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Abstract Particle swarm optimisation (PSO) is a metaheuristic algorithm used to find good
solutions in a wide range of optimisation problems. The success of metaheuristic approaches
is often dependent on the tuning of the control parameters. As the algorithm includes stochas-
tic elements that effect the behaviour of the system, it may be studied using the framework
of random dynamical systems (RDS). In PSO, the swarm dynamics are quasi-linear, which
enables an analytical treatment of their stability. Our analysis shows that the region of stabil-
ity extends beyond those predicted by earlier approximate approaches. Simulations provide
empirical backing for our analysis and show that the best performance is achieved in the
asymptotic case where the parameters are selected near the margin of instability predicted
by the RDS approach.

Keywords Particle swarm optimisation · Criticality · Random dynamical systems · Random
matrix products · Parameter selection

1 Particle swarm optimisation

Particle swarm optimisation (PSO) (Kennedy and Eberhart 1995) is a metaheuristic algo-
rithm which is widely used in search and optimisation tasks. It aims at locating solutions to
problems that may be characterised by high dimensionality, heterogeneity, the presence of
many suboptimal solutions, and the absence of gradient information. An optimal solution is
a global minimum of a given cost function (or, depending on problem, a global maximum)
the domain of which is explored by a swarm of particles. In many problems, where PSO is
applied, also solutions with near-optimal costs can be considered as good.

The number of particles N is quite low in most applications, usually amounting to a few
dozens. Each particle represents a potential solution and shares knowledge about the currently
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known overall best solution (global best) and also retains a memory of the best solution it
previously has encountered itself (personal best).

The success of the PSO algorithm in locating good solutions depends on the dynamics of
the particles in the search space of the problem. In contrast, for example, to many evolution
strategies, it is not straightforward to interpret the particle swarm as following a landscape
defined by the cost function. In PSO, the particles follow an intrinsic dynamics that does not
even indirectly obtain any gradient information. They interact with each other by receiving
an update of the position of the best solution currently known, if this position changes. The
particles, after random initialisation, obey a linear dynamics of the following form (Kennedy
and Eberhart 1995).

vi,t+1 = ωvi,t + α1R1(pi − xi,t ) + α2R2(g − xi,t )

xi,t+1 = xi,t + vi,t+1 (1)

Herexi,t andvi,t , for i = 1, . . . , N , t = 0, 1, 2, . . ., represent, respectively, thed-dimensional
position in the search space and the velocity vector of the i-th particle in a swarmof N particles
at time t .

The velocity update contains an inertia term parameterised by ω and includes attractive
terms that are analogous to forces towards the personal best locationpi and towards the current
best location among all particles g, which are parameterised by α1 and α2, respectively. The
symbolsR1 andR2 denote diagonalmatrices whose nonzero entries are uniformly distributed
in the unit interval. This implements a component-wise multiplication of the difference
vectors with a random vector and is known to introduce a bias into the algorithm as particles
show a tendency to stay near the axes of the problem space (Janson and Middendorf 2007;
Spears et al. 2010).

In order to operate as an optimiser, the algorithm uses a cost function F : Rd → R that is
bounded from below.Without loss of generality, wewill assume that F(x∗) = 0 at an optimal
solution x∗. The position of each particle is used to represent a solution of the optimisation
problem that consists in the minimisation of the function F over a d-dimensional problem
space that also forms the position space of the particles. The cost function is evaluated for the
state of each particle at each time step. If F(xi,t ) is better than F(pi ), then the personal best
pi is replaced by xi,t . Similarly, if one of the particles arrives at a state with a cost less than
F(g), then g is replaced in all particles by the position of the particle that has discovered the
new best solution. If its velocity is nonzero, a particle will depart even from the current best
location, but it still has a chance to return guided by the attractive terms in the dynamics (1).

Thus, in order for PSO to work effectively, the particle dynamics (1) is combined with a
switching dynamics that is generated by the updates of g or pi . In this way, the focus of the
search dynamics is moved to a new location, in the neighbourhood of which better solutions
can be expected. Whether this expectation is actually justified depends on the problem: the
particles should rather look for better solutions in nearby places for some problems, whilst in
other cases improvements are possible only whenmore distant regions of the search space are
reached. Without prior knowledge about the size of the search space, it may seem reasonable
not to restrict the particle dynamics from searching across all distances, i.e. to show a scale-
free dynamics, but we will see that even trivial settings of the algorithm such as runtime
limits may affect the optimal search strategy.

The particle dynamics depends on the parametrisation, i.e. on the values of ω, α1 and α2,
used in Eq. (1). To obtain the best result, we need to select parameter settings that achieve
a balance between the particles exploiting the knowledge of good locations and exploring
regions of the problem space further from the current particle positions. Although adaptive
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schemes have been introduced with some success (Zhan et al. 2009; Hu et al. 2013; Ersk-
ine and Herrmann 2015a), parameter values are often experimentally determined, and poor
selection may result in premature convergence of the swarm to poor local minima, or in a
divergence of the particles towards regions that are irrelevant for the problem. Specifically,
when we talk about convergence we mean that the particles collapse to a single point, or
to a very small region, of the search space. Conversely, divergence is the situation in which
particles in the swarm explode outwards from the initial area of focus, sampling points arbi-
trarily far from their starting location. Both convergence and divergence can be problematic,
and effectively searching for an optimum is in large part about balancing these two opposing
tendencies.

We propose a formulation of the PSO dynamics in terms of a random dynamical system
(RDS) which leads to a description of the swarm dynamics. In this approach, we will not have
to make simplifying assumptions on the stochasticity of the algorithm; instead, we present a
stochastically exact formulation, which shows that the range of stable parameters is in fact
larger than previously estimated. Our approach will also enable us to explain differences and
similarities between theoretical and empirical results for PSO.

In the next section, we will consider an illustrative simulation of a particle swarm and
move on to a standard matrix formulation of the swarm dynamics (1), see (Trelea 2003), in
order to describe some of the existing analytical work on PSO. In Sect. 3, we will argue for
a formulation of PSO as a random dynamical system (RDS) which will enable us to derive
a novel exact characterisation of the dynamics of a one-particle system. In Sect. 4, we will
compare the theoretical predictions with multi-particle simulations on a representative set of
benchmark functions. In Sect. 5, we will discuss the assumptions we have made in order to
obtain the analytical solution in Sect. 3 based on the empirical evidence for our approach.

2 Swarm dynamics

2.1 Empirical properties

Wewill now consider an empirical example to motivate our approach to parameter selection.
We will consider only two parameters, namely inertia ω and a single parameter α governing
the total strength of the attractive terms, i.e. α = α1 + α2 and α1 = α2.

Choosing the parameters α1 and α2 different from each other does have an effect on the
behaviour of PSO. In the present paper, we will not consider the general case of α1 �= α2.
For constant α = α1 + α2, the effect of varying the relative weight of the two attractive
terms does not seem to be big in most cases. It certainly deserves a more detailed study, but
is beyond the scope of this paper.

Figure 1 shows how the parameters ω and α influence the performance of the PSO algo-
rithm on the Rastrigin function, which is a typical benchmark problem (Liang et al. 2013).
The (x, y)-plane represents the position in parameter space, and the vertical position shows
the average value of the solution found by the algorithm. For positive ω values between zero
and one, there appears to be a broadly banana curve-shaped portion of the parameter space
that results in the best performances. For negative ω values, the best parameter pairs obey a
nearly linear relationship. Parameter pairs that perform well occupy the regions in the valley
of this surface plot.

Large (absolute) values of both α and ω are found to cause the particles to diverge leading
to results far from optimality, whilst at small values for both parameters the particles tend to
converge to a local optimum which sometimes is acceptable.
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Fig. 1 Typical PSO performance as a function of the parameters ω and α. Here a 25 particle swarm was run
for pairs of ω and α values (α1 = α2 = α/2). The cost function here was the 10-dimensional non-continuous
rotated Rastrigin function (Liang et al. 2013). Each parameter pair was repeated 100 times, and the minimal
costs found in each run after 2000 iterations were averaged

For other cost functions (Liang et al. 2013), similar relationships are observed in numerical
tests (see Sect. 4). It should be noted, however, that for simple cost functions, such as the
sphere function (single well potential), parameter combinations with small ω and small α

also usually lead to good results. With different objective functions, this picture may emerge
sooner or later and not all locations in the valley are equally good. Likewise, the difference
between the foot of the valley and locations up its slopes is not the same across all functions.
However, the general pattern is manifest acrossmany cost functions.We utilise cost functions
used in the CEC2013 competition (Liang et al. 2013). All of these functions show a similar
pattern, see Appendix A in (Erskine 2016).

Locating the best parameter pairs for specific problems often involves a degree of trial
and error. We can explore PSO capabilities by repeatedly executing a simple variant of the
algorithm for each parameter pair in the (α, ω)-space. With many repetitions and a suitably
large number of fitness evaluations for each run, results can be averaged to even out variations
in performance seen in individual executions.

Earlier analytic work (Trelea 2003; Chen et al. 2003; Zhan et al. 2011; Yue et al. 2012;
Serani et al. 2015; Bonyadi and Michalewicz 2016, 2017) does not appear to suggest that a
curved relationship similar to the valley in Fig. 1 should exist between parameters. In studies
like (Martínez andGonzalo 2008), the discrepancy between numerical simulations and theory
becomes evident. Resolving this discrepancy is one of the goals of this paper. A preliminary
explanation based on eigenvalues is provided by Jiang et al. (2007) and by Cleghorn and
Engelbrecht (2015a, b). We follow a more general approach that is based on an explicit
calculation of Lyapunov exponents, in order to obtain amore realistic and precise description,
see the discussion below.

2.2 Matrix formulation

In order to analyse the behaviour of the PSO algorithm, it is convenient to use a matrix
formulation by inserting the velocity explicitly in the second line of Eq. (1). If we consider
particle states z = (v, x)T we can rearrange the update rules. In Eq. (2), we stack the updates
for a single particle:
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(
vt+1
xt+1

)
=

(
ωvt + α1R1 (p − xt) + α2R2 (g − xt)

xt + ωvt + α1R1 (p − xt) + α2R2 (g − xt)

)
(2)

In Eq. (3), we separate the state dependent parts from those elements that are independent
of velocity or position:(

vt+1
xt+1

)
=

(
ωId −α1R1 − α2R2
ωId Id − α1R1 − α2R2

) (
vt
xt

)
+ α1R1

(
p
p

)
+ α2R2

(
g
g

)
(3)

In terms of our state variable z = (v, x)T , this yields the following equation:

zt+1 = Mzt + α1R1(p,p)� + α2R2(g, g)� (4)

with z = (v, x)� and

M =
(

ωId −α1R1 − α2R2

ωId Id − α1R1 − α2R2

)
(5)

where Id is the unit matrix in d dimensions. Note that the two occurrences of R1 in Eq. (5)
refer to the same realisation of the random variable. Similarly, the two R2’s are the same
realisation, but different from R1. Since the second and third terms on the right in Eq. (4)
are constant most of the time, the analysis of the algorithm can focus on the properties of
the matrix M. The approaches that we discuss in Sect. 2.3 are based on the analysis of M.
In Sect. 3, we propose a different approach: instead of using a deterministic variant of the
algorithm or restricting the analysis to the expectation and variance values of the update
matrix, we will analyse the long-term behaviour of the swarm considering the stationary
probability distribution of the particles. The analysis will take place in the phase space that
is composed of the position and velocity coordinates of the particle, i.e. the space of the z
vectors, see Eq. (4), which is subject to a stochastic dynamics that we will study in terms of
the infinite product of the stochastic matrixM.

2.3 Analytical results

An early exploration of the PSO dynamics by Kennedy (1998) considered a single particle in
a one-dimensional problem space where the personal and global best locations were taken to
be the same. The random components were replaced by their averages such that, apart from
random initialisation, the algorithm was deterministic. Varying the parameters was shown to
result in a range of periodic motions and divergent behaviour for the case of α1 + α2 ≥ 4.
The addition of the random vectors was seen as beneficial as it adds noise to the deterministic
search.

Control of velocity, not requiring the enforcement of an arbitrary maximum value as
in (Kennedy 1998), is derived in an analytical manner by Clerc and Kennedy (2002). Here,
eigenvalues derived from the dynamic matrix of a simplified version of the PSO algorithm
are used to imply various search behaviours. Thus, again the α1 + α2 ≥ 4 case is expected
to diverge. For α1 + α2 < 4, various cyclic and quasi-cyclic motions are shown to exist for
a non-random version of the algorithm.

Also Trelea (2003) considered a single particle in a one-dimensional problem space, using
a deterministic version of PSO, setting R1 = R2 = 0.5. The eigenvalues of the system were
determined as functions of ω and a combined α, which leads to three conditions: the particle
is shown to converge when ω < 1, α > 0 and 2ω − α + 2 > 0. Harmonic oscillations occur
for ω2 + α2 − 2ωα − 2ω − 2α + 1 < 0 and a zigzag motion for ω < 0 and ω − α + 1 < 0.
As with the preceding papers, the discussion of the random numbers in the algorithm views
them purely as enhancing the search capabilities by adding a “drunken walk” to the particle
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motions. Their replacement by expectation values was thus believed to simplify the analysis
with no loss of generality.

A weakness in these early papers stems from the treatment of the stochastic elements.
Rather than replacing the R1 and R2 vectors by 0.5, the dynamic behaviour can be explored
by considering their expectation values and variances. An early work taking this approach
produced a predicted best performance region in the parameter space similar to the curved
valley of best values that is seen empirically (Jiang et al. 2007). The authors explicitly
consider the convergence of means and variances of the stochastic update matrix. The curve
they predict marks the locus of (ω, α)-pairs they believed guaranteed swarm convergence,
i.e. parameter values within this curve result in convergence. We will refer to this curve
as the Jiang curve (Jiang et al. 2007), although matching curves have also been found in
other studies (Poli 2009) or have been derived from a weaker stagnation assumption (Liu
2014). An extensive recent review of such analyses is provided by Bonyadi and Michalewicz
(2017).

We show in this paper that the random factors R1 and R2 in fact add a further level
of complexity to the dynamics of the swarm which affects the behaviour of the algorithm
in a non-trivial way. Essentially, it is necessary to consider both the stationary distribution
of particles in the state space of the system and the properties of the infinite product of
the stochastic update matrix. This leads to a locus of critical parameters that differs from
previous analyses. This locus lies outside the Jiang curve (Jiang et al. 2007). We should
note that the Jiang curve implies convergence for parameter pairs within the curve, but it
does not cover the entire convergent region in the parameter space. Our analytical solution
of the stability problem for the swarm dynamics explains why parameter settings derived
from the deterministic approaches are not in line with what is observed in practical tests.
For this purpose, we formulate the PSO algorithm as a random dynamical system and
present an analytical solution for the swarm dynamics in a simplified, but representative
case.

In our analysis, we start by considering the one-dimensional single-particle case and pro-
vide an analytical expression for the Lyapunov exponent, whichwe then solve numerically for
a range ofα,ω pairs, demonstrating that the critical parameters (i.e. thosewhere the Lyapunov
exponent is 0 and the swarm is expected to neither expand nor contract in the limit) lie in a
banana-like curve on the plane. The hypothesis that PSO performs best when its behaviour is
critical is then evaluated numerically, showing a goodmatch between the predicted curve and
the optimum parameters found experimentally. This is reassuring regarding the concern that
the simplifications made in order to compute the Lyapunov exponent are overly restrictive
and don’t generalise to real PSO dynamics. In addition to the experimental evidence, we also
consider the effects of relaxing various assumptions made to derive the analytic expression.
In particular, we consider the effect of restricting analysis to one-dimensional systems, and
we explore the case where a particle’s personal best is not the global best, showing that this
does not affect the convergence results, even though it can influence the short-term dynamics
of the swarm. With this relaxation, our analysis is applicable to multi-particle swarms during
the updates in which no improvements are made. Improvements tend to reduce in frequency
over the runtime of the algorithm, and thus, our analysis fits the behaviour of the algorithm
better as the run progresses. In other words, our analysis does not directly address the switch-
ing dynamics, i.e. the effect on the overall swarm dynamics of the personal or global best
changing during the run. Although the various experimental results align well with the pre-
dictions, suggesting that this simplification does not significantly affect the results, we also
explore the potential effects of the switching dynamics in the discussion.
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3 PSO as a random dynamical system

3.1 Dynamics for a single particle

In this section, we study the dynamics of the particle swarm in the single-particle case as
it was done by Kennedy (1998); Trelea (2003). This can be justified because the particles
interact only via the global best position so that, while g, see Eq. (1), is unchanged, single
particles exhibit qualitatively the same dynamics as in the swarm. For the one-particle case,
we necessarily have p = g (see Sect. 4.3 for the general case p �= g which describes the
independent dynamics between updates of the global and personal best of the individual
particles in the multi-particle case) and shift invariance allows us to set both to zero, which
leads us to the following stochastic map formulation of the PSO dynamics, see Eq. (4),

zt+1 = Mzt (6)

Extending earlier approaches, we explicitly consider the randomness of the dynamics,
i.e. instead of averages over R1 and R2, we consider a random dynamical system. Each
iteration of the algorithm generates a new matrix of the form of Eq. (5) with freshly drawn
random values for R1 and R2. The evolution of the swarm is thus determined by the multi-
plicative effect of these matrices. To explore this, as above, we can replace the α1 and α2 with
a new parameter α = α1 + α2, with α1, α2 ≥ 0 and α > 0. We rewrite the update matrix (5)
as a new dynamic matrix M which is chosen from the set

Mα,ω =
{(

ωId −αR
ωId Id − αR

)
, Ri j = 0 for i �= j and Ri i ∈ [0, 1]

}
(7)

Here R in both rows is the same realisation of a random diagonal matrix that combines the
effects of R1 and R2. In order to determine R, consider that the diagonal elements of R1 and
R2 are uniformly distributed in [0, 1]. Thus, the diagonal elements of α1R1 are uniformly
distributed in [0, α1], and the diagonal elements of α2R2 are uniformly distributed in [0, α2].
The distribution of the sum of the random vectorsRi i = α1

α
R1,i i + α2

α
R2,i i is the convolution

of the two probability distributions, namely

Pα1,α2(s) =

⎧⎪⎪⎨
⎪⎪⎩

α2s
α1α2

if 0 ≤ s ≤ min
{

α1
α

, α2
α

}
α

max{α1,α2} if min
{

α1
α

, α2
α

}
< s ≤ max

{
α1
α

, α2
α

}
α2(1−s)

α1α2
if max

{
α1
α

, α2
α

}
< s ≤ 1

(8)

if the variable s ∈ [0, 1] and Pα1,α2(s) = 0 otherwise, where α = α1 + α2 and α1, α2 ≥ 0.
Pα1,α2(s) has a tent shape for α1 = α2 and a box shape in the limits of either α1 → 0 or
α2 → 0. Thus, the selection of particular values for the α1 and α2 parameters will determine
the distribution for the random multiplier Ri i in Eq. (7) and, thus, the distribution of the
matrices in the set M.

We expect that the multi-particle PSO is well represented by the simplified version for
α2 	 α1 or α1 	 α2, the latter case being irrelevant in practice. For α1 ≈ α2, deviations
from the theory may occur because in the multi-particle case p and g will be different for
most particles. We will discuss this as well as the effects of the switching of the dynamics at
discovery of better solutions in Sect. 5.3.
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3.2 Stochastic stability

Weaim at describing the behaviour of the PSO swarmby consideringwhether it is convergent,
divergent or stochastically stable. For this purpose, we will consider the maximal Lyapunov
exponent λ of the system as a way to describe the stability properties of the dynamics. If one
considers two particles initially positioned arbitrarily close to each other and subject to the
dynamics of the PSO update rules, then we may observe whether the particles tend to move
apart or move closer together as the algorithm runs. For two points that at time t = 0 are a
distance δZ0 apart, we denote the future separation of these points by δZt :

δZt = eλtδZ0 (9)

For swarms where particles are converging with probability 1, the largest Lyapunov exponent
λ is less than zero. For divergent swarms, λ is greater than zero.

As the system state is updated in a linear manner, we can consider the effect of these
updates on particles on a unit circle in the state space of the system, which is formed by
a combination of the position and velocity coordinates. Each update moves the particles
inwards or outwards depending on both where the particles are within the state space and
the particular stochastic matrix drawn for the update. The iterated behaviour of the swarm is
thus determined by the product of stochastic matrices drawn from the setMα,ω. We need to
consider how such products behave on average. Such products have been studied for several
decades (Furstenberg and Kesten 1960) and have found applications in physics, biology, and
economics. Based on our discussion of criticality in Sect. 1, we aim at determining the α and
ω pairs that neither cause the swarm to converge nor lead to an escape of the particles from the
search domain, i.e. pairs that maintain a marginally stable dynamics which is characterised
by a Lyapunov exponent λ = 0. The analysis below shows how to calculate the Lyapunov
exponent for the simplified version of the system given in Eq. (1). Alternatively, one may use
a numerical approach such as the resampled Monte Carlo method (Vanneste 2010).

Whilst none of the particles of a stable swarm discovers any new personal (or global)
best solutions, its dynamical properties are determined by an infinite product of matrices
from the set Mα,ω given by Eq. (7). This provides a convenient way to explicitly model the
stochasticity of the swarm dynamics such that we can claim that the performance of PSO is
determined by the stability properties of the random dynamical system described by Eq. (6).

Since Eq. (6) is linear, the analysis can be restricted to vectors on the unit sphere in the
(v, x) space, i.e. to unit vectors

a = (x, v)�/ ‖ (x, v)�‖ (10)

where ‖ · ‖ denotes the Euclidean norm. In order to determine whether the swarm is on
average expanding, contracting or stable, we assess at each iteration whether particles move
from the unit circle: outward for divergence; inward for convergence. Unless the set of
matrices shares the same eigenvectors (which is not the case here), standard stability analysis
in terms of eigenvalues is not applicable. Instead, we will use tools from the theory of random
matrix products in order to decide whether the set of matrices is stochastically contractive,
i.e. whether the swarm does converge in the infinite limit given the distribution of matrices
generated for given parameter values. Figure 2 visualises the process. A particle in the PSO
swarm may be shown on a unit circle in a state space formed by the combination of position
and velocity coordinates. At each iteration, the update rules given by Eq. (1) move the
particle elsewhere in this space. If the particle moves outward from the unit circle, then it is
contributing to expansion of the swarm (as shown in the figure). If it moves within the circle,
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Fig. 2 PSO update and projection onto unit circle process. Here we visualise the process of a single particle
in one dimension. (left) A single particle is situated on the unit circle in this state space. (centre) Applying
PSO update rules results in the particle moving to a new state which is not on the unit circle. If most particles
move out of the circle, the swarm is expanding; if inward, then it is contracting. (right) The particle (whether
outward or inward moving) is re-projected back to the unit circle ready for the next update. The process thus
results in the particle remaining a single unit away from the state space origin, but its position on the unit circle
may change at each update

then it is contributing to the contraction of the swarm. To assess the behaviour of the whole
swarm, we integrate over these individual moves. At the end of the iteration, we project the
particle back to the unit circle. As the system update is linear, the scale of the system is not
relevant. A matrix update that moves a particle 10% out of the circle or 50% in from the
circle does so whatever the size of the circle. All updates are thus made relative to the unit
circle for convenience.

The resultant effect of the update shown in Fig. 2 is to shift the position of the particle
on the unit circle. We need to consider also the location of the particle in the state space
when an update is applied. One way is to think of having multiple particles spread through
the state space, i.e. positioned around the unit circle. These particles, that started elsewhere,
may have reached other locations. However, the dynamics of this system essentially treats
the particles individually. Only when a new personal best improves upon the swarm’s global
best, does one particle influence the others. In general, such improvements are rare, and as
the algorithm runs they tend to occur less and less often. The stability of the system may thus
be explored by only considering a single particle.

Any given update of the particle coordinates in the state space will result in some particles
moving outward, or inward, from the unit circle. The likelihood of these moves is dependent
on where on the unit circle a particle lies prior to the update being applied. In order to assess
the whole effect, we therefore need to determine the distribution of particles on the unit circle
under the dynamics of the update rules and the specific parameter values. Whilst updates are
stochastic, some portions of the state space act somewhat like attractor regions, i.e. particles
in these portions of the unit circle are likely to remain there and only rare matrix updates
will appreciably shift them elsewhere. Figure 3 visualises this for a single iteration of a small
swarm. The particles in the top right are moved outward during the shown update. The re-
projection will return them to a location close to their previous place. The remaining particles
move inward, by a larger amount. At this iteration, the sum of these moves may suggest the
swarm is contracting a little. However, the particle in the bottom right will be re-projected
to join the main group of particles. If this upper left location has an overall tendency to be
expansive, then on subsequent iterations more and more particles may be contributing more
divergent behaviour to the overall swarm.

We can estimate the stationary distribution of particles on the unit circle, να,ω (a), by the
following process. A number of particles, Np , are placed around our unit circle. For each
particle,we create a set of newparticle locations by applying the updateEq. (6)Nu times. Each
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Fig. 3 Here we visualise a number of particles on the unit circle. To assess whether the whole swarm is
expanding or contracting, we need to consider the effects of both the location on the unit circle on which each
particles lies, and the dynamics of the PSO algorithm as applied to a particle at that location. Here the PSO
update rules are moving the lower particles closer to the origin, so are contractile for those particles. However,
the upper particles are moving outward representing a divergent move. Summing the sizes and directions of
these moves gives an indication of the effect on the swarm of this iteration. However, when the moved particles
are re-projected onto the unit circle, there will now be five particles in the top right area

update is re-projected onto the unit circle (as per Eq. (10)). This gives usNnew = NpNu new
particles. We can then randomly sample Np of these and repeat the process. Different PSO
parameter values result in different stochastic update matrices (Mα,ω). These yield different
stationary distributions of the particles. Figure 4 shows a number of these. Equation (12)
expresses this process for a state space of dimension d and represents the definition of the
stationary distribution.

The properties of the asymptotic dynamics can be described based on a double Lebesgue
integral over the unit sphere S2d−1 and the set Mα,ω (Khas’minskii 1967). As in Lyapunov
exponents, the effect of the dynamics is measured in logarithmic units in order to account
for multiplicative action:

λ (α, ω) =
∫
dνα,ω (a)

∫
dPα,ω (M) log ‖Ma‖ (11)

If λ (α, ω) is negative, the algorithmwill converge to pwith probability 1, while for positive λ

arbitrarily large fluctuations are possible. While the measure for the inner integral of Eq. (11)
is given by Eq. (8), we have to determine the stationary distribution να,ω (called invariant
measure by Khas’minskii (1967)) on the unit sphere for the outer integral. The stationary
distribution να,ω tells us where (or, rather, in which sector) the particles are likely to be in
the state space, and is given by the solution of the integral equation:

να,ω (a) =
∫
dνα,ω (b)

∫
dPα,ω (M) δ (a,Mb/ ‖Mb‖) , a,b ∈ S2d−1 (12)

which represents the stationarity of να,ω, i.e. the fact that under the action of the matrices
fromMα,ω the distribution of particles over sectors remains unchanged. For particles on the
unit circle, we consider their moves expressed by the δ-function on a given update. This is
integrated over the distribution of stochastic matrices dPα,ω (M).

Obviously, if the particles are more likely to reside in some region on the unit circle,
then this region should have a stronger influence on the stability, see Eq. (11). The existence
of the invariant measure requires the dynamics to be ergodic, which is ensured if at least
some elements of Mα,ω have complex eigenvalues, which is the case for ω2 + α2/4 −
ωα − 2ω − α + 1 < 0 (see above, (Trelea 2003)). This condition excludes a small region
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Fig. 4 Stationary distribution να,ω(a) on the unit circle (a ∈ [0, 2π)) in the (x, v) plane for a one-particle
system of Eq. (6) for ω = 0.7 and α = α2 = 0.5 (solid), 1.5 (short dashed), 2.5 (dotted), 3.5 (wide dashed),
4.5 (dash dotted)

in the parameters space at small values of ω. If ergodicity is not guaranteed, it is possible
that some distributions on the unit circle do not converge towards the stationary distribution
by iterating Eq. (12). In the present case, small ω and large α cause cyclic (“zigzagging”)
behaviour which prevents convergence if the initial distribution was not symmetric. We can
easily prevent this by starting from a homogenous initial distribution which guarantees that
the effect of the “zigzagging” is balanced and will thus not affect the stationary distribution.
We should also remark that, although such problems are theoretically possible, we have not
been able to reproduce them in the simulations.

The shape of the stationary distribution depends on the parameters α and ω and differs
strongly from a homogenous distribution, see Fig. 4 for a few examples in the case d =
1. It can be noted that the strong inhomogeneity of the stationary distribution is in line
with previous demonstrations of particles having a bias towards becoming aligned to the
axes (Spears et al. 2010).

3.3 Critical swarm conditions

Critical parameters are obtained from Eq. (11) by the relation

λ (α, ω) = 0 (13)

A similar goal was aimed at by Erskine and Herrmann (2015a), where, however, an adaptive
scheme rather than an analytical approach was invoked in order to identify critical param-
eters. Solving Eq. (13) is difficult in higher dimensions, so we rely on the linearity of the
system when considering the (d = 1)-case as representative. Figure 5 represents solutions of
Eq. (13). Alternatively onemay use a numerical approach such as the resampledMonte Carlo
method (Vanneste 2010). The figure shows two curves that correspond to different values of
the parameters α1 and α2. Parameter pairs that lie inside a given curve give rise to swarms
whose largest Lyapunov exponent is less than zero. These swarms are therefore stable in the
sense that they will converge or become static. For parameter pairs outside each curve, the
swarm generated will have a largest Lyapunov exponent greater than zero and will tend to
explode.
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Fig. 5 Solution of Eq. (13) representing a single particle in one dimensionwith a fixed best value at g = p = 0.
The solid curve is for α1 = α2, the dashed curve is for α = α2, α1 = 0. Except for the regions near ω = ±1,
where numerical instabilities can occur in the integration, simulations produce an indistinguishable curve: in
the simulation, we tracked the probability of a particle to either reach a small region (10−12) near the origin
or to escape beyond a radius of 1012 after starting from a random location on the unit circle. Along the curve,
both probabilities are equal

Parameter pairs that yield swarms with Lyapunov exponents equal to zero are therefore
stable in the infinite limit. However, they can make deviations into either divergent or con-
vergent behaviours for extended periods of time. We should note that this arises from the
infinite product of our stochastic matrices and is true for both one or many particles.

PSO experiments use finite iteration counts, so any individual trial may yield a set of
random matrices whose product may generate a behaviour that for the limited nature of a
single experiment differs from this theoretical approach. This means the theory developed
here is expected to apply for generic cases. The set of parameter pairs on the curve result in
a critical swarm, whose deviations are not described by either convergence or divergence.

The solid curve in Fig. 5 represents the solution for d = 1, α = α1 + α2 and α1 = α2.
The dashed curve is the solution for d = 1, α = α2 and α1 = 0.

Inside the contour (Fig. 5), λ (α, ω) is negative, meaning that the state will converge
with probability 1. Along the contour and in the outside region, large state fluctuations are
possible. Interesting parameter values are expected near the curve where, due to a coexistence
of stable and unstable dynamics (induced by different sequences of random matrices), a
theoretically optimal combination of exploration and exploitation is possible. For specific
problems, however, deviations from the critical curve can be expected to be beneficial. In
order to solve a practical problem, there is usually a finite number of fitness evaluations for
the algorithm. In that case, it is beneficial to allow the swarm to converge at some point. Thus,
the swarm being somewhat subcritical to allow such a convergence is desirable. The degree
of subcriticality will depend on the number of fitness evaluations and may also be related to
the nature of the problem space being explored.

Our result for α1 = α2 is also given as a black curve in Fig. 6 (top), where it is compared
with the curve (dotted) of stability predicted by Jiang et al. (2007) and given as a polynomial
by Cleghorn and Engelbrecht (2014). Experimentally, it is shown below that the outer curve,
rather than the Jiang curve, represents the limit parameter pairs that lead to convergent
swarms.

It is interesting that Clerc (2006b) presents a relationship between ω and α that is very
similar to Fig. 5. It is alsoworthmentioning that Clerc’s interpretation of the PSOdynamics in
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terms of optimality near the edge of chaos is the same as the one supported here. Nevertheless,
the curve in Fig. 4 of (Clerc 2006b) does not match the solution of Eq. (13), as can be seen at
the value β = 1

2 in Fig. 7 (note that Clerc’s parameter c is scaled by a factor of 1
2 relative to

α). This difference is caused by the approximation of a Lyapunov exponent by the norm of
the average dynamic matrix which is in general not exact unless the eigenvectors coincide. In
addition, the result was fitted using themean values of the dynamical coefficients and includes
another approximation. The clear advantage of Clerc’s approach is that explicit values can
be obtained for the parameters in some cases, while the analytical result of Eq. (13) only
permits a numerical solution. As the simulation results by Clerc (2006b) are not conclusive,
it is difficult to distinguish the applicability of our solution from Clerc’s approach to practical
problems.

4 Optimisation of benchmark functions

4.1 Experimental setup

Metaheuristic algorithms are often tested in competitions against benchmark functions
designed to represent problems with different characteristics. The 28 functions found
in (Liang et al. 2013), for example, contain amix of unimodal, basic multimodal and compos-
ite functions. The domains of the functions in this test set are all defined to be [−100, 100]d
where d is the dimensionality of the problem. Particles are initialised uniformly randomly
within the domain of the functions. We use 10-dimensional problems throughout. It may be
interesting to consider higher dimensionalities, but d = 10 seems sufficient in the sense that
it is very unlikely that a very good solution is found already at initialisation. Our implemen-
tation of PSO performs no spatial or velocity clamping. In all trials, a swarm of 25 particles
is used. For the competition, 50,000 fitness evaluations were allowed which corresponds to
2000 iterations with 25 particles. In some cases, we consider also other iteration numbers (20,
200, 20,000) for comparison. Results are averaged over 100 trials. This protocol is carried
out for pairs of ω ∈ [−1.1, 1.1] and α ∈ [0, 6]. This experimental procedure is repeated
for all 28 functions. The averaged solution cost as a function of the two parameters shows
curved valleys similar to that in Fig. 1 for all problems. For each function, we obtain different
best values along (or near) the theoretical curve given by Eq. (13). There appears to be no
generally preferable location within the valley.

4.2 Empirical results

All parameter pairs are evaluated using the average over the performance on all benchmark
functions (Liang et al. 2013). The 5% best parameter pairs are shown in Fig. 6 for different
numbers of fitness evaluations. For more fitness evaluations, the best locations move out from
the origin as we would expect. For 2000 iterations per run, the best performing locations
appear to agree well with the Jiang curve (Jiang et al. 2007). It is known that some problem
functions return good results even when parameters are well inside the stable line. Simple
functions (e.g. sphere) benefit from early swarm convergence. Thus, our average performance
may mask the full effects. Figure 6 also shows an example of the best performing parameter
for 2000 iterations on a single function. The sphere function shows many locations beyond
the Jiang curve for which good results are obtained.

In Fig. 8, detailed explorations of two functions are shown. For these, we set ω = 0.55,
while α is varied with a much finer granularity between 2 and 6. In total, 2000 repetitions
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Fig. 6 Empirical cost function value results. (top) 5% best parameter pair locations across all 28 func-
tions (Liang et al. 2013) plotted against our curve (solid) and the Jiang curve (dotted). The numbers of
iterations are 20 (circles), 200 (crosses), 2000 (×’s). (bottom) Dots represent the 5% best parameter pair loca-
tions for function 21 plotted against our curve (solid) and the Jiang curve (dotted). The encircled dot indicates
the best location over all parameter pairs

of the algorithm are performed for each parameter pair. The curves shown are for increasing
number of iterations (20, 200, 2000, 20,000). Vertical lines mark where the two predicted
stable loci sit on these parameter space slices.

The best results lie outside the Jiang curve for these functions. Our predicted stable limit
appears to be consistent with these results. In other words, if the solution is to be found in a
short time, a more stable dynamics is preferable, because the particles can settle in a nearby
optimum at smaller fluctuations. If more time is available, then parameter pairs more close
to the critical curve lead to an increased search range which obviously allows the swarm to
explore better solutions. Similarly, we expect that in larger search spaces (e.g. relative to the
width of the initial distribution of the particles) parameters near the critical line will lead to
better results.
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Fig. 7 For a general choice of α1 and α2, the critical curve lies mostly between the two curves (α1 = 0,
α2 = α and α1 = α2 = α/2) shown in Fig. 5. This is, however, not always the case. Here the critical value of α
is shown for α1 = βα, α2 = (1−β)α at an inertia value ω = 0, which shows that intermediate splits between
the personal and global best tend to be slightly more stable than the boundary cases (β = 0 and β = 0.5).
Here the idealised case without a fitness function is considered such that the curve continues symmetrically
beyond β = 0.5. In realistic cases, the weight of the personal best may be more important in the exploratory
phase, while the weight of global best is crucial for the final phase of the optimisation

Fig. 8 Detailed empirical cost function value results. Detailed PSO performance along the (ω = 0.55)-slice
of parameter space for functions 7 (left) and 21 (right) (Liang et al. 2013). Different numbers of iterations are
shown: 20 (solid), 200 (wide dashed), 2000 (short dashed) and 20,000 (dotted). Vertical lines show our limit
(vertical line near α = 5) and the Jiang limit (Jiang et al. 2007) (vertical line near α = 4)

4.3 Personal best versus global best

A numerical scan of the (α1, α2)-plane shows a valley of good fitness values, which, for a
small fixed positiveω, is roughly linear and described by the relationα1+α2 = const; i.e. only
the joint parameterα = α1+α2 matters. For largeω, and accordingly small predicted optimal
α values, the valley is less straight. This may be because the effect of the known solutions is
relatively weak, so the interaction of the two components becomes more important. In other
words, if the movement of the particles is mainly due to inertia, then the relation between
the global and local best is non-trivial, while at low inertia the particles can adjust their p
vectors quickly towards the g vector so that both terms become interchangeable.

Due to linearity, the particle swarm update rule of Eq. (1) is subject to a scaling invariance
that was also used in Eq. (10). We now consider the consequences of linearity for the case
where personal best and global best differ, i.e. p �= g. For an interval where pi and g remain
unchanged, the particle i with personal best pi will behave like a particle in a swarm where
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Fig. 9 For p �= g, we define neutral stability as the equilibrium between divergence and convergence.
Convergence means here that the particle approaches the line connecting p and g. Curves are for a one-
dimensional problem with p = 0.1 and g = 0 scaled (see Sect. 4.3) by κ = 1 (short dashed), κ = 0.1 (wide
dashed), κ = 0.07 (dotted) and κ = 0.04 (solid). Results are for 200 iterations and averaged over 100,000
repetitions

together with x and v, pi is also scaled by a factor κ > 0. The finite-time approximation of
the Lyapunov exponent, see Eq. (11),

λ(t) = 1

t
log 〈‖(xt , vt )‖〉 (14)

will be changed by an amount of 1
t log κ by the scaling. Although this has no effect on the

asymptotic behaviour, we will have to expect an effect on the stability of the swarm for finite
times which may be relevant for practical applications. For the same parameters, the swarm
will be more stable if κ < 1 and less stable for κ > 1, provided that the initial conditions
are scaled in the same way. Likewise, if ‖pi − g‖ is increased, then the critical contour
will move inwards, see Fig. 9, which is also confirmed by simulations, see Fig. 10. Note
that in this figure, the low number of iterations leads to a few erroneous trials for parameter
pairs outside the outer contour which have been omitted here. We also do not consider the
behaviour near α = 0 which is complex, but irrelevant for PSO. The contour that is obtained
from Eq. (13) can be seen as the limit κ → 0 so that only an increase of ‖pi − g‖ is relevant
for comparison with the theoretical stability result. When comparing the stability results with
numerical simulations for real optimisation problems, we will need to take into account the
effects caused by differences between p and g in a multi-particle swarm with finite runtimes.

5 Discussion

5.1 Relevance of criticality

Our analytical approach predicts α and ω values that maintain the critical behaviour of the
PSO swarm. Together with the omega, these values form a closed contour that describes the
stability properties of the swarm: outside this contour, the swarm will diverge unless steps
are taken to constrain it. Inside, the swarm will eventually converge to a single solution. In
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Fig. 10 Average over 28 benchmark functions after 20 (left, |p − g| ≈ 2), 200 (centre, |p − g| ≈ 1) and
2000 (right, |p − g| ≈ 0.5) iterations. The short-dashed curve indicates the region where the top-10% of the
best solutions are found. The wide-dashed curve shows asymptotic stability boundary. The solid curve shows
a numerical solution of the integral for corresponding scales κ = 0.05, 0.1 and 0.2, cf. Eq. (14) and Fig. 9

Fig. 11 Distribution of particle fluctuations. Region of lowest log mean square deviation from power law.
Shown are results for two particles averaged over 28 benchmark functions in two dimensions after 200 (wide
dashed), 2000 (short dashed), and 20,000 (dotted) iterations with, respectively, 1000, 100, and 10 repetitions.
Due to the scale-free dynamics in the critical regime, the results for different iteration numbers are not
significantly different. Interestingly, the dynamics fails to show signs of critical fluctuations for ω ≈ 0,
although the quality of the solutions is similar along the critical line for α 	 0, which is shown as a solid line

order to locate a solution precisely within the search space, the swarm needs to converge at
some point, so the line represents an upper bound on the exploration-exploitation mix that
a swarm manifests. For parameters on the critical line, fluctuations are still arbitrarily large.
Therefore, subcritical parameter values can be preferable so that the settling time is of the
same order as the scheduled runtime of the algorithm. If, in addition, a typical length scale
of the problem is known, then the finite standard deviation of the particle fluctuations in the
stable parameter region can be used to decide about the distance of the parameter values from
the critical curve. These dynamical quantities can be approximately set, based on the theory
presented here, such that a precise control of the behaviour of the algorithm is in principle
possible.

The observation of the distribution of empirically optimal parameter values along the
critical curve confirms the expectation that critical or near-critical behaviour is the main
reason for success of the algorithm. Critical dynamics (see Fig. 11) is a plausible tool in
optimisation problems if, apart from certain smoothness assumptions, nothing is known
about the cost landscape. The majority of the critical fluctuations will exploit the smoothness
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of the cost function by local search, whereas the fat tails of the jump distribution allow the
particles to escape from local minima.

5.2 Comparison with existing theory

The critical line in the PSO parameter space has been previously investigated and approxi-
mated by various authors (Poli 2009; Kadirkamanathan et al. 2006; Gazi 2012; Cleghorn and
Engelbrecht 2014; Poli and Broomhead 2007). Many of these approximations are compared
using empirical simulation in Gazi (2012). As Cleghorn and Engelbrecht (2014b) note, the
most accurate calculation of the critical line so far is provided by Poli and Broomhead (2007)
and by Poli (2009). In contrast, the method we present here uses a convergent approximation
approach which does not exclude the effects of higher-order terms. Thus, where our results
differ from those previously published (which occurs most for values of ω near zero), we
can conclude that the difference is a result of incorporating the effects of these higher-order
terms. Further, these higher-order terms do not have noticeable effect for ω values close to
± 1, and thus, in these regions of the parameter space the two methods coincide.

The critical line we present defines the best parameters for a PSO allowed to run for
infinite iterations. As the number of iterations (and the size of the problem space) decrease,
the best parameters move inwards, and for around 2000 iterations the line proposed by Poli
and Broomhead (2007) and by Poli (2009) provides a good estimate of the outer limit of good
parameters. A potential explanation of the good match with the Poli line at lower iteration
numbers and a poor match at large iteration numbers is that the small error introduced by
ignoring higher-order terms accumulates over time.

The above-mentioned Jiang curve (Jiang et al. 2007) is an explanation in terms of eigen-
values which we are generalising here, i.e. the work presented here can be seen as a Lyapunov
condition-based approach to uncovering the phase boundary. Previous work considering the
Lyapunov condition has produced rather conservative estimates for the stability region (Gazi
2012; Kadirkamanathan et al. 2006) which is a result of the particular approximation used,
while we avoid this by directly calculating the integral in Eq. (11) for the one-particle case.

5.3 Switching dynamics

Equation (4) shows that the discovery of a better solution affects only the constant terms of the
linear dynamics of a particle, whereas its dynamical properties are governed by the (linear)
parameter matrices. However, in the time step after a particle has found a new solution,
the corresponding attractive term in the dynamics is zero, see Eq. (1), so that the particle
dynamics slows down compared to the theoretical solution which assumes a finite distance
from the best position at all (finite) times. As this affects usually only one particle at a time
and because new discoveries tend to become rarer over time, this effect will be small in the
asymptotic dynamics, although it could justify the empirical optimality of parameters in the
unstable region for some test cases.

The stability of PSO cast as a random dynamical system is determined by the infinite
product of its stochastic update matrix. Equation (4) shows that both a particle’s personal
best, pi , and the swarm’s global best locations, g, have a role in the stability of the swarm.
When not changing, these terms provide additive components to the iterated updates. In
order to achieve stability, the particles must counteract this influence by behaving somewhat
subcritically, i.e. the ω and α parameters need to be within the derived critical line. However,
as the swarm evolves, new finds become rarer and each pi will tend to converge towards g.
Thus, asymptotically, the dynamics will tend towards the theoretical case.
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The question is, nevertheless, how often these changes occur. Aweakly converging swarm
can still produce good results if it often discovers better solutions bymeans of the fluctuations
it performs before settling into the current best position. For cost functions that are not
‘deceptive’, i.e. where local optima tend to be near better optima, parameter values far inside
the critical contour (see Fig. 5) may give good results, while in other cases more exploration
is needed.

6 Conclusion

Particle swarm optimisation is a widely used optimisation metaheuristic. In previous
approaches, inherent stochasticity of PSO was handled via simplifications such as the con-
sideration of expectation values or independence assumptions, thus excluding higher-order
terms that were, however, shown to be important in the approach presented in this paper.
Thus, where our results differ from those previously published, we can conclude that the
difference is a result of incorporating the effects of these higher-order terms. It is known that
the standard PSO algorithm requires parameter tuning to ensure good performance. However,
choosing optimal parameter values for any given problem can be difficult. It is shown here
that the system can be modelled as a random dynamical system. Analysis of this system
shows that there exists a locus of (ω,α)-pairs that result in the swarm behaving in a criti-
cal manner. This plays a role also in other applications of swarm dynamics, for example,
the behaviour reported by Erskine and Herrmann (2015) occurred as well in the vicinity of
critical parameter settings. Similarly, Martius and Herrmann (2010, 2012) showed that the
(self-organised) criticality of the parameter dynamics makes it possible to achieve certain
behaviours in a natural way in autonomous robots.

A weakness of the approach presented in this paper is that it addresses only the main
parameters, ω and α, while swarm size or parameters regulating confinement of the swarm
are not considered, although they are known to have an effect, see, for example, (Clerc 2012).
In addition, we have focused only on the standard PSO (Kennedy and Eberhart 1995) which is
known to include biases (Clerc 2006a; Spears et al. 2010), that are not necessarily justifiable,
and to be outperformed on benchmark sets as well as in practical applications by many of
the existing PSO variants. Similar analyses are certainly possible and can be expected to be
carried out for some of these variants or even for other metaheuristic algorithms.
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