, the first-of-its-kind algorithm by Reynolds was based on sim-
ple rules for each agent and has been successfully applied in many fields (Hauert et al. 
2011; Dewi et al. 2011; Moere 2004). In Vásárhelyi et al. (2018), the authors address 
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this problem by defining a single fitness function and optimizing it through the CMA-
ES algorithm. However, the study does not consider multiple conflicting objectives, the 
priority of which can vary depending on the scenario. A comprehensive study in Fine 
and Shell (2013) formalizes flocking behaviors and unifies literature by presenting a 
data-flow template for various flocking stages. In Márquez-Vega et al. (2021), a multi-
objective solution for quad-rotors is proposed. However, the swarm size is limited, and 
the full range of solutions considering the relations among the fitnesses is not explored. 
We explore these relationships using unsupervised learning and extend our findings to 
highlight the use of obtaining a non-dominating solution set for drone flocking.

Modeling natural processes through simulation often needs to be complemented by 
an in-depth qualitative understanding of the performance measures. Unsupervised learn-
ing can help understand and cluster data, especially in high-dimensional spaces that 
cannot be visualized. It is widely used in experiments where abundant data is available 
such as mapping vulnerability indices (Abson et al. 2012), understanding relationships 
between economic and environmental objectives in a chemical supply chain (Pozo et al. 
2012), understanding global motions of atoms in proteins (Loeffler and Kitao 2009), and 
most commonly for dimensionality reduction in evolutionary algorithms (Deb and Sax-
ena 2006). Like many natural systems, the solution to an optimization problem depends 
on various factors. Often, these factors or objectives are conflicting and they cannot be 
solved simultaneously without compromising the overall fitness. In the case of flocking, 
we consider six objectives from Vásárhelyi et al. (2018) (referred to by the Vásárhelyi 
et al. model from here onwards):

• Collision avoidance with the wall.
• Collision avoidance with each other.
• Average speed of the swarm.
• Average velocity alignment or correlation.
• Total number of connected agents.
• Total number of disconnected agents.

We use PCA to understand the collective dynamics of multi-agent systems and therefore 
reduce the multi-objective optimizer’s objective space. To the best of our knowledge, 
this work is the first attempt that involves using PCA to reduce the objective functions 
for a drone flocking optimization problem.

These objectives are then optimized via a well-established multi-objective optimizer 
(NSGA-II) to yield a Pareto front that can guide decision-making and trade-offs under 
various situations. We report the results and show that the results at the extremities of 
the Pareto front perform better than that of the CMA-ES algorithm. We conclude by 
giving some practical examples of such abstract mathematical formalism for real-time 
decision-making with a flock of UAVs.

In short, in this research, we create a drone swarm simulator integrated with a multi-
objective solver, use PCA to understand the collective dynamics of swarms, and give a 
Pareto front that represents different swarms that can be used in real-world scenarios. 
The rest of the paper is organized as follows: Sect. 2 presents the background of Principal 
Component Analysis (PCA) and multi-objective optimizer (NSGA-II). A drone flocking 
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optimization problem is formulated in Sect. 3. In Sect. 4, PCA is used to reduce the num-
ber of the objective functions and a discussion on the correlations is followed. Section 5 
presents the experimental setup and the numerical results and discussions are given in 
Sect. 6. The research is concluded by giving some potential use cases and possible future 
work.

2  Background

2.1  Principal component analysis

A high-dimensional objective space suffers from poor selection pressure and convergence 
(Deb and Saxena 2006). It is also challenging to visualize the space and gain intuition 
which is often required for appropriate decision-making. Principal component analysis, a 
technique under the domain of unsupervised learning, may help understand the underly-
ing structure of the data without explicit labels. The idea is to search for the eigenvectors 
of an m-dimensional covariance matrix (K) which is then used to decide the redundant 
objectives. Here, m is the number of objectives. This covariance matrix is symmetric, and 
its elements give the relations between the design variables on which the analysis has been 
run. Such an analysis of the objectives of an optimization problem can provide insights into 
their correlations and can help in understanding their qualitative aspects. The process to 
determine K is given in Appendix A.

2.2  Non‑dominating sorting genetic algorithm‑II

NSGA-II is a multi-objective optimization algorithm based on ranking each solution in 
the population according to their fitness and progressively producing better solutions using 
genetic operators like reproduction and mutation. We use NSGA-II in our work to trade off 
the reduced fitnesses with each other. This trade-off is represented by Pareto Fronts, which 
are made up of non-dominated solutions within an evolutionary population. The entire 
algorithm is explained in detail in Deb et al. (2002). However, a brief explanation covering 
the salient features of NSGA-II is also explained in Appendix A.

3  Drone flocking optimization problem

A completely decentralized flocking swarm is based on simple rules like Separation, 
Alignment, and Cohesion. When defined using a velocity control algorithm, these rules 
have specific parameters that can be tuned to flock optimally. In this section, these param-
eters are introduced, and a simulation framework capable of handling artificial sensor noise 
is created. The algorithm used for flocking is based on the Vásárhelyi et  al. model and 
Reynold’s Flocking model (Reynolds 1987). Some subtle modifications have been incor-
porated to handle a multi-objective optimization framework. We use vectorized versions of 
the equations to leverage fast computation with matrix computation libraries.
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To simulate a multi-agent system, there must be a mechanism to share information 
across the agents. In the case of a decentralized system, this information is shared in each 
agent’s neighborhood No . Moreover, real systems are characterized by stochastic uncer-
tainty and noise, which are incorporated into the position(r ) and velocity(v ) vectors of the 
drones. The model for simulating the noise and environmental effects is taken from Virágh 
et al. (2014). The relative position ( rji ) and velocity ( vji ) at time t is then found using the 
following equations:

where, rji ≡ Relative position vector of jth agent with respect to ith agent at time t, vji ≡ 
Relative velocity vector of jth agent with respect to ith agent at time t, Rrel

j
≡ jth row of the 

Relative position matrix for agent i ∀ j = 1, 2, ...,No , V rel
j

≡ jth row of the Relative veloc-
ity matrix for agent i ∀ j = 1, 2, ...,No , tcomm

del
≡ Simulated communication delay, rgps ≡ 

Simulated GPS noise for position, vgps ≡ Simulated GPS noise for velocity

3.1  Decision variables

The flocking rules are explained in the following sections based on the above modification 
for the relative position and velocities. These rules give rise to certain parameters which 
are used as decision variables for the drone flocking optimization problem. Note that all 
the flocking operations are developed for the ith agent and are carried out for all N agents. 
All operations involving vectors/matrices and scalars are performed element-wise unless 
mentioned otherwise.

3.1.1  Separation

To flock effectively without collisions, the agents must have a mechanism for repulsion. A 
spring-like mechanism is used, which is activated at short ranges of inter-agent distance in 
the flock. The model for the same is taken from Vásárhelyi et al. (2018) and is delineated in 
Appendix B.

3.1.2  Alignment

Vásárhelyi et al. Vásárhelyi et al. (2018) realized that effective control of both the magni-
tude and direction of velocities as a function of inter-agent distances could yield the best 
alignment with scalable velocities. We use the same model in our work as well. The equa-
tions for alignment are explained in Appendix B for the sake of completeness.

(1)rji(t) = (rj(t − tcomm
del

) + r
gps

j
) − ri(t) − r

gps

i

(2)vji(t) = (vj(t − tcomm
del

) + v
gps

j
) − vi(t) − v

gps

i

(3)Rrel
j

= rji(t)

(4)V rel
j

= vji(t)
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3.1.3  Wall collisions

To account for collisions at walls, the Vásárhelyi et al. model proposes virtual “shill” agents 
at the walls which the actual agents can try to align their velocities with. These shill agents 
have no gain, so repulsion at walls takes place to the maximum extent ( cshill = 1 ). This makes 
sense while flocking in confined environments because one of the primary goals is to avoid 
the wall at any cost. In our research, however, while seeking a non-dominated set of solutions 
(ref. section 6), we characterize the elasticity of the virtual geo-fence using a shill gain ( cshill ) 
parameter. The following equations are used to find a shill velocity vector from each wall to 
align with it. rci is the relative position vector from the agent to the arena’s center rc . This vec-
tor is used to find the distances to the walls in Eq. (6). Eq. (8) gives a m x m sized matrix, with 
rows as the shill vector from each wall. We assume a square geo-fence with the center of the 
square at (0,0) in our research, but trivial modifications to Eq. (5) and (6) can generalize it to 
other shapes as well.

where,
rc ≡ Absolute position of the center of the arena
Lc ≡ Side length of the arena
rci ≡ Relative position of the center with respect to the agent
pshill ≡ Slope for the linear part of the decay curve (user-dependent parameter)
ashill ≡ Acceleration for the non-linear part of the decay curve (user-dependent parameter)
cshill ≡ Overall Gain for shilling alignment (user-dependent parameter)
vshill ≡ Speed of shilling agents (user-dependent parameter)
rshill
0

≡ Alignment cutoff distance for maximum alignment (user-dependent parameter)
Vshill ≡ No x 2 sized matrix of scaled shilling velocities for all dimensions
Vshill
k

≡ Alignment velocity of kth dimension i.e. kth row of Vshill

(5)rci = rc − ri

(6)r
mag
s

= Lc∕2 − |rci|

(7)v
shillmax
i

= D(rmag
s

− rshill
0

, ashill, pshill)

(8)Vs = (vshill.
rci

|rci|
)⊙ I

(9)v
mag
s

= ‖Vs − vi‖ ⊤vshillmax
i

(10)Vshill = cshill.(vmag
s

− v
shillmax
i

).
Vs

v
mag
s

(11)v
shill
i

=

m∑

k=1

Vshill
k
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v
shill
i

≡ Desired collective shilling vector for ith agent.

Here, I is the identity matrix, and ⊙ is the Hadamard product. Eqs. (9) - (11) have the same 
velocity alignment procedure done in section 1, but here it’s done for each wall’s shill velocity 
instead of each agent neighbor.

The above three velocities (3.1.1 - 3.1.3) along with the normalized flocking velocity are 
summed up and normalized again to give the desired velocity for the respective agent. This 
desired velocity is further used to update the current velocity and position sequentially using a 
first-order Euler integration method.

Finally, the set of resulting 12 parameters to optimize is:

3.2  Fitness functions

Order parameters are defined and passed through transfer functions to get the fitnesses and 
measure the performance of one simulation run.

Here, the order parameters �vel,�coll,�corr ,�wall , and transfer functions F1 , F2 , F3 are taken 
from Vásárhelyi et al. (2018) the Vásárhelyi et al. model, and Θ is the Heaviside step func-
tion. Parameters rtol, atol, and vtol are explained in Section 5. Order parameters for discon-
nected agents ( �disc ) and the minimum connected agents ( �cluster ) are explained below. 
These parameters are calculated locally in rcluster sized clusters:

D̃ is the braking distance r for which D(r, a, p) = v for any agent.

3.2.1  Disconnected agents

This parameter measures the average number of completely disconnected agents through-
out the simulation. Eq. (18) gives the number of agents within rcluster distance of each agent 

(12)v
desired
i

=
vi

‖vi‖
vf lock + v

rep

i
+ v

frict
i

+ v
shill
i

(13)v
desired
i

⟵ min{vmax, ‖vdesired
i

‖}
v
desired
i

‖vdesired
i

‖

x = {r
sep

0
, prep, rfrict

0
, africt , pfrict , vfrict , cfrict , rshill

0
, vshill, ashill, pshill, cshill}

(14)

F
speed = F1(�

vel, vf lock , vtol)

F
coll = F3(�

coll, atol)

F
wall = F2(�

wall, rtol)

F
corr = Θ(�corr )�corr

F
disc = F3(�

disc,N∕5)

F
cluster = F3(�

cluster ,N∕5)

(15)rcluster = rrep + rfrict + D̃(vf lock , africt , pfrict )
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at any given moment. Eq. (19) is then used to determine the number of agents throughout 
the simulation with zero connected agents, i.e., disconnected.

3.2.2  Minimum connected agents

This parameter measures the minimum number of connected agents averaged throughout 
the simulation and is therefore dependent on time. Since the drones start at random posi-
tions, it was observed that keeping this parameter time-dependent instead of steady state 
(the global minimum throughout the simulation) gave a better idea of the robustness of the 
communication graph throughout the simulation.

Finally, to optimize these fitness functions given in Eq. (14) simultaneously, the six objec-
tives must be analyzed for correlations among them so that the system can be represented 
with fewer objectives, preferably two. In the next section, Principal Component Analysis 
(PCA) is used for dimensionality reduction so that the multi-objective optimizer NSGA-II 
can be used effectively.

4  Dimensionality reduction using PCA

A data set of the six objectives discussed in Section 3 is collected to reduce the number 
of objective functions. This data is just the result of 500 random simulations without any 
heuristic to cover the entire search space. This search space is the same as the one used for 
optimization in section 6. Note that we use the fitness values after being passed through the 
transfer functions as the data for PCA. This can be done directly on the order parameters 
as well. Both processes would give different correlations depending on the nature of the 
transfer function. We prefer the former method as it gives a more accurate representation of 
the matrix components and the exact fitnesses functions used for optimization. This data is 

(16)Θ(x) =

{
1 if x ≥ 0

0 if x < 0

(17)ncluster
i

(t) =

N−1∑

j≠i
Θ(rcluster − rij(t))

(18)�disc =
1

T ∫
T

0

N∑

i=1

Θ(ncluster
i

(t) − 1)

(19)
�cluster (t) =

1

T ∫
T

0

min{ncluster
1

, ncluster
2

... ncluster
i

}(t)

∀ i ∶ 1, 2, ...,N
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used to create the covariance matrix and principal components is shown in Section 2, fol-
lowed by a qualitative discussion on the correlations.

In Fig. 1, the matrices obtained from the application of PCA on the objective space are 
given. The matrices show some interesting results. Some insights are discussed as follows:

K23 is negative, implying that a higher velocity doesn’t necessarily imply higher cohe-
sion. This might be false in  situations where the UAVs have very high-velocity magni-
tudes while traveling long distances or have a large turn radius (as in the case of fixed-wing 
drones). But in a confined environment speeds must be reduced to maintain cohesion at the 
edges (where the flock gets broken up most). This is also a consequence of a limited accel-
eration which aligns with actual physical systems.

K13 also confirms the above statement regarding confined environments. To maintain 
cohesion at walls, the UAVs can either slow down or skip the wall altogether. A com-
bination of slowing down and breaching the geo-fence makes the above movement the 
most efficient. Note that intuition would suggest that as speed increases, it would be 
easier to decrease the wall fitness as there is indeed a limited acceleration/deceleration 
available. Upon running numerous simulations and making covariance matrices, it was 
found that this is because Fwall itself is time-dependent. This means that the fitness is 
inversely proportional to the number of time frames the drones spend outside the wall. 
Since Fcorr , Fdisc , and Fcluster collectively maintain cohesion and connectivity wherever 
possible at the expense of �vel and Fwall , whenever the drones slow down, they naturally 
spend more time frames outside and turn slowly irrespective of the acceleration. This 
makes Fwall and Fspeed directly correlated with each other on average. The elements w11 
and w12 and K12 represent this fact.

Drones naturally collide less with each other when their velocities are aligned and 
they are well connected. This is because the time it takes for velocity changes to travel 
throughout the communication network is much lesser. Although, when this network 
is strongly connected, the agent has to sum up through many velocity differences in its 
neighborhood. While this is advantageous when the neighbors are moving in similar 
directions, it can be detrimental when there is a lot of noise and the inter-agent velocity 
differences point in different directions. As a result, the summed-up alignment veloc-
ity for the concerned agent gets dampened by canceling out. This results in inter-agent 
friction and makes the entire flock sluggish (slow to react). This is clearly shown by the 
elements w2 and w3 , which are strongly uncorrelated. It is also worth pointing out that 

Fwall

Fspeed

Fcorr

Fcoll

Fdisc

Fcluster

1st component
(w)





0.191
0.329

−0.495
−0.285
−0.509
−0.518





Covariance matrix
(K)





1.002 0.2821 −0.172 −0.115 −0.094 −0.131
0.282 1.002 −0.285 −0.283 −0.301 −0.259
−0.172 −0.285 1.002 0.253 0.5815 0.682
−0.115 −0.283 0.253 1.002 0.278 0.204
−0.094 −0.301 0.581 0.278 1.002 0.748
−0.131 −0.259 0.682 0.204 0.748 1.002





Fig. 1  Matrices obtained from Principal component analysis
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elements w3 through w6 are strongly correlated, which confirms the association of veloc-
ity cohesion and collisions with the communication network. As expected, the cluster 
parameters for disconnection and minimum number of connected UAVs are strongly 
correlated ( K65 ) as they are both direct functions of the communication network.

Using a single objective can result in the loss of important information as the final 
fitness is just the collective product or weighted sum. Notably, in noisy dynamical sys-
tems such as multi-agent robotics, efforts need to be made to retain as much information 
as possible and use it intelligently to guide the decision-making process. We propose 
a multi-objective methodology for optimization of the swarm’s fitness to tackle this 
problem.

The principal component (w) for the maximum variance captures all the above relations 
and shows them how they relate with each other on average. The sign of the elements indi-
cates correlation which gives rise to the following features/objectives:

Unlike traditional PCA, we do not use just the non-redundant objectives. Each objective 
captures tangible physical information about the simulation and therefore, we multiply the 
two sets individually to retain that information and also make it easier to draw a compari-
son with the single objective CMA-ES optimizer as given in Sect.  6. Apart from quan-
titative comparison, multiplying the F  ’s also eased the qualitative analysis of collective 
behaviors. For example, a sudden drop in F2 could be attributed to a specific fitness within 
the product, and an appropriate analysis could be carried out. One might also use weights 
for each objective and their respective correlations to determine this final objective func-
tion. Note that we consider the product’s negative as we minimize the objective functions.

It is worth mentioning that the above covariance matrix is dependent on the number of 
agents and the size of the confined arena. While some parameters like the cluster connec-
tivity and cohesion remain the same because they are independent of the above parameters, 
a different non-redundant set of objectives was obtained upon changing the size of the geo-
fence. The simulations dictated that the same number of agents in a larger space took more 
time to align with the shill agents due to the stronger inter-agent alignment over long dis-
tances. The covariance matrix for the same is not shown here for brevity. In Vásárhelyi 
et al. (2018), there is a certain ambiguity in the size of the geo-fence. While the authors 
mentioned that they used a side length of 250m for the square arena, the averaged results 
on their open-source simulator were closer to the claimed ones when a radius of 250m (or 
side length of 500m) was used for the arena. To make comparisons easier, we also continue 
with the latter definition for our study.

The reduced objectives are passed to the multi-objective solver NSGA-II (Deb et  al. 
2002), and the results are summarized below.

(20)F1 = −(Fwall
. F

speed)

(21)F2 = −(Fcorr
. F

coll
. F

disc
. F

cluster )
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5  Numerical experiments

A custom simulator MOflock was created in the Python programming language to test the 
proposed algorithm and for future work. The ease of use in setting up multiple processes 
and leveraging optimization and machine learning libraries was a major influence in choos-
ing Python. The simulator is highly object-oriented and modular. It has the drone agent 
abstracted at various levels and allows experimenting with both single (Bot) and multiple 
collaborative agents (CoBot). The class diagram for the same is given in Fig. 7 of Appen-
dix C. It was kept in mind that error between RobotSim (Vásárhelyi et al. 2018) and the 
current work should remain under a threshold of 5-10%. This is done so that MOflock can 
be validated against state-of-the-art simulators which have been tested on drone hardware. 
The code repository link is available at supplementary material S1 (2022), and a screenshot 
of the simulation is shown in Fig. 2. All the experiments are carried out with a flocking 
velocity ( vf lock ) and maximum velocity ( vmax ) of 6 m/s. However, no changes were made in 
the algorithm to avoid disrupting the scalability in velocity. Artificial GPS noise is added 
using the Brownian noise model used in Virágh et al. (2014). Communication delays are 
integral to the result of optimization as they simulate a kind of inertia at the walls and with 
neighbors as well. Without these delays and noises, the drones favor high gain and short-
range repulsion as opposed to the model optima. Note that the experiments in this paper 
are carried out in two-dimensional vector space.

After analyzing the covariance matrix for correlations (Sect. 4), the objectives are com-
bined accordingly and passed to the multi-objective optimizer. A good multi-objective 
optimization algorithm should contain the following characteristics: 

Fig. 2  MOflock simulation screenshot. The blue and red swarms are non-interacting. See supplementary 
material S2 (2022) for a video of the simulation
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1. Guide the solutions to an optimal Pareto front
2. Maintain solution diversity

NSGA-II is proven to be one of the best-performing algorithms in this regard. The ‘pymoo’ 
(Blank and Deb 2020) python library is used with default parameters.

It is imperative to set up the optimization problem so that there is enough diversity in 
the search space to find "good enough" solutions through heuristic methods. For the sake 
of exploration, a test run is conducted using the CMA-ES algorithm without any bounds 
on the parameters. The solution for this setup revealed that the flock only moves in a tight 
circle around the center and does not collide with the walls at all. While such a solution is 
mathematically optimal, it does not encapsulate the physical limitations and logical con-
straints on the variable bounds. This happens because the correlation and wall fitnesses 

Table 1  Optimization parameters Lower bound Upper bounds

r
rep

0
30.8 m 51 m

prep 0.02 1/s 0.10 1/s
rfrict
0

58.5 m 100 m
africt 5.04 m∕s2 10.0 m∕s2

pfrict 0.38 1/s 9.67 1/s
vfrict 0.3 m/s 2.7 m/s
cfrict 0.03 0.22
rshill
0

−10 m 0 m
vshill 10.0 m/s 15.0 m/s
ashill 1.54 m∕s2 6.55 m∕s2

pshill 0.48 1/s 9.96 1/s
cshill 0.3 1

Table 2  Simulation parameters Parameter Value

vf lock 6 m/s
vmax 6 m/s
t
gps

del
0.2 s

N 30
Larena 500 m
�inner 0.005 m2∕s2

tcomm
del

1 s
rcoll 3 m
vtol 3.75 m/s
atol 0.0003
rtol 5 m
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become abnormally high. For instance, this solution has a very large rfrict
0

 value much 
greater than the communication range of the drones. This allows each drone to have veloc-
ity correlation to the maximum extent and increases Fcorr drastically.

To avoid such solutions which disregard environmental constraints, either explicitly 
known bounds can be set on the variables which are realistic and relevant to the physics of 
a UAV, or another objective that maximizes the search area covered in minimum time can 
be incorporated into the optimization process. For this study, the former approach is used 
without any loss of generality. An iterative process is used to find the optimization bounds. 
To begin with, the exact optimization bounds from Vásárhelyi et al. (2018) are used and 
tweaked progressively according to our use case. We do this by relaxing or constraining 
the bounds so that the specific behaviors we wanted to analyze through PCA (colliding/sur-
passing the wall, coming very close to each other etc.) could be incorporated. For instance, 
rshill
0

 and cshill are relaxed so that walls could be ignored sometimes. When all behaviors 
could be observed, we started optimizing in this space. In cases where the optimizer does’t 
explore enough or there is a major change in flocking physics, we tweak the bounds, con-
duct PCA again, obtain the covariance matrix and optimize on the newly obtained bounds. 
Some bounds were large enough and did not need any change (eg: separation parameters). 
The bounds used for the variables are shown in Table  1 and some miscellaneous simu-
lation parameters including certain tolerance parameters rtol , atol , and vtol for the transfer 

Fig. 3  Statistical evaluations (mean ± standard deviation) of different configurations with respect to the 
optimal Pareto front. The blue and red curves are comparisons of MOflock and RobotSim at the model 
optima(Xa ) for vf lock = 6m∕s . F(Xa)|RobotSim is the multi-objective fitness for the model optima Xa taken 
from Vásárhelyi et al. (2018) and evaluated on RobotSim itself. F(Xa)|MOflock is the fitness for Xa evalu-
ated on MOflock. FCMA−ES(Xopt)|MOflock is the optimized fitness result on our simulator using the CMA-
ES algorithm. The highest ranked Pareto front for the last generation using the NSGA-II algorithm is also 
shown FNSGA−II

1
 , FNSGA−II

2
|MOflock are mean values for the extreme points on this Pareto Front
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functions in section 3.2 are given in Table 2. Appropriate values for these tolerance param-
eters promote a better search of solutions and gradient directions.

We use simulated binary crossover and polynomial mutation with default parameters 
from the library Blank and Deb (2020), and the optimization is run for a total of 40 genera-
tions and a population size of 50. All the experiments were performed on a machine with 
the AMD Ryzen 7 4800H 16 core CPU and 16 GB of RAM. The results are reported in 
Sect. 6.

6  Results and discussions

The results of the optimization procedure are analyzed and discussed in this section.
Fig.  3 shows 100 simulations for different points. As targeted, the error on mean fit-

nesses between both simulators at the model optima in Vásárhelyi et al. (2018) is 4.28%. 
Note that FCMA−ES(Xopt)|MOflock was not evaluated using a multi-objective algorithm but 
was separated into F1 and F2 according to Sect. 4. This is done so that comparisons can be 
drawn easily between the single objective and multi-objective results.

Since the single objective fitness is the product of all individual fitnesses, it follows 
that neither of the six fitnesses can be close to zero or even guaranteed to be maximum 
if there exists a negative correlation between some. As a result, when optimizing a single 
objective function, a ‘best of both’ situation is sought after. However, in the case of mul-
tiple conflicting objectives, this can be forgiven for better performance on the separated 
fitness functions. This also explains why the CMA-ES point lies around the knee of the 
Pareto fronts. It should be noted, however, that the CMA-ES optimum on our simulator 

(a) Every 4th Pareto front from the last
generation. The Pareto front with rank 1
contains solutions that are non-dominated
within themselves but dominate all other
solutions in the population. Here rank is
calculated using the formula in appendix A

(b) Swarms for extreme points dis-
played in the same arena. Point A: Blue
agents represent the agile flock which
minimizes F1 in the highest ranked
Pareto front from the last generation;
Point B: Red agents represent the cohe-
sive flock which minimizes F2 in the
highest ranked Pareto front from the
last generation.

Fig. 4  Optimization results
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outperforms the Pareto front at its knee. This is owed to the high degree of automation 
and robustness of the CMA-ES algorithm.

While the user can now choose amongst any of the points depending on the scenario 
and relative importance, there are two interesting points on the optimal front correspond-
ing to the extreme situations when either one of the two solutions is compromised for the 
other. They are given by points A and B in Fig. 3. The values of the variables and fitnesses 
at the above points are summarized in Table 3. Fig. 4a shows every 4th Pareto front from 

(a) Point A: A more agile but less cohe-
sive flock. φwall remains 0 throughout,
but φcorr is lesser than Point B

(b) Point B: A cohesive but sluggish
swarm. φwall increases progressively as
the swarm spends more time frames out-
side the geo-fence. Nmin is greater than
Point A because more agents are present
within rcluster radius

Fig. 5  Cumulative order parameters for points A and B. The order parametershave been scaled equally 
using simulation parameters to accommodate themon a (0,1) range ordinate

Table 3  Optimization results Point A Point B

F
1
(� ± �) −0.890 ± 0.039 −0.065 ± 0.039

F
2
(� ± �) −0.112 ± 0.09 −0.896 ± 0.179

r
rep

0
33.69 m 33.45 m

prep 0.023 1/s 0.028 1/s
rfrict
0

59.26 m 58.95 m
africt 5.38 m∕s2 8.223 m∕s2

pfrict 4.62 1/s 2.67 1/s
vfrict 1.73 m/s 3.00 m/s
cfrict 0.035 1.84
rshill
0

-2.45 m -0.21 m
vshill 12.93 m/s 12.93 m/s
ashill 4.84 m∕s2 2.57 m∕s2

pshill 4.83 1/s 1.30 1/s
cshill 0.55 0.43
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the last generation. This spacing was only chosen to display the spread and convergence 
in a neat manner. A snapshot of the relevant simulations for both points is also shown in 
Fig. 4b along with the graphs for their order parameters in Fig. 5. They can be qualitatively 
understood as follows:

Point A: A weaker cluster-dependent fitness shows that multiple clusters can coexist in 
the same environment when cohesion and speed is sacrificed.

Point B: Similarly, the other point clearly skips the geo-fence and/or slows down to 
maintain a good cohesion and compensate for the damping caused by inter-agent friction 
and pressure at the walls.

The generation of the above two points directly results from the physical and environ-
mental restrictions imposed on the swarm. The limited acceleration does not allow the 
entire swarm to turn sharply without slowing down. The confined walls don’t allow agents 
to flock together when moving at high speeds without losing some cohesion. These state-
ments are a testament to the complex dynamics that multi-agent systems exhibit. A video 
showing the above interactions is available at supplementary material S2 (2022). Better 
mathematical formalism and high-fidelity simulations can be developed to realize such 
intertwined relationships.

The trend in the order parameters in Fig. 5 also confirms the covariance matrix elements 
in Section 4. Note that the graph is scaled to the (0,1) interval with the relevant maximum 
feasible values for each parameter, and cumulative values are shown for the curves.

Further statistical analysis of the data from the optimization shows that there is a lot of 
redundancy in the decision variables. The following observations indicate this finding:

• Even though points A and B are far apart on the Pareto front, their respective param-
eters for repulsion are very similar.

(a) Target following simulation. Each
group follows its own target point in
yellow. The red group is cohesive and
minimizes F2. The blue group is agile
and minimizes F1

(b) d̄target(t) for Point A and B. The Y
axis shows the average distance of the cen-
ter of mass from the target point with
respect to time.

Fig. 6  Target order parameter comparison
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• It was observed that the right combination of rshill
0

 and ashill gives similar fitnesses and 
order parameters even with a constant shilling velocity.

• The introduced shill gain ( cshill ) does not take its maximum possible value (1.0) even 
when seeking the best F1 , which is highly dependent on this parameter.

Note that a complete PCA correlation analysis on the decision variables can be performed 
to confirm the above observation and reduce the dimension of the input space as well.

The above results are more consequential than just a Pareto front. Real-life missions and 
the inherently stochastic nature of the environment demand a range of potential solutions 
from which a human in the loop can choose in an ad-hoc manner. A typical mission profile 
consists of cruise, loiter, surveillance, and occasionally a payload drop. A brief description 
of the use of the practical applications of the Pareto optimal points are shown below.

• Target search and loitering is a common phase in surveillance missions. A snapshot 
of an extreme case where the target is located at a corner of the geo-fence is shown in 
Fig. 6a. The flock breaks at corners and walls to loiter around the target. To make this 
observation mathematically sound, another order parameter called �target is created. The 
target following physical model is taken from Virágh et al. (2014). 

where,
x
COM(t) ≡ Center of mass of the swarm at time t

d̄target(t) ≡ Mean distance to target (over all N agents) at time t

This parameter includes two performance measures- the closeness of the entire flock to the 
target on average (Eq. 23) and the ‘Loiter Frequency ( �)’. This frequency measures how 
fast the flock can loiter around the target and turn around as a whole. As opposed to the 
other parameters, the steady state version of this parameter is measured. Since the motion 
is circular and periodic, the time series is fit to a sinusoidal wave similar to an audio signal.

(22)x
COM(t) =

∑N

i=1
ri(t)

N

(23)d̄target(t) = ‖xtarget − x
COM(t)‖

(24)𝜙target(t) = a. sin(𝜔.d̄target(t) + 𝜓) + c

(25)F = FFT(�target)

(26)d̄target =
1

T

T−1∑

t=0

d̄target(t)

(27)ao =

√√√√ 2

T

T−1∑

t=0

(d̄target(t) − d̄target)2
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where,
F ≡ Fourier transform output
d̄target ≡ Mean of the average distance throughout the simulation
f s ≡ Sample frequencies for the time series data
d̄target ≡ Average distance throughout the simulation
fo ≡ Initial guess of frequency for �target(t) corresponding to the maximum F
�o ≡ Initial guess of phase for �target(t)

ao ≡ Initial guess of amplitude for �target(t)

co ≡ Initial guess of offset for �target(t)

This is done by first getting an estimate of the initial coefficients, namely amplitude ( ao ), phase 
( �o ), offset ( co ), and frequency ( fo = �o∕2�) ) via a Fast Fourier Transform (FFT) on the data 
(Eq.  24–25) and then passing this estimate for Least Squares curve Fit represented by LSF 
(Eq. 31). The final order parameter is just the angular frequency divided by the amplitude.

The analysis shows that point A on the Pareto front has a lower loiter frequency because of 
the extra inter-agent friction created to maintain the flock cohesion. Point B, on the other 
hand, has almost half the amplitude and double the frequency because of the higher veloc-
ity, loosely correlated flock with more collisions. These curves and an accompanying simu-
lation screenshot are shown in Fig. 6. A full video showing the target tracking and fitness 
analysis is available at supplementary material S3 (2022).

• There have been recent studies in which collisions are handled explicitly through phys-
ical boundaries and mechanisms instead of an implicit algorithm (Mulgaonkar et  al. 
2017). The idea is to allow for some collisions as long as agility is maintained and the 
drones reach their target. Point A on the front is akin to such a situation. The flock does 
not give much attention to inter-agent separation or cohesion in local clusters. Instead, 
speed is given a higher priority. This is especially useful when tiny drones need to over-
come narrow passages and crevices without acting as a fully connected flock but get 
through the region as fast as possible, with each drone acting for itself.

• Point B naturally resembles a good flock where connectivity and cohesion is concerned. 
The decentralized neighbor architecture makes the flock very desirable where robust-
ness and swarm health is an absolute requirement, and the entire swarm needs to travel 
long distances as a fully connected cluster.

While developing the methodology for this work, several characteristics of collective behavior 
were noticed in the multi-agent simulations. For instance, the parameters which characterize 

(28)fo = |f s
argmax(|Ak|)

|

(29)�o = 0

(30)co = d̄target

(31)a,𝜔,𝜓 , c = LSF(𝜙target, d̄target, ao, fo,𝜓o, co)

(32)F
target = �∕a
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the swarm changed drastically based on factors like communication delay and the arena size. 
These two variables affect the swarm as a whole because any control action for an agent close 
to the wall is propagated throughout the swarm with the appropriate communication delay. 
Naturally, every PCA analysis with different simulation parameters yielded unique objectives 
and, therefore, a different Pareto front. The advantage of separating the objective function into 
multiple grouped objectives is that global swarm behavior can be controlled by choosing a 
point on the Pareto front instead of tuning parameters manually or running an offline optimi-
zation for each possible situation that the swarm would encounter. Therefore, it follows that 
this swarm behavior can be controlled by a supervisor with access to the appropriate Pareto 
front. Moreover, such distinctions and swarm gradients are more consequential when we start 
attributing human-readable names to these fitnesses. In our case, the swarm which minimizes 
F1 acts as an ‘agile’ swarm whereas minimizing F2 constitutes a ‘cohesive’ swarm. A human 
operator with access to the Pareto front and such terminology could potentially direct global 
swarm behavior according to the situation at hand. Similar notions of ‘stable’ vs ‘sensitive’ 
swarms have been developed in the past (Balázs et al. 2020) and show that the problem of 
generalizing a semi-autonomous swarm based on various scenarios is often difficult to handle 
with just online learning algorithms. A compromise between both, wherein we can control 
large-scale behavior through multiple objectives and individual decision-making through rein-
forcement learning can be sought after to solve the generalization problem.

7  Conclusion

In this paper, we proposed a methodology to address the problem of drone flocking. First, a simu-
lator with an integrated optimizer was designed to test the algorithm. The decision variables that 
characterize the flocking operators and fitness functions that indicate the performance swarm’s 
performance were derived from the Vásárhelyi et al. model and modified accordingly. To use the 
multi-objective optimizer effectively, the six-dimensional objective space was reduced to two 
dimensions using Principal Component Analysis. The correlation analysis revealed that fitness 
functions for both speed and wall avoidance could be treated separately from the cohesive move-
ment of the entire flock. This process also provided insight into the various complex relationships 
that multi-agent systems can exhibit. Further, the so formed two objective optimization problem is 
optimized using NSGA-II and the results are compared with the single objective CMA-ES opti-
mization algorithm. It is found that while CMA-ES performs better with respect to the knee of the 
Pareto front (in situations where a ‘best of all’ configuration is required), NSGA-II outperforms 
CMA-ES on the extreme points as it offers an entire range of solutions to choose from. The study 
also discussed the use cases of such a Pareto front to guide the decision-making process in real-
world scenarios. Incorporating algorithms like Reinforcement Learning with the proposed meth-
odology can be future research agenda.

Appendix A: Background

Principal component analysis

The covariance matrix K is formulated as follows: Let X be an n x m design matrix with n 
rows as the samples and m columns as objectives. A pre-processing step often carried out is 
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the normalization of the design matrix which brings the mean of samples for each objective 
to 0.0 and the variance to 1.0 (Eq. A1). The covariance matrix is then calculated by taking 
the mean of all samples of the pairwise products for each objective (Eq. A2). In a vectorized 
format, this is equivalent to taking the matrix product of the design matrix X with its trans-
pose (Eq. A3).

where,
Xij ≡ Element of X at ith row and jth column
Xnorm
ij

≡ Xij normalized to 0.0 mean and 1.0 standard deviation
�j ≡ Mean of all n samples of jth objective
�j ≡ Standard deviation of all n samples of jth objective
n ≡ Number of samples
m ≡ Number of objectives
K ≡ Covariance matrix
Kij ≡ Element of K at ith row and jth column

Non‑dominated sorting genetic algorithm

Let Po be an N sized initial random population. This population is sorted based on non-
domination according to the following rules: An individual X1 in the population is said to 
be dominated by individual X2 if satisfies both of the following conditions:

• All fitnesses of X1 must be less than or equal to that of X2 particle.
• At least one fitness of X1 must be strictly less than that of X2.

Mathematically, individual X1 dominates X2 if d = 1 , and the individuals are non-domi-
nated if d = 0.

Where, d = {∀m F(X1)
m ≤ F(X2)

m} ∩ {∃m F(X1)
m < F(X2)

m}

This method divides the population into dominating and non-dominating solutions, which 
is a heuristic used to guide the population towards better solutions through the genera-
tions. Each solution in this population is also ranked based on the number of other mem-
bers it is dominated by, and accordingly, it is assigned a front rank. Next, an offspring 
population Q is created from the sorted population by applying tournament selection, 
recombination, and mutation operators. A new 2N sized population is made using P ∪ Q 
and is again sorted and ranked to retain the best solution across generations (elitism). To 
make the next population Pt+1 from this combined set, solutions are taken in order of their 

(A1)Xnorm
ij

=
Xij − �j

�j

(A2)Kij =
1

n

n∑

k=1

XkiXkj

(A3)K =
1

n
(Xnorm)TXnorm
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front ranking. In case the number of solutions belonging to a front exceeds the amount 
that can be accommodated into the new N sized population, the remaining solutions in 
that front are ranked based on a crowding operator as follows:

Let Fk be the set of solutions on the kth ranked Pareto front. The crowding distance 
( cm

i
 ) for the mth objective for ith solution on this front is defined as the normalized dis-

tance between the two nearest solutions i.e. (i + 1)th and (i − 1)th (Eq. A4). The overall 
crowding distance ( ci ) is the sum taken for each objective (Eq. A5).

This crowding operator ensures that the Pareto Front is uniformly distributed, and the range 
of each objective value is minimized as the search progresses. The remaining solutions are 
ranked according to ci and the new population Pt+1 moves forward to the next generation. 
NSGA-II is faster than NSGA-I and has a worst-case complexity of O(MN2).

Appendix B: Decision variables

Separation

The following two equations (B7) and (B8) are used to find a repulsion vector for agent i after 
scaling it according to the relative distances in rmag

i
 and a gain prep.

where,
a⊤b = max(a, b) i.e. a is at least b
a⊥c = min(a, c) i.e. a is at most c
r
mag ≡ No x 1 sized vector containing inter-agent distances
r
rep

0
≡ Repulsion cutoff distance (user-dependent parameter)

prep ≡ Repulsion gain (user-dependent parameter)
V rep ≡ No x 2 sized matrix of scaled repulsion velocities for all neighbors
V
rep

j
≡ Repulsion velocity of jth neighbor i.e. jth row of V rep

v
rep

i
≡ Desired collective repulsion vector

(A4)∀Xi ∈ F
k ∶ cm

i
=

Fm(Xi+1) − Fm(Xi−1)

Fm
max

− Fm
min

(A5)ci =

M∑

m=1

cm
i

(B6)r
mag = ‖Rrel‖⊥r

rep

0

(B7)V rep = prep.(rmag − r
rep

0
).
Rrel

rmag

(B8)v
rep

i
=

No∑

j=1

V
rep

j
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Note that the upper bound of rmag is the parameter rrep
0

 to enable short-range effects. The 
matrix norm in Eq. (B6) is only taken along the row axis, i.e. for each neighbor. An Nx2 
matrix (Rrel) of position vectors divided by the distance vector (rmag) yields unit position vec-
tors. V rep contains all the corresponding scaled repulsion velocities, and the division and mul-
tiplication in Eq. (B7) is done element-wise.

Alignment

The equations are similar to separation with one major difference: the upper bound for the 
velocity magnitude ( vfrictmax ) is now calculated dynamically with decay function D in Eq. 
(B9), which is dependent on the inter-agent distance (Vásárhelyi et  al. 2018). Eqs. (B10) - 
(B12) describe the process of finding out the agent’s combined alignment vector.

where,
D is the velocity decay function from the Vásárhelyi et al. model and takes a vector as 
the first argument
pfrict ≡ Slope for the linear part of the decay curve (user-dependent parameter)
africt ≡ Acceleration for the non-linear part of the decay curve (user-dependent param-
eter)
cfrict ≡ Overall Gain for alignment (user-dependent parameter)
vfrict ≡ Velocity slack for alignment (user-dependent parameter)
rfrict
0

≡ Alignment cutoff distance for maximum alignment (user-dependent parameter)
V frict ≡ No x 2 sized matrix of scaled alignment velocities for all neighbors
V frict
j

≡ Alignment velocity of jth neighbor i.e. jth row of V frict

v
frict
i

≡ Desired collective alignment vector

Eq. (B9) gives a vector composed of each neighbor’s maximum allowable velocity differences. 
The maximum is proportional to the inter-agent distance. This ensures that the alignment for 
two agents in close proximity is larger and vice-versa. Also, the maximum allowable differ-
ence is lower bound by an optimization parameter vfrict so the agents do not strive for perfect 
alignment, and there is some slack. Eq. (B11) compensates for the velocity difference for each 
neighbor, and Eq. (B12) sums the alignment velocities for each neighbor.

(B9)v
frictmax = D(r

mag

i
− rfrict

0
− r

rep

0
, africt , pfrict )⊤vf rict

(B10)v
mag = ‖Vrel‖⊤vfrictmax

(B11)V frict = cfrict .(vmag − v
frictmax).

Vrel

vmag

(B12)v
frict
i

=

No∑

j=1

V frict
j
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Appendix C: Software

See Figure 7.
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Fig. 7  Class diagram for the Multi-Objective flocking simulator. The Env class has a 1 to n relationship 
with the CoBot as each environment can contain multiple CoBots. Similarly, the Optimizer class can run 
multiple environments on multiple cores/processes. The complete simulator is available on GitHub (Sup-
plementary material S1, 2022)
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