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Abstract
Multi-option collective decision-making is a challenging task in the context of swarm intel-
ligence. In this paper, we extend the problem of collective perception from simple binary 
decision-making of choosing the color in majority to estimating the most likely fill ratio 
from a series of discrete fill ratio hypotheses. We have applied direct comparison (DC) 
and direct modulation of voter-based decisions (DMVD) to this scenario to observe their 
performances in a discrete collective estimation problem. We have also compared their per-
formances against an Individual Exploration baseline. Additionally, we propose a novel 
collective decision-making strategy called distributed Bayesian belief sharing (DBBS) 
and apply it to the above discrete collective estimation problem. In the experiments, we 
explore the performances of considered collective decision-making algorithms in various 
parameter settings to determine the trade-off among accuracy, speed, message transfer and 
reliability in the decision-making process. Our results show that both DC and DMVD out-
perform the Individual Exploration baseline, but both algorithms exhibit different trade-
offs with respect to accuracy and decision speed. On the other hand, DBBS exceeds the 
performances of all other considered algorithms in all four metrics, at the cost of higher 
communication complexity.

Keywords  Collective estimation · Best-of-n problem · Collective decision-making · Swarm 
intelligence

1  Introduction

Collective decision-making is a field in swarm intelligence that has long been studied. 
Researchers have observed that naturally occurring swarm intelligent systems, such as 
insect swarms and bird flocks, have no centralized control mechanisms, and individual 
agents make decisions purely via local interactions with their surrounding environments 
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or their neighbors (Camazine et al. 2001). Researchers in this field aim to understand the 
mechanisms that enable decision-making in naturally occurring swarm intelligent systems, 
as well as construct decision-making strategies that enable groups of artificial intelligent 
agents to collectively make decisions. By constructing decision-making mechanisms using 
local interactions among a group of intelligent agents, the decision-making process of the 
whole swarm can be made robust, flexible and scalable (Şahin 2005).

Best-of-n problems focus on enabling consensus-forming using various collective deci-
sion-making strategies when a group of agents are choosing from a set of options (Valen-
tini et al. 2017). These problems can have many different scenarios, such as route picking, 
site selection or collective perception. In this paper, we focus on the collective perception 
scenario, which is a best-of-n problem with discrete options with asymmetric qualities. 
The collective perception scenario was first introduced in Valentini et al. (2016a). The set-
ting of a typical collective perception scenario is as follows. There is an arena with black 
and white tiles. The proportion of black tiles in the arena is referred to as the fill ratio. A 
number of mobile robots roam the arena, and their goal is to collectively agree on which 
color is in the majority, hence whether the fill ratio is above or below 0.5. The robots are 
assumed to have limited communication and sensory abilities.

Various collective decision-making strategies have been used to perform collective 
perception in the past. Valentini et  al. (2014) proposed direct modulation of voter-based 
decisions (DMVD). They also proposed direct modulation of majority-based decisions 
(DMMD) in Valentini et  al. (2015) and further analyzed it in Valentini et  al. (2016b). 
In addition, direct comparison (DC) is proposed as a benchmark algorithm (Valentini 
et al. 2016a). Strobel et al. (2018) have investigated the performances of these collective 
decision-making strategies at different ratios of black and white tiles. Bartashevich and 
Mostaghim (2019) have investigated collective perception scenarios with different patterns 
of black and white tiles and their impact on the performances of collective decision-mak-
ing strategies. Ebert et al. (2020) have employed a Bayesian statistics-based approach to 
perform collective perception on Kilobots. So far, most investigations of collective per-
ception scenarios have been limited to the task of determining the color in majority, thus 
limiting the number of options for agents to only 2. As Valentini et al. (2017) have noted, 
this is a common constraint across the best-of-n problems and there are only a few works 
into multi-option collective decision-making scenarios. Specifically in collective percep-
tion problems, the robots are usually restricted to binary choices of the color in majority.

Many option to continuous consensus problems have been studied extensively for net-
worked sensors and agents (Olfati-Saber et al. 2006; Wang and Xiao 2010). These algo-
rithms, however, cannot be directly applied to a swarm robotics setting, as they usually 
require high complexity in robot design and frequent communications. In a swarm robot-
ics setting, extending best-of-n problems to multiple options can have different implica-
tions for different application scenarios. In route picking or site selection, the agents can 
choose from a larger set of possible options. For example, Garnier et al. (2013) and Schei-
dler et al. (2016) have investigated selection of the shortest path by a robot swarm among 
multiple choices using collective reinforcement of the optimal route. For collective per-
ception, extending the number of options means the robots would choose from a series 
of discretized fill ratios and form a more accurate estimation of the fill ratio in the arena. 
Similar collective estimation tasks have been attempted in Strobel and Dorigo (2018), who 
used a blockchain-based method to create a shared knowledge, which is a piece of infor-
mation accessed by all members of the swarm, for all the robots, who would pool their 
estimations of the fill ratio. The mean of all estimations would be the final estimation by 
the whole swarm. Shan and Mostaghim (2020) proposed an algorithm using distributed 
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Bayesian hypothesis testing and centralized opinion fusion to determine the most likely fill 
ratio hypothesis. In their algorithm, the robots form a communication network to pass their 
individual beliefs to a leader, who computes the combined opinion of the whole swarm.

In this paper, we employ collective decision-making strategies with high scalability and 
low complexity to solve a discrete collective estimation problem. This paper is a signifi-
cant extension to Shan and Mostaghim (2020) in the following ways. Firstly, on the top 
of a similar Bayesian hypothesis testing technique used to compute option qualities, we 
propose a new decentralized decision-making strategy, distributed Bayesian belief sharing, 
that avoids the single point of failure introduced by the leader in Shan and Mostaghim 
(2020). Secondly, we thoroughly investigate the discrete collective estimation problem and 
test the performances of other state-of-the-art collective decision-making strategies, such 
as DMVD and DC, in a multi-option collective decision-making scenario. After that, we 
compare the performances of considered algorithms in discrete collective estimation sce-
narios using a multi-objective optimization framework and investigate the various trade-
offs in parameter selection for different decision-making strategies in the considered sce-
nario. Finally, we also examine the performance of our proposed algorithm in scenarios 
with sparse communications.

The structure of this paper is as follows. Section 2 includes the problem statement and 
an analysis of related works in similar problems. In Sect. 3, we present our method to com-
pute the option quality used in all considered collective decision-making strategies. We 
then present our considered benchmark algorithms in this paper, as well as our proposed 
algorithm DBBS. After that in Sect. 4, we provide our experiments and analyze the results. 
In Sect. 5, we will discuss the results and compare them with other related studies. Finally, 
Sect. 6 contains the conclusion.

2 � Problem statement and related works

We consider the following discrete collective estimation scenario, illustrated in Fig.  1. 
The name of the scenario investigated is based on the name used by Strobel and Dorigo 
(2018). This scenario is an extension of the collective perception scenario in Valentini 
et al. (2016a), which is well investigated in the field of collective decision-making. In the 
scenario investigated here, there is an arena as shown in Fig. 1 with a number of tiles that 
can be either black or white. The black tiles are of a particular fill ratio within the arena. 
N mobile robots roam the arena, shown in red in Fig. 1, and their goal is to collectively 
determine the most likely fill ratio out of a number of discrete hypotheses. The robots have 
limited capabilities in sensing, communication and computation. They can only communi-
cate with other robots within a communication radius, are only able to sense the color of 
the tiles directly beneath them and have only simple reactive behavior.

Direct comparison of option qualities (DC) was proposed by Valentini et al. (2016a) and 
remains a popular benchmark algorithm for various collective decision-making scenarios, 
such as collective perception (Strobel et al. 2018; Bartashevich and Mostaghim 2019; Shan 
and Mostaghim 2020) and site selection (Talamali et  al. 2019). When applied to collec-
tive decision-making problems where the option qualities must be measured individually, 
such as site selection, DC faces a problem that an agent who receives a preferred option 
and its quality from its neighbor cannot verify the accuracy of the reported option quality. 
Therefore, erroneous measurements can be propagated across the agents, thus reducing the 
accuracy of the consensus. As a result, cross-inhibition, which is proposed by Reina et al. 
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(2015), is used by Talamali et al. (2019) to perform site selection. However, in our discrete 
collective estimation scenario, the qualities of all potential options can be measured simul-
taneously, as explained in Section 3.1. Therefore, we follow the literature on collective per-
ception and still use DC as a baseline algorithm. DC decision-making strategy in collec-
tive perception works as follows. Low-level controllers direct the robots to perform random 
walk in the arena. Each agent alternates between two decision-making states, exploration 
and dissemination, with an identically distributed but stochastically varying duration. Dur-
ing exploration, the agents sample the arena and compute the quality of the current own 
option, which in collective perception is the likelihood that their chosen color is in the 
majority. During dissemination, the agents broadcast the current option and quality to their 
neighbors. At the end of a dissemination period, an agent switches to an option out of the 
options of its neighbors and itself which has the highest quality.

Direct modulation of voter-based decisions (DMVD) was first proposed by Valentini 
et al. (2014). It has also been used to perform site selection (Valentini et al. 2016b) and col-
lective perception (Valentini et al. 2016a; Strobel et al. 2018; Bartashevich and Mostaghim 
2019; Shan and Mostaghim 2020). DMVD works similar to DC when applied to collective 
perception. Agents also alternate between exploration and dissemination states. However, 
the length of agents’ dissemination states is proportional to the option qualities. In addi-
tion, at the end of a dissemination period, an agent switches to a random option out of the 
options of its neighbors and itself.

In this paper, we use a different method from those stated above. Our method is based 
on Bayesian statistics. Bayesian statistics has long been used in sensor fusion techniques 
in sensor networks. Hoballah and Varshney (1989) and Varshney and Al-Hakeem (1991) 
have designed various decentralized detection algorithms based on Bayesian hypothesis 
testing in sensor networks. Alanyali et  al. (2004) explored how to make multiple con-
nected noisy sensors reach consensus using message passing based on belief propagation. 
Similar fusion of opinions has been attempted in the field of collective decision-making 
in the form of opinion pooling (Lee et al. 2018a, b; Crosscombe et al. 2019), where small 
groups of agents in a swarm would combine their opinions iteratively until consensus is 
reached for the whole swarm. However, implementations of opinion pooling remain mostly 

Fig. 1   An example of the arena 
which is a 2m × 2m square, cov-
ered in 400 square tiles shown 
in black and white. The red dots 
illustrate 20 mobile robots (Color 
figure online)
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in non-physics-based simulations. When applied to the discrete collective estimation sce-
nario, opinion pooling requires bidirectional communications between the robots as well as 
more complex control of the robots during the pooling process so that every agent taking 
part in the pooling can have access to the results. Therefore, we do not take this approach 
in this paper. Apart from that, the following two approaches have been proposed for col-
lective perception based on Bayesian statistics. Ebert et  al. (2020) employed a Bayesian 
statistics-based collective perception algorithm. In order to obtain the color in majority in 
their algorithm, each robot is programmed to compute the probability of the fill ratio to be 
larger than 0.5. They employed bio-inspired positive feedback to help the decision-making. 
Shan and Mostaghim (2020) have used Bayesian hypothesis testing to compute individual 
robots’ belief on the fill ratio. We use a similar method in this paper to compute the option 
qualities.

3 � Methodology

In this section, we introduce the collective decision-making strategies being investigated 
in this paper in details. We first introduce the methodology to compute option qualities 
and the low-level control mechanisms, both of which are used for all considered decision-
making strategies. Then, we will show the inner workings of the considered strategies.

3.1 � Computing the option qualities

For the discrete collective estimation scenario, we can use Bayesian statistics to enable a 
single robot to easily compute the likelihoods of all hypotheses, based on its past observa-
tions of the environment. We use the likelihood of a particular hypothesis as its option 
quality. The technique used in Shan and Mostaghim (2020) to compute individual belief 
of fill ratio is used here to compute the option qualities for all considered decision-making 
strategies.

From the perspective of an individual robot, the environment is seen as a discrete 
random variable V with two possible values Black and White. P(V = Black) = PB is the 
probability that a random place in the arena is black, and thus, it is equal to the propor-
tion of area in the arena that is covered by black tiles. At a given point of time, a robot 
has made S observations of the environment, and it could then compute the likeli-
hood of a given hypothesis h of the value of PB using its past observations, expressed as 
P(PB = h|ob

1
...obS) . We can then use Bayes’ rule

Here, P(PB = h) is the prior and P(ob
1
...obS) is the marginal likelihood, both of which 

we assume to be the same for all hypotheses. We can then apply the chain rule to 
P(ob

1
...obS|PB = h)

Assuming the observations are all independent of each other, we can remove the dependen-
cies on previous observations, and thus, we have:

(1)P(PB = h|ob
1
...obS) =

P(ob
1
...obS|PB = h)P(PB = h)

P(ob
1
...obS)

.

(2)= P(ob
1
|PB = h)P(ob

2
|PB = h, ob

1
)...P(obS|PB = h, ob

1
, ..., obS−1).
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In practice, we express the quality of option h as the normalized likelihood of the hypoth-
esis given previous observations. We arrange all the available hypotheses of black tile fill 
ratios as matrix H as follows. The first column is the proportion of black tiles ( PB ), and the 
second column is the proportion of white tiles ( 1 − PB).

An observation can be either ob =

[
1

0

]
 for black or ob =

[
0

1

]
 for white tiles. Therefore, the 

vector including the quality of all options for a robot can be calculated:

In practice, the computation of qualities can be iteratively done by a robot, at very low cost 
in terms of computational power and memory. The robot starts with a prior belief that all 
options are equally likely. At a fixed sampling interval, the robot collects an observation 
sample of the arena floor and multiplies its old belief with a new set of probabilities.

In order to maintain the independence assumption made in Eq. (3), we made the following 
design choices during implementation of our considered algorithms. First, we use a sam-
pling interval to be large enough to avoid successive observation samples being collected 
on one tile, which can cause a high level of correlation between them. In addition, in all 
considered algorithms, the robot can collect an observation sample only when it is moving 
forward and not when it is turning. This is also to avoid multiple samples being collected 
on one tile.

3.2 � Low‑level control mechanism

In all considered decision-making strategies, a low-level controller as shown in Fig.  2 
directs the robots to perform a random walk in the arena similar to in Valentini et  al. 
(2016a). The controller has the structure of a finite state machine with two states. In State 
A, the robot will move forward, while in State B, the robot turns in place toward a random 
direction. The lengths of the two states are randomly distributed. The durations of State 
A are exponentially distributed with a mean of 40 s, while the durations of State B are 
uniformly distributed between 0 s and 4.5 s. The robots are assumed to be able to detect 
obstacles 0.1 m located in front them. To avoid collisions, during State A, if an obstacle is 
detected, the robot enters State B. At the end of State B, if an obstacle is detected, the robot 
repeats State B with a reset timer.

It has been observed in the related literature which used Bayesian statistics in collec-
tive perception (Ebert et  al. 2020; Shan and Mostaghim 2020) that collecting correlated 

(3)= P(ob
1
|PB = h)P(ob

2
|PB = h)...P(obS|PB = h).

(4)H =

⎡
⎢⎢⎢⎣

0.05 0.95

0.15 0.85

⋯

0.95 0.05

⎤
⎥⎥⎥⎦

(5)� = Πs=1..SH ⋅ ob
s
.

(6)�
n,0

=

[
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

]T

(7)�
n,s

= �
n,s−1

◦(H ⋅ ob
s
).
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observations is detrimental to accurate decision-making. When the robot is turning in State 
B, it remains in the same place, and thus, any observations it collects are of the same color. 
Therefore, for all considered decision-making strategies, we restrict the observation collec-
tion to only when the robots are moving forward in State A.

3.3 � Benchmark strategies: Individual Exploration, DC and DMVD

In this section, we introduce the benchmark decision-making strategies used in this paper. 
Individual Exploration is a simple baseline strategy to determine whether the adoption of 
a particular collective approach is beneficial. Both DC and DMVD are collective deci-
sion-making strategies used in past related works, but mostly for binary decision-making 
problems.

3.3.1 � Individual Exploration

Individual Exploration algorithm 1 is used as a baseline. In this algorithm, the robots per-
form a random walk in the arena. At every control loop, the robot with index n samples the 
arena floor for an observation (line 3) and computes its own belief of the fill ratio hypothe-
ses �

n
 . Its decision dn is always the option that has the highest likelihood by its own estima-

tion. The algorithm terminates when the decisions for all robots converge to a single option 
(i.e., d

1
= d

2
= ⋯ = dn ). This algorithm does not employ any communication and is used 

as a baseline in this paper. A collective decision-making algorithm needs to perform sig-
nificantly better than the Individual Exploration baseline to justify its extra infrastructure 
as well as potential security and defect risk introduced by communication.

Fig. 2   Low-level control mechanism used to perform random walk
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3.3.2 � Direct comparison (DC) and direct modulation of voter‑based decisions (DMVD)

Algorithms 2 and 3 show the direct comparison and direct modulation of voter-based deci-
sions strategies. We have modified the original algorithms from Valentini et al. (2016a) to 
a multi-option scenario. We have used Bayesian hypothesis testing as shown in Section 3.1 
to compute the option qualities (lines 9–10 in Algorithm 2 and Algorithm 3).

In a collective decision-making problem with only two options, if the agents have not con-
verged to a single option, all options would have at least one agent choosing it. Therefore, there 
is no need to maintain a diversity of opinions among the agents. However, when applied to a 
scenario with more than two options, the swarm needs to keep a diversity of opinions among 
the robots during the decision-making process to test all of the options and reach an accurate 
consensus. In the original decision-making mechanism of DC and DMVD, a robot can only 
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switch to an option, if there is a neighbor holding that specific option. Therefore, it is a likely 
situation that all robots holding a particular option have switched to other options, causing 
some options to be eliminated prematurely. This can result in the reduction of the diversity in 
robots’ opinions with no way to recover. Here, we introduce a new mechanism to let the robot 
randomly switch from dn to a new option that is next to its old option (i.e., dn + 1 or dn − 1 ) 
with a probability of � at the end of dissemination periods (Function RandomChoice, line 21 
in Algorithm 2, line 20 in Algorithm 3). � is a design parameter and is set by the user.

Another design parameter � is the average length of exploration and dissemination peri-
ods. As observed in Brambilla (2015), varying the average length of exploration and dis-
semination periods has a significant influence on decision-making speed and accuracy for 
both DC and DMVD. During the exploration states (lines 7–13), the agents collect obser-
vations of the color of the arena tile beneath them and then compute their own belief of the 
arena composition �

n
 . During the dissemination states (lines 15–22), the agents broadcast 

their opinions to their neighbors and record all their neighbors’ broadcasted opinions. The 
rate of the message broadcasts for both algorithms during dissemination is once per control 
loop. In practice, robots additionally need to broadcast a unique identification number to 
avoid repetitively logging the same opinions, as implemented in Valentini et al. (2016b).

3.4 � Distributed Bayesian belief sharing

In the following, we introduce our proposed collective decision-making strategy called distrib-
uted Bayesian belief sharing (DBBS), as shown in Algorithm 4. In this approach, a robot with 
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index n keeps two sets of beliefs, �
n
 and �′

n
 . �

n
 denotes the belief computed from the robot’s 

own observations, and �′
n
 denotes the combined belief received from the other robots.

At every control loop, the robot collects a sample of the color of the arena floor and modi-
fies �

n
 (lines 4–6). The vector � is used to denote the messages passed among the robots. The 

robot also receives a neighbor’s message �
m
 from a random neighbor if there is one (line 6). �

m
 

encodes the belief of robot m. The communication paradigm here is different from in DC and 
DMVD in that an agent is restricted to receiving only one message in a control loop. If multi-
ple other agents are present in the communication radius, a random agent’s belief among them 
would be received.

If �
m
 is received, the robot uses it to update its record of its neighbors’ belief �′

n
 , which is 

formulated as follows (line 8):

�′
n
 is updated with a weighted product of itself and �

m
 from a neighbor. � is the decay coef-

ficient of past neighbors’ beliefs. It is the weight of �′
n
 itself during the update and is also a 

parameter set by the user. � is applied so that the robot forgets older � messages from 
neighbors by counting them progressively less when new � messages are available.

The robot then computes its own message �
n
 (line 9) which is a weighted element-wise 

product of �
n
 and �′

n
 , with the weight of �′

n
 being � , shown as follows:

� is the decay coefficient of current neighbors’ beliefs in communication. Finally, the robot 
broadcasts �

n
 to its neighbors for the rest of the control loop (line 10).

A robot’s decision is the corresponding option of the highest combined quality com-
puted as follows:

The two parameters � and � control different mechanisms in the decision-making process. 
� controls the speed that old beliefs received from neighbors decay. Higher � means that 
the robots do not easily forget old beliefs sent to it by its neighbors and vice versa, while 
� is the rate at which the current neighbors’ belief decays during communication, and it 
controls the degree of positive feedback among the robots in the decision-making process. 
The higher the � is, the bigger the effect of positive feedback among the robots is and vice 
versa. Both parameters have a range between 0 and 1.

Increasing either � or � strengthens the impact of neighboring robots’ opinions rela-
tive to a robot’s own opinion during decision-making and therefore increases the decision-
making speed.

Positive feedback has been used before in collective decision-making. In DC and 
DMVD, as well as the Bayesian algorithm proposed by Ebert et al. (2020), positive feed-
back is used, but only on the collective level, which means that the decision made by a 
particular robot induces other robots to make the same decision. However, we also employ 
positive feedback on an individual level, which means that a robot’s belief would strengthen 
itself as it would be passed back from its neighbors in a decayed form. A robot’s belief 
does not only influence its immediate neighbors, but also is passed along in the swarm. 
Such design causes the beliefs of all agents in the swarm to be more closely and more 

��
n
= Normalize(���

n
◦�

m
)

�
n
= �

n
◦���

n
.

dn = MaxIndex(�
n
◦��

n
)
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directly linked, therefore making the decision-making process faster without needing to 
sacrifice accuracy.

4 � Experiments

In this section, we describe our experiments and analyze the results. The settings of our 
experiments are largely the same as (Valentini et  al. 2016a; Strobel et  al. 2018; Barta-
shevich and Mostaghim 2019; Shan and Mostaghim 2020)1. The arena is 2m × 2m with 
400 tiles as shown in Fig. 1. We use 20 simulated robots with the specification of e-pucks 
(Mondada et al. 2009) to perform the designated task. The linear speed of the robots is set 
to 0.16 m/s, and the rotational speed is set to 0.75 rad/s. As for the maximum communica-
tion radius, we follow the settings used in the previous literature and set it to 0.5 m. The 
simulation is done by mapping out all agents’ positions using a NumPy array in Python. 
We then iteratively update the system in time steps of 0.01 s and simulate the movement, 
sensing and communication. Both sensing and communication are assumed to be accurate.

In Shan and Mostaghim (2020), it is concluded that a sampling interval of 1 second is 
suitable for Bayesian hypothesis testing in this environment. Additionally, we aim to keep 
the number of observations and exchanged messages among the robots at similar levels 
across the considered algorithms. For DMVD and DC, an observation is collected on aver-
age once every two control loops. The rate of message transmission is also at most once 
every two control loops. We therefore set the length of control loops to be 1 s. For Indi-
vidual Exploration baseline and DBBS, an observation is made every control loop and a 
message transmission happens every control loop as well. Therefore, we set the length of 
control loops for these two algorithms to be 2 s in order to keep a fair comparison.

To measure the performances of considered algorithms in a particular environment set-
ting, we measure the mean absolute error, mean consensus time, mean number of mes-
sage transfers and the failure rate. The related literature on collective perception (Valentini 
et al. 2016a; Strobel et al. 2018; Bartashevich and Mostaghim 2019; Shan and Mostaghim 

1  Our codes are available at: https://github.com/shanqihao/CDM_Discrete_Collective_Estimation.
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2020) used mostly exit probability and consensus time. However, this measurement does 
not differentiate between reaching a wrong consensus and not being able to reach a con-
sensus at all. Therefore, we use the mean absolute error between the obtained consensus 
and the actual fill ratio to measure the accuracy of considered algorithms. Here, consensus 
is reached when all robots are choosing the same option. For some experimental runs, the 
robots are not able to come to a consensus after a long time. We therefore use failure rate to 
measure the probability of a considered algorithm to fail to reach a consensus in the given 
time limit of 1200 seconds. The time limit of 1200 seconds is selected to be well above the 
average consensus time for considered algorithms to reduce the probability of premature 
rejection of an experimental run. Since the investigated algorithms have different commu-
nication paradigms, we additionally measure the mean number of message transfers during 
the decision-making process. Thus, we can take an integrated look at the investigated algo-
rithms and study the trade-off between the performance and the required communication 
overhead.

4.1 � Random environmental feature distribution

We first test the considered algorithms in environments with random distribution of black 
and white tiles, at different fill ratios ranging from 0.05 to 0.45, with 50 experimental runs 
in each environmental and design configuration. All results obtained are averaged over all 
five fill ratio scenarios.

4.1.1 � Numerical results

It has been previously observed in the literature (Brambilla 2015; Ebert et al. 2020; Shan 
and Mostaghim 2020) that there is a trade-off between the speed and the accuracy in the 
parameter selection of the collective perception algorithms. Therefore, we measure the 
performance of the considered algorithms at various parameter settings to investigate this 
trade-off. The performances of DC at various � and � settings are shown in Table  1. It 
can be observed that as either � or � is increasing, the error generally decreases, while the 
consensus time and failure rate increase. Also, the design configurations with no diver-
sity enforcement, i.e., � = 0 , produce the highest errors. Moreover, the decrease in error is 
steeper and the increase in consensus time is milder in the increasing � direction. There-
fore, when trying to increase the accuracy by sacrificing consensus time, it is better to have 
a high � value than a high � value. This is demonstrated in the following data points. At 
� = 1 s and � = 0.05 , the mean error is 0.196 and the mean consensus time is 162.0 s. 
However, to reach a similar consensus time of 166s by increasing � to 8 while keeping � 
at 0, we obtain a higher error of 0.534. This is because the decision-making mechanism 
of DC can quickly lead the decisions in a neighborhood to converge to the option with 
the highest quality, and thus, it is more beneficial for achieving a more accurate decision-
making to maintain a high diversity of opinions. A high � value means that the robots read-
ily and randomly modify their opinions. If a modification is beneficial, it will soon spread 
across neighboring robots, and if a modification is not beneficial, the robot will quickly 
switch to a better decision in the next dissemination session.

In addition, the failure rate is quite low and around 0 across all parameter settings except 
at high � settings. This shows that DC is very reliable in providing a consensus even in a 
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multi-option collective decision-making problem. The mean number of message transfers 
is largely proportional to the mean consensus time. This is because DC has a constant rate 
of message transfer.

The performance of DMVD at various � and � settings is shown in Table 2. Here, 
the impacts of � and � are similar to in DC. The configurations with � = 0 also pro-
duce more error than other setting with larger � values. However, for DMVD, increas-
ing � has a larger impact on reducing the error and increasing the consensus time than 
increasing � . In addition, increasing either � or � introduces a significant failure rate. 
This is shown via the following data points. At � = 1 s and � = 0.05 , the mean error is 
1.197 and the mean consensus time is 678.1 s. However, to reach a similar mean error 
by increasing � to 8 s while holding � at 0, we obtain a mean consensus time of 428.6 s, 
which is far smaller but at a similar mean error of 1.010. This is because DMVD uses 
sampling to select options for individual robots and therefore is able to maintain a high 
level of diversity in the opinions of the robots during the decision-making process. If 
more diversity is added via a high � setting, the robot can have difficulty coming to 
a consensus, as shown in the high failure rate when � is high. The mean number of 
message transfers for DMVD is not strictly proportional to the consensus time. This is 
because DMVD changes the lengths of the agents’ dissemination states depending on 
the qualities of their decisions. Thus, agents often do not keep broadcasting their deci-
sions for the full duration set by the parameter �.

The performance of DBBS at various � and � settings is shown in Table 3. Similar to 
DC and DMVD, DBBS also faces a trade-off between the speed and the accuracy. With 
either � or � increasing, the error increases, while the consensus time decreases. The 
increase in error is very significant when � increases from 0.6 to 1.0 but not significant 
before that. Also, the decrease in consensus time is significant when � increases from 0 
to 0.4, but is also not significant beyond that. Therefore, the selection of � and hence the 
degree of positive feedback in the decision-making process has an optimum at around 
0.4 and 0.6 that can achieve both fast and accurate decision-making relative to other � 
values. In contrast, increasing � has a steadier impact of the performance and the speed 
vs accuracy trade-off is more prevalent here. On the other hand, the mean number of 
message transfers is also roughly proportional to the consensus time. In addition, DBBS 
has not had a failure in decision-making during our experiments in this scenario, which 
shows its robustness compared to the other considered algorithms.

4.1.2 � Multi‑objective analysis

The above numerical results are depicted in Figs. 3 and 4 so that we can investigate the 
trade-offs between the considered metrics for the different algorithms. Figure 3 depicts the 
trade-off between consensus time and mean absolute error. The performance of the Indi-
vidual Exploration baseline is also shown in the figure ( + Marker). Individual Exploration 
can ensure zero error in the final consensus when the decision-making process is success-
ful. This is because in Individual Exploration, robots do not communicate with each other. 
Therefore, for a consensus to be formed, all robots must pick that option based on their 
own observations. The probability for all robots to converge to a wrong option is almost 
zero. However, due to this design, Individual Exploration has a high mean consensus time 
of 651 s and a high failure rate of 0.332, as there is no way to encourage the formation of a 
consensus among the robots.
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As already mentioned above, the performance of the other collective decision-making 
strategies exhibits trade-offs at different parameter settings. The Pareto frontiers of the 
trade-offs between mean consensus time and mean absolute error in each strategy are 
shown in solid lines in Fig. 3.

DMVD’s performance is shown using ∗ markers in Fig.  3, and its Pareto frontier is 
shown in magenta. It outperforms the Individual Exploration baseline, as it reaches the 
same error of 0. DVMD can reach a mean consensus time of 518 s and a failure rate of 
0.1. The Pareto frontier of DMVD has a low gradient, and hence, it can obtain very low 
error values, but when the decision-making process needs to be faster, the error rapidly 
increases.

DC’s performance is shown in ◦ markers in Fig. 3, and its Pareto frontier is shown in 
red. DC is able to come to a consensus much faster and at much lower failure rate than 
Individual Exploration and DMVD. We observe that DC is able to produce a mean error 
of 0.256 at a mean consensus time of 145 s and a failure rate of 0, while DMVD requires a 

Table 1   Mean absolute error, mean consensus time, mean message transfer and failure rate of DC at differ-
ent � and � settings; vertical-� mean lengths of exploration/dissemination states, horizontal-� probability of 
mutating the chosen option
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consensus time of 415 s and a failure rate of 0.084 to produce a comparable error of 0.249. 
However, DC is not able to produce a mean error as low as DMVD. In our experiments, 
the lowest mean error achieved is 0.0569 at a mean consensus time of 525 s, which is 
higher than those produced by DMVD at lower consensus time. However, the failure rate is 
smaller than those produced by the two previous algorithms at 0.016. Tuning its parameters 
to extend the mean consensus time has an increasingly diminishing impact on reducing the 
error for DC, as shown by the increasingly vertical slope of the DC’s Pareto frontier on the 
top-left side.

DBBS’s performance is shown in ⋄ markers in Fig. 3, and its Pareto frontier is shown 
in green. In contrast to Individual Exploration and DMVD, DBBS is able to reach an error 
of zero at a much smaller mean consensus time of 102 s and without any failures. This is 
well beyond the Pareto frontiers of both DMVD and DC. On the other hand, the reduc-
tion of consensus time to lower than 60 s causes a dramatic rise of error from close to 0 to 

Table 2   Mean absolute error, mean consensus time, mean message transfer and failure rate of DMVD at 
different � and � settings; vertical-� mean lengths of exploration/dissemination states, horizontal-� probabil-
ity of mutating the chosen option

Table 3   Mean absolute error, mean consensus time, mean message transfer and failure rate of DBBS at 
different � and � settings; vertical-� decay rate of past neighbors’ beliefs, horizontal-� decay rate of current 
neighbors’ beliefs during communication
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1.736. As shown in Table 3, these data points correspond to high values of the parameter 
� . This is because at high settings of � , the neighbors’ beliefs are weighted heavily when 
computing an agent’s own belief, and thus, strong positive feedbacks can occur; hence, a 
few agents can lead the swarm into making a premature consensus.

For all the considered collective decision-making algorithms, there are trade-offs 
between accuracy and consensus speed in their decision-making process. Regarding the 
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three benchmark algorithms, both DMVD and DC clearly outperform the Individual 
Exploration baseline, while the two collective strategies exhibit different characteristics in 
the accuracy vs speed trade-off. DMVD can reach higher accuracy, but is inelastic in terms 
of decision speed. DC, on the other hand, can form a consensus quickly, but is inelastic in 
terms of accuracy. In contrast, DBBS is able to outperform the state-of-the-art decision-
making algorithms in all three metrics.

In Fig.  4, we plot the mean total number of message transfers against mean absolute 
error to investigate the performances of considered algorithms from the point of view of 
the communication overhead. Among the three algorithms, DMVD has the lowest average 
rate of message transfer at 4.96/s. This causes DMVD to surpass DC with most configura-
tions in terms of communication required. DBBS has an average rate of message transfer 
at 9.53/s. This is close to the rate of message transfer intended in the experimental setup 
of one message per agent per 2 s, which produces an ideal rate of 10/s with 20 agents. The 
actual rate is likely to be lower because agents sometimes have no peers in their communi-
cation range. DC has the highest rate of message transfer at 12.69/s. This is because in our 
experiments DC, similar to DMVD, does not restrict the neighborhood size. Hence, agents 
can receive all messages sent from neighbors within its communication radius during a 
fixed time period. But in DBBS, agents are restricted to receiving only one message per 
control loop.

4.2 � Concentrated environmental feature distribution

It has been observed in related works (Bartashevich and Mostaghim 2019; Shan and 
Mostaghim 2020) that higher concentration of black and white tiles can have a negative 
influence on the accuracy and speed of decision-making in the collective perception sce-
nario. In other words, collective perception in an arena with random distribution of tiles 
is easier than in arenas where tiles of one color are all clustered together. In the discrete 
collective estimation scenario considered here, concentration of environmental features 
can cause the agents to have different fill ratio estimates from each other and, therefore, 
increase the importance of consensus forming in the decision-making process. We test the 
considered algorithms on situations with increasing concentration of black tiles. We ran-
domly generate a series of environments as shown in Fig. 5 all with fill ratio of 0.45. We 
place a number of blocks of black tiles with a random width in the arena and add or take 
away individual tiles to reach the required fill ratio. The block widths are normally dis-
tributed with a mean set to reflect the desired level of concentration and standard devia-
tion of 1. As before, 50 experimental runs are conducted for all environmental and design 
configurations.

We pick the settings shown in Table 4, which produce moderate results on the Pareto 
frontiers and test the performances of considered algorithms in a series of environments 
with progressively more concentrated distribution of black tiles. The changes in mean 
absolute error, mean consensus time and failure rate are plotted in Fig. 6. In this plot, a 
mean block width of 0 means that the tiles are distributed randomly.

In this figure, Individual Exploration’s performances are shown in black. It can 
be observed that the mean error remains 0, when mean block width increases from 0 
to 12, while the failure rate increases rapidly to close to 1. DMVD and DC both expe-
rience increase in mean error, mean consensus time and failure rate as the mean block 
width increases as shown in magenta and red colors, respectively. The increase in error 
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is of comparable degree. DC has a more significant increase in consensus time from 251 
s to 399 s, and DMVD has a more significant increase in failure rate from 0.115 to 0.185. 
DBBS also experience a rise in error and a small rise in consensus time, but the failure rate 
remains zero even at the highest mean block width setting, as shown in green. This shows 
that DBBS’s robustness remains even in scenarios with high concentration of environmen-
tal features.

To obtain a full picture of the performances of considered algorithms in more difficult 
environments, the performances of considered algorithms across all considered parameter 
settings in arenas with fill ratio of 0.45 mean block width of 12 are shown in Fig. 7. Indi-
vidual Exploration has a failure rate close to 1 and therefore is not plotted. The Pareto 
frontiers obtained in the previous section in random environments are also shown in dotted 
lines to provide comparison.

It can be observed in the magenta line in Fig. 7 that there is a significant rise on the 
left-hand side of the Pareto frontier compared to in random environments. Thus, a lot 
more consensus time needs to be sacrificed to reach a low error. An error of 0 can only be 
reached by extending the consensus time to 809 s. There is also a large increase in failure 
rate, which reaches above 0.5 for many settings. This is because DMVD has a poor ability 
to ensure the formation of a consensus, compared to DC and DBBS. This shortcoming is 
more prevalent in an environment with high concentration of features, as the robots can 
hold conflicting opinions skewed to either extremes. Without enough pressure toward con-
sensus, the probability of the robots to reach a consensus in the required time is low.

There is an increase in mean error and mean consensus time across all parameter set-
tings for both DC and DBBS, compared to in the previous subsection, as shown in the 
red and green lines, respectively, in Fig. 7. DC has an even increase in both mean error 
and mean consensus time across all parameter settings. The failure rate also increases sig-
nificantly when mean consensus time is high. On the top left end of the Pareto front, the 

Fig. 5   Example of various arenas with different mean widths of blocks. Each square shows a randomly gen-
erated arena to be used in an experimental run. Black and white indicate the tiles of the respective colors. 
As the mean widths of blocks increase, the black tiles become more concentrated (Color figure online)
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minimum mean error DC can achieve increases from 0.069 to 0.4, while the mean consen-
sus time increases from 469 s to 540 s, and the failure rate increases from 0.08 to 0.1.

DBBS has a high increase in error from 1.74 to 3.64 when mean consensus time is at 
its lowest, which is the range with high � settings, but there is not a significant increase 
in consensus time in this section, only from 33.9 s to 37.5 s. This is because high level of 
positive feedback can guarantee that the robots would come to a consensus very quickly. 
However, this comes at the cost that robots could only take very few samples. In an envi-
ronment with high concentration of features, these samples are likely to be skewed to one 
color and cause the final consensus to be inaccurate. At low � settings on the top left end of 
the Pareto front, there is a mild increase in error and consensus time across most parameter 
settings. But zero error can still be achieved by extending the consensus time, which needs 
to be increased from 104 s to 357 s, while the failure rate can still be kept at 0.

4.3 � Analysis of DBBS under sparse communications

In order to gauge the performances of our proposed DBBS algorithm under sparse commu-
nications, we vary the communication range of the robots and plot its effects on the perfor-
mances of DBBS in environments with random feature distribution in Fig. 8. Besides the 
default communication range of 0.5 m, we also test 0.1 m and 0.3 m. All three cases result 
in no failure in decision-making, and therefore, the failure rate is not included in this figure.

Table 4   Parameter settings of 
considered algorithms in Fig. 6 DC � = 8s � = 0.05

DMVD � = 4s � = 0.02

DBBS � = 0.7 � = 0.4

Fig. 6   Progression of performances of considered algorithms as the level of concentration of features 
increases; black—Individual Exploration, red—DC, magenta—DMVD, green—DBBS; shaded areas repre-
sent standard deviations (Color figure online)
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When the communication range reduces from 0.5 m to 0.3 m, there is a mild increase in 
the consensus time of DBBS. When the communication range is reduced further to 0.1 m, 
the consensus time significantly increases to almost twice that of a communication range 
of 0.3 m. On the other hand, the general shapes of the Pareto frontiers between consen-
sus time and error are largely the same. The algorithm is also able to reach an error of 0 
for all communication ranges without much sacrifice of consensus time. This demonstrates 
that DBBS is resilient to the effects of sparse communications. A reduced communication 
range translates largely to longer consensus time, while the accuracy and reliability both 
remain high.

As a benchmark, the performances of DC at a reduced communication range are shown 
in Fig. 9. A shorter communication range of 0.1 reduces the number of neighbors an agent 
is able to communicate within the dissemination periods. Thus, it makes the decision pro-
cess slower, but also improves the accuracy of the results. However, the increase in the 
consensus time is more significant than in DBBS, and DC is still outperformed in this 
situation.

The performances of the same communication range configurations in environments 
with concentrated feature distribution are shown in Fig. 10. It can be observed that the 
change of performance as communication range decreases is similar to the results in 
random environments. Due to the higher difficulty of decision-making in concentrated 
environments, the algorithm experiences some failures in decision-making when the 
communication range is at 0.3 m and 0.1 m. However, the failure rate is very low and 
not exceeding 0.08. Also, the failures arise in mostly outlying parameter configurations 
that are not on the Pareto frontier. For a communication range of 0.1, an error of 0 can 
still be achieved at a consensus time of 253 s, which is well beyond the Pareto frontiers 
of other considered decision-making strategies.
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Fig. 7   Plot of mean consensus time against mean absolute error for all considered algorithms at all consid-
ered parameter settings in environment with fill ratio = 0.45, block mean width = 12; ◦—DC, ∗—DMVD, 
⋄—DBBS, color coding of markers shows the failure rate; Pareto frontiers: red—DC, magenta—DMVD, 
green—DBBS, dotted—Pareto frontiers in random environments (Color figure online)
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5 � Discussion

As demonstrated above, collective decision-making strategies all exhibit a trade-off 
between speed and accuracy in their parameter settings in operation. This is in line with 
the related literature (Brambilla 2015; Ebert et al. 2020; Shan and Mostaghim 2020). When 
applying collective decision-making strategies to scenarios with more than two options, 
the designers also need to contend with maintaining a diversity of opinions in the decision-
making process for the agents to consider all of the available options without premature 
elimination, as well as coming to a consensus by the end of the run. This creates another 
trade-off on the design level between reliability and accuracy. This is demonstrated by the 
performances of DC, which is reliable but not accurate, and those of DMVD and Individ-
ual Exploration, which is accurate but unreliable.

It has been observed by Talamali et al. (2019) that, compared to stochastic switching 
methods, DC appears to be less accurate but faster, due to the higher amount of informa-
tion transfer but also the propagation of errors across the swarm. We have observed a simi-
lar performance difference between DC and DMVD. From a bi-objective perspective, the 
Pareto frontier for DC tends to have an overall high gradient in a consensus time vs error 
plot, causing the error to be inelastic and hard to be reduced by slowing down the consen-
sus speed. Since in our implementation of DC, quality measurements are not adopted by 
other robots, a similar error propagation does not exist. Instead, DC is still able to enforce 
a consensus via an elitist selection mechanism. For example, a single robot that obtains a 
high option quality can make every robot with which it is in contact, to change their deci-
sion. Thus, such a robot can possess a disproportionate amount of influence and can cause 
a premature convergence to a wrong option. In contrast, DMVD’s Pareto frontier has an 
overall low gradient in a consensus vs error plot, causing the consensus time to be inelastic 
and not easily reduced by sacrificing accuracy.

DBBS is able to achieve better performances in terms of accuracy, speed and reli-
ability. Its better performance comes at a cost of higher communication complexity. The 
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communication bandwidths required for DMVD and DC are both independent of the num-
ber of options. DMVD only needs the robots to transmit the chosen option, while DC needs 
the robots to transmit the chosen option and its corresponding quality. In contrast, DBBS 
requires the robots to transmit all estimated qualities. This causes the communication band-
widths required to scale with the number of potential options. In the scenario considered in 
this paper, the ratio of communication bandwidths required for DMVD, DC and DBBS is 
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Fig. 9   Plot of mean consensus time against mean absolute error for DC with different communication 
ranges in random environment; red+—0.1m, black⋄—0.5m, color coding of markers shows the failure rate. 
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roughly 1:2:10. Therefore, to implement DBBS on hardware, robots need higher communi-
cation bandwidths. On the other hand, DBBS has no need for robot identification, while in 
practice both DC and DMVD require the agents to broadcast a randomly generated 16-bit 
identifier to differentiate each other in a neighborhood (Valentini et al. 2016b).

DBBS’s performance is also sensitive to its parameter settings. Particularly, a high � 
setting can cause strong positive feedback and produce a very high error. This effect is fur-
ther magnified when the algorithm is applied to an environment with a concentrated feature 
distribution. A potential solution is to implement a similar identifier as DC and DMVD and 
use the memory of past received messages to enable the agents to avoid logging messages 
from the same sender in a short period of time.

When comparing the performances of considered algorithms with their communication 
bandwidths required in mind, we can conclude that generally as the communication band-
widths increase between agents, there is a larger pressure on all agents to converge to a 
single consensus. This effect increases from Individual Exploration to DMVD and then to 
DC. This increased pressure for consensus has a positive influence on consensus speed and 
reliability, but can have a negative influence on the accuracy.

This shows the shortcoming of existing collective decision-making algorithms based on 
finite state machines, in which agents hold only one option and try to converge to the opti-
mal option through dissemination. Our proposed algorithm DBBS avoids this shortcoming 
by having agents communicate with each other using the belief of the options. Thus, the 
agents can hold multiple likely options simultaneously during dissemination. This feature 
of DBBS ensures a high diversity of opinions among agents and also reliable convergence 
to an optimal option.

When applied to more difficult environments with more concentrated features, DC and 
DMVD exhibit a significant increase in error, consensus time and failure rate, while the 
performances of DBBS worsen mildly, with no increase in failure rate for most parameter 
settings. The increase in error can also be mitigated by parameter selection that slows the 
decision-making process. DBBS is also proven to be able to withstand the effects of sparse 
communications with only limited sacrifice of the consensus time.

When comparing our proposed DBBS algorithm with other related algorithms in collec-
tive decision-making, our approach shares much motivation with decision-making strate-
gies based on opinion pooling (Lee et al. 2018a, b; Crosscombe et al. 2019). These strate-
gies also attempt to perform multi-option collective decision-making by directly combining 
estimations of option qualities. Our approach differs firstly in that we design our algorithm 
with a physics-based environment in mind, such that we abandon the bidirectional commu-
nication required for opinion pooling and utilize a broadcast-based communication model. 
We also take advantage of the characteristics of the discrete collective estimation scenario 
and use a Bayesian statistics-based method to compute option qualities. Therefore, our 
algorithm has less communication and computational complexity than decision-making 
strategies based on opinion pooling.

The utilization of Bayesian statistics in our proposed DBBS algorithm is similar to the 
work by Ebert et  al. (2020) and our previous work (Shan and Mostaghim 2020). Ebert 
et al. used a similar Bayesian approach in computing the option qualities. However, their 
algorithm is designed for a binary decision-making scenario. It is also intended to run on 
Kilobots, thus implying that the robots only engage in binary communications to share the 
current observations.
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6 � Conclusion

In this paper, we have extended collective decision-making to a novel discrete collective 
estimation scenario with more than two options. We have applied both direct comparison 
and direct modulation of voter-based decisions to the scenario using a Bayesian hypothesis 
testing method to compute option qualities. We compare their performances with those of 
an Individual Exploration baseline algorithm. We have also proposed a novel algorithm 
called distributed Bayesian belief sharing, to perform decision-making in the discrete col-
lective estimation scenario.

We have tested the considered algorithms using different parameter settings in both 
environments with random distribution of features and environments with progressively 
more concentrated features. In the former environmental setting, we have concluded that 
both DC and DMVD outperform the Individual Exploration baseline. DC can also come to 
a consensus much faster than DMVD and Individual Exploration, while sacrificing some 
accuracy. Our proposed algorithm DBBS is able to reach a much better accuracy and speed 
performance but also maintain a failure rate of 0 in our experiments. As the features in the 
environment become more concentrated, Individual Exploration breaks down completely 
and is unable to come to a consensus in the required time limit. Both DC and DMVD 
exhibit a significant increase in error, consensus time and failure rate. DBBS has a milder 
increase in error and consensus time and is able to maintain a failure rate of zero for all 
parameter settings. We then tested DBBS under the same environments, but with lower 
communication ranges than default. We have observed that DBBS is able to operate well 
under sparse communications with some sacrifice to decision speed.

Among the existing collective decision-making strategies based on finite state machines, 
increasing the communication bandwidth between agents makes the decision-making pro-
cess faster and more robust, but decreases the accuracy. Our proposed algorithm DBBS is 
able to overcome this trade-off and can achieve a better performance on all three metrics.

In future works, we will extend the belief sharing approach to best-of-n scenarios where 
the qualities of options need to be computed one at the time, such as site selection or col-
lective search. In this paper, we took advantage of the unique characteristics of the discrete 
collective estimation problem and compute the option qualities of all available options on 
all individual robots. When it comes to scenarios where a single robot can only compute 
the option quality of a single option at a time, the belief exchange mechanism needs to 
be modified for the belief sharing approach to work. We also plan to investigate how to 
mathematically model the decision-making process of DBBS, so that its decision-making 
mechanisms can be better understood and applied to new scenarios.
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