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Abstract This paper presents an extension of the state of the art theoretical model uti-
lized for understanding the stability criteria of the particles in particle swarm optimization
algorithms. Conditions for order-1 and order-2 stability are derived by modeling, in the sim-
plest case, the expected value and variance of a particle’s personal and neighborhood best
positions as convergent sequences of random variables. Furthermore, the condition that the
expected value and variance of a particle’s personal and neighborhood best positions are con-
vergent sequences is shown to be a necessary condition for order-1 and order-2 stability. The
theoretical analysis presented is applicable to a large class of particle swarm optimization
variants.
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1 Introduction

Particle swarm optimization (PSO), originally developed by Kennedy and Eberhart (1995),
has become a widely used optimization technique (Poli 2008a). Given PSO’s success, a
substantial amount of theoretical work has been performed on the stochastic search algorithm
to try and predict and understand its underlying behavior (Ozcan and Mohan 1998; Clerc and
Kennedy 2002; Jiang et al. 2007; Garcia-Gonzalo and Ferndndez-Martinez 2014a; Cleghorn
and Engelbrecht 2014; Liu 2015).
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Almost all theoretical research performed has to some extent relied upon the stagnation
assumption, whereby the personal and neighborhood best positions of a particle are assumed
to be fixed, which is not a true reflection of the behavior of PSO algorithms. Recently, it
was shown by Bonyadi and Michalewicz (2016b) that if it is assumed that the personal
and neighborhood best positions are random variables with well-defined expectations and
variances, criteria for order-1 and order-2 stability could be derived.

In this paper, criteria for order-1 and order-2 stability are derived under a weaker assump-
tion: It is assumed, in the simplest case where there are only two particle informers, that
the personal and neighborhood best positions’ distributions are allowed to vary over time,
provided that their expectation and variance are in fact convergent. Future personal and
neighborhood best positions are affected by information obtained during the search process,
implying that the distribution from which they are sampled should be time dependent. There-
fore, allowing the distributions of the personal and neighborhood best positions to change
over time is more representative of a PSO’s real run time behavior. It is also shown that the
assumption used in this paper for the derivation of the order-1 and order-2 stable regions is
in fact the necessary condition. The theoretical model presented in this paper is currently a
more representative model of the PSO than the model utilized in previous theoretical studies.

In order to provide the most general result possible, rather than focusing on just the
original or the canonical PSO (CPSO), a large class of PSO variants are considered. In the
general case, all positional memory, such as the personal and neighborhood best positions,
are modeled as sequences of random variables. This generality implies that variants such as
the fully informed PSO (Kennedy and Mendes 2003) and the unified PSO (Parsopoulos and
Vrahatis 2004), to name a few, are automatically included in the theoretical model presented
in this paper. Therefore, the theoretical model presented in this paper has further utility above
its application to the canonical PSO.

It has been shown that PSO particle stability (order-1 and order-2) has a substantial impact
on performance (Cleghorn and Engelbrecht 2016). Specifically, it was shown by Cleghorn and
Engelbrecht (2016) that parameter configurations that resulted in particle instability almost
always caused PSO to perform worse than random search. Given the relationship between
particle stability and performance, it is important to understand the criteria that will ensure
particle stability in PSO variants.

A brief description of PSO is given in Sect. 2, followed by a summary of the relevant
theoretical work in PSO in Sect. 3. The theoretical derivations of criteria for order-1 and
order-2 stability are presented in Sect. 4. Section 5 presents an application of the theoretical
stability results. A summary of the paper’s findings along with future work is presented in
Sect. 6.

2 Particle swarm optimization

Particle swarm optimization (PSO) was originally inspired by the complex movement of birds
in a flock. The variant of PSO this section focuses on uses the inertia coefficient proposed by
Shi and Eberhart (1998), which is referred to as the canonical PSO (CPSO) in this paper.
The PSO algorithm is defined as follows: Let f : RY — R be the objective function
that the PSO algorithm aims to find an optimum for, where d is the dimensionality of the
objective function. For the sake of simplicity, a minimization problem is assumed from
this point onwards. Specifically, an optimum o € R is defined such that, for all x € R,
f(0) < f(x). In this paper, the analysis focus is on objective functions where the optima
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exist. Let £2 (r) be a set of N particles in R? at a discrete time step ¢. Then £2 (¢) is said to
be the particle swarm at time . The position x; of particle i is updated using

xit+)=x;O)+v;t+1), (1)
where the velocity update, v; (f + 1), is defined as
vi (t+1) =wv; (1) +c1r1(t) ® (y;(t) — x; (1) + car2(t) @ (§; (1) — x; (1)),  (2)

where ry x(¢), r24(t) ~ U(0,1) forall # and 1 < k < d. The operator ® is used to
indicate component-wise multiplication of two vectors. The position y;(#) represents the
“best” position that particle i has visited, where “best” means the location where the particle
had obtained the lowest objective function evaluation. The position y;(¢) represents the
“best” position that the particles in the neighborhood of the i-th particle have visited. The
coefficients ¢y, ¢2, and w are the cognitive, social, and inertia weights, respectively. A full
algorithm description is presented in Algorithm 1.

Algorithm 1 PSO algorithm

Create and initialize a swarm, £2 (0), of N particles uniformly within a predefined hypercube of dimension
d.
Let f be the objective function.
Let y; represent the personal best position of particle i, initialized to x; (0).
Let y; represent the neighborhood best position of particle i, initialized to x; (0).
Initialize v; (0) to 0.
Letr =0
repeat
for all particlesi = 1,--- , N do
if f(x;) < f(y;) then
Yi =X
end if
for all particles i with particle 7 in their neighborhood do
if £(y;) < f(5;) then
V=i
end if
end for
end for
t=t+1
for all particlesi = 1,--- , N do
update the velocity of particle i using equation (2)
update the position of particle i using equation (1)
end for
until stopping condition is met

A primary feature of the PSO algorithm is social interaction, specifically the way in which
knowledge about the search space is shared among the particles in the swarm. In general, the
social topology of a swarm can be viewed as a graph, where nodes represent particles, and the
edges are the allowable direct communication routes. The social topology chosen has a direct
impact on the behavior of the swarm as a whole (Kennedy 1999; Kennedy and Mendes 2002;
Engelbrecht 2013). The fixed topologies, star, ring, and Von Neumann, are frequently used
in PSO. A number of dynamic topologies have also been proposed. The interested reader
is referred to the work of Bonyadi and Michalewicz (2016a) for an in-depth discussion on
dynamic topologies.
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3 Theoretical background

The focus of this section is on the existing theoretical stability results for PSO. Section 3.1
presents the commonly used assumptions in existing theoretical studies on particle stability.
Section 3.2 presents the definitions for order-1 and order-2 stability. The relevant theoretical
findings for PSO are presented in Sect. 3.3.

3.1 Common assumptions

This section briefly discusses the commonly utilized theoretical assumptions in PSO stability
analysis. Where and when each assumption was made in the theoretical literature will be stated
in detail in Sect. 3.3.

The primary assumptions that occur in the theoretical PSO research are as follows:

Definition 3.1 (Deterministic assumption). It is assumed that 0 = 6(t) = c1r(¢), and
0, = 6,(t) = cora(t), for all + (Ozcan and Mohan 1998).

Definition 3.2 (Stagnation assumption). It is assumed that y; (r) = y;, and y;(¢) = y;, for
all ¢ sufficiently large (Ozcan and Mohan 1998).

Definition 3.3 (Weak chaotic assumption). It is assumed that both y; (#) and y; (¢) lel
occupy an arbitrarily large finite number of unique positions (distinct positions), 1; and v;,
respectively (Cleghorn and Engelbrecht 2014).

Definition 3.4 (Weak stagnation assumption). It is assumed that y; (t) = y;, for all ¢ suffi-

ciently large, where i is the index of the particle that has obtained the best objective function
evaluations (Liu 2015).

Definition 3.5 (Stagnant distribution assumption). It is assumed that both y; (¢) and y; (¢)
are random variables sampled from a fixed distribution, such that both y; (¢) and y; (¢) have
well-defined expectations and variances (Bonyadi and Michalewicz 2016b).

Each of the assumptions mentioned in this section simplifies the PSO algorithm in order
to allow for mathematical analysis to be performed. However, the accuracy of the mathe-
matical model is directly related to the number of PSO’s behaviors that are removed due
to simplifications. In recent literature, as will be discussed in Sect. 3.3, the deterministic
assumption has been successfully removed, which means that the stochastic aspect to PSO is
now catered for. However, some form of assumption is still placed on all particles’ personal
and neighborhood best positions in all existing theoretical stability studies. For this reason,
it is important to understand the relative ordering, in terms of strength of assumption, of the
existing assumptions on particles’ personal and neighborhood best positions.

The stagnation assumption is the strongest assumption on particles’ personal and neighbor-
hood best positions, as the assumption keeps the positions completely fixed. The stagnation
assumption implies that no particle ever finds a better position, and as a direct result the
swarm will never optimize. This implies that the stability criteria derived under the stagna-
tion assumption are only guaranteed after the swarm has stopped optimizing.

All three of the remaining assumptions on particles’ personal and neighborhood best posi-
tion are weaker than the stagnation assumption. However, there is no clear ordering between
the assumptions, since each weakens the assumption on particles’ personal and neighborhood
best positions in a slightly different way. The weak chaotic assumption allows the particles’
personal and neighborhood best positions to occupy an arbitrarily large finite number of
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distinct positions. The weak stagnation assumption, in essence, assumes stagnation on the
global best position, but allows a potentially infinite number of personal best positions, pro-
vided they are not more optimal than the stagnant global best position. The most recently used
assumption is the stagnant distribution assumption (Bonyadi and Michalewicz 2016b), which
allows a potentially infinite number of different personal and neighborhood best positions.
However, there is a superficial restriction on the personal and neighborhood best positions,
namely that they are sampled from stationary distributions. During a run, PSO gains infor-
mation about the search space from which it would derive potentially new personal and
neighborhood best positions. This implies that the personal and neighborhood best positions
cannot be accurately derived from stationary distributions, as clearly the distributions should
be functions of the PSO’s state at the current iteration, implying the distributions should at
least be iteration dependent. In this paper, the following weaker assumption is utilized:

Definition 3.6 (Non-stagnant distribution assumption). It is assumed that both y; ()
and J; (r) are random variables sampled from a time-dependent distribution, such that
both y; (r) and ¥, (1) have well-defined expectations and variances for each ¢ and that
lim E[y;(®)], lim E[y;(®)], lim V[y;(#)], and lim V[y;(r)] exist.

t—00 1—00 1—00 t—00

It should be noted that the non-stagnant distribution assumption is a weaker assumption than
all previously made assumptions placed on the particles’ personal and neighborhood best
positions, as each of the mentioned assumptions can be constructed as a specialization of
the non-stagnant distribution assumption. Furthermore, it is shown in Sect. 5 that the non-
stagnant distribution assumption is in fact a necessary assumption for order-1 and order-2
stability as defined in the next section.

3.2 Order-1 and order-2 stability

This section discusses the types of convergence used in the stability analysis of PSO.

In the context of a deterministic PSO model, that is, a theoretical PSO model that is
utilizing the deterministic assumption, the aim is to prove convergence of particle positions.
Specifically, convergence is defined in the traditional sense as

Definition 3.7 (Convergent sequence). The sequence (s,) in R” is convergent if there exists
an s € R" such that
lim s; =5 3)
1—00
It should be made clear that the convergence as defined in Eq. (3) does not imply con-
vergence to an optimum. The convergence, as described in Definition 3.7, can be seen as
complete stability, in that the particle’s position completely ceases to move as ¢ approach
infinity. In a stochastic context, it is seldom that complete stability is obtained, and other, more

appropriate forms of stability are often considered when working with stochastic sequences.
The first form of stability is order-1 stability, defined as

Definition 3.8 (Order-1 stability). The sequence (s;) in R” is order-1 stable if there exists
an sg € R" such that

lim E[s;] =sEg 4)
—00

where E[s;] is the expectation of s;.
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While order-1 stability is useful, it does not necessarily provide a very strong level of
stability. For example, it is possible for a stochastic sequence to have a stationary mean while
having a variable or even increasing variance. This leads to the next type of stability, namely

Definition 3.9 (Order-2 stability).!
The sequence (s;) in R” is order-2 stable if there exists a sy € R” such that

lim V[s;] =svy )
—00

where V[s,] is the variance of s;.

While it is possible to study higher-order stability, such as those related to skewness or
kurtosis of a random sequence as was considered by Poli (2008b), it is generally the aim of
PSO stability analysis to obtain the criteria needed to ensure order-1 and order-2 stability
(Poli 2009; Blackwell 2012; Garcia-Gonzalo and Fernandez-Martinez 2014b).

It should be noted that order-1 and order-2 stability does not not imply the deterministic
convergence of Definition 3.7, except if sy = 0. Some PSO researchers have attempted
to provide criteria to ensure that sy = 0 (Poli 2009). However, it was shown in the work
of Poli (2009) that sy = 0 occurs only if order-2 stability as defined in Eq. (5) occurs in
addition to the condition that the personal and neighborhood best positions are equal for all
particles, which is not a condition that can be guaranteed to occur. In the work of Bonyadi and
Michalewicz (2016b), where the personal best and neighborhood best positions are modeled
as random variables, one of the following restrictive cases is required in addition to order-2
stability as defined in Eq. (5) for sy = 0 to occur in CPSO:

. Viyl =0, V[§] > 0, E2[cor2] = Vcara] = 0, and E2[cir1] # O or
. VIyl >0, V[§1 =0, E2[c1r1] = VIeir1] = 0, and V[cara] # 0 or
. Vlyl=VI[yl =0and E[y] = E[§] or

. VIyl = V[§] = 0 and E[y] # E[§] and

(a) E2[cara] = VIeara]l = 0 and E3[c1r1] # O or
() E2[cir2] = Veiri] = 0 and E2[cara] # 0.

RO I S R

Each of the aforementioned cases requires some prior knowledge of the exact expectation
and variance of the personal and neighborhood best positions. Furthermore, the cases where
E[y] = E[¥] and V[y] = V[y] = 0 are not required, have either the cognitive component
or the social component of the PSO’s update equation turned off. Specifically,

— for case 1 to hold, E2[c2r2] = 0, which implies ¢; = 0;

— for case 2 to hold, E2[c¢yr1] = 0, which implies ¢; = 0;

— for case 4 to hold, either EZ[c;r1] = 0 or EZ[car2] = 0, which again implies that either
ci=0o0rc; =0.

It therefore follows that if both the cognitive and social components of the PSO’s update
equation are used, then the personal and neighborhood best positions must be equal, which
cannot be guaranteed to occur in practice.

1 For the sake of completeness, it should be noted, that a subset of PSO researchers have utilized the term,
order-2 stability, to indicate that the variance of the sequence (s;) converges to 0. However, Definition 3.9 is
in agreement with the original theoretical PSO research.
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3.3 Theoretical results for PSO

This section presents each theoretically derived region that is sufficient and/or necessary
for particle convergence in the PSO algorithm, along with the corresponding assumptions
utilized in the region’s derivation.

There are numerous important early contributions to the theoretical understanding of PSO
particle trajectories (Ozcan and Mohan 1998, 1999; Clerc and Kennedy 2002). However, the
first studies to explicitly derive the criteria needed to ensure particle convergence of PSO with
the inclusion of the inertia weight was the work of Van den Bergh and Engelbrecht (2006),
Van den Bergh (2002), and that of Trelea (2003). Both Van den Bergh and Trelea derived the
necessary and sufficient criteria for particle convergence under the deterministic assumption
and the stagnation assumption.

The region derived by Van den Bergh and Engelbrecht (2006) is

O<ci+c<2(04+w), |w <l, (6)

whereas the region derived by Trelea (2003) is

O<ci+c<4(d4+w), |w <l, (7)

The discrepancy between Eqs. (6) and (7) is due to how the stochastic components were
handled. In the work of Van den Bergh and Engelbrecht, the stochastic components of the PSO
update equation were set such that rj y = rp 4 = 1. This can be seen as a more conservative
approach than that used by Trelea, were r| x = r2 x = 1/2, which is the expected value of the
random components. Equations (6) and (7) are illustrated in Fig. 1 as the triangles AFB and
ACB, respectively. It should be noted that, from a theoretical perspective, the constriction
PSO is an equivalent model to the inertia PSO under certain conditions, so many findings
from the earlier work of Clerc and Kennedy (2002) are relevant to the inertia PSO.

More recently, under the deterministic and weak chaotic assumptions, Cleghorn and Engel-
brecht (2014) derived the same region as Eqgs. (6) or (7), depending on how the stochastic
variables | and r; are set.

Fig. 1 Theoretically derived 1 ‘ ‘ ‘ F ‘ ‘ ‘ c
regions sufficient for particle
convergence G
0.5
2 0r
-0.5
-1 L L L L L L L

@ Springer



8 Swarm Intell (2018) 12:1-22

Under the stagnation assumption only, Kadirkamanathan et al. (2006) derived the follow-
ing sufficient region for order-2 stability:

®)
e <20 for we (0, 1).

{c1+c2 <2(+w) for we(=1,0]

Still under the stagnation assumption, Gazi (2012) expanded the derived region of Eq. (8),
resulting in the region

_ 9
cl1+ce < 2‘7‘84_3;2 for we(,1).

{cl +cp < 24(177“”) for  w e (—1,0]

The regions corresponding to Eqgs. (8) and (9) are illustrated in Fig. 1 as triangle like regions
ADB and AEB, respectively. Unfortunately, both Egs. (8) and (9) are very conservative
regions, as they were derived utilizing the Lyapunov condition (Kisacanin and Agarwal
2001).

Without the use of the Lyapunov condition or the stochastic assumption, Poli and Broom-
head (2007) and Poli (2009) derived the necessary and sufficient criteria for order-1 and
order-2 stability. The order-2 region’s sufficient condition was partially obtained via exper-
imental means. The region derived by Poli for order-1 stability is the same as the region
derived by Trelea in Eq. (7). The region derived for order-2 stability is as follows:

24 (1 —w?)
cil+ecp < —+ for wel-1,1]. (10)
7— 5w
The region defined by Eq. (10) is illustrated in Fig. 1 as the curved line segment AGB. The
region defined by Eq. (10) was also independently derived by Jiang et al. (2007) under the
stagnation assumption.

Blackwell (2012) showed that the criteria of Eq. (10) are a necessary condition for order-2
stability, utilizing an approach that was both computationally simpler than Poli’s approach
while also being applicable to a range of PSO variants. Garcia-Gonzalo and Ferndndez-
Martinez (2014a) also derived necessary conditions for order-1 and order-2 stability, allowing
w, c1ri, and cpry to be random variables with well-defined expectations and variances.
Garcfa-Gonzalo and Ferndndez-Martinez utilized similar techniques to their earlier con-
tribution which relied on modeling the PSO as a stochastic damped mass-spring system
(Garcia-Gonzalo and Fernandez-Martinez 2011).

Liu (2015) rederived, under the weak stagnation assumption, the same necessary and
sufficient conditions for order-2 stability as Poli. The work of Liu (2015) also implies that
the convergence region of Eq. (10) is the same irrespective of the social network topology
utilized by PSO.

Recently, under the stagnation distribution assumption, Bonyadi and Michalewicz (2016b)
were able to derive criteria for order-1 and order-2 stability, while also allowing w, ¢;r1, and
cpra to be random variables with well-defined expectations and variances.

The work of Poli (2009) and Bonyadi and Michalewicz (2016b) both relies on a first-
order, non-homogeneous recurrence relation. Specifically, a first-order, non-homogeneous
recurrence relation is defined as a sequence (z;) in R?, constructed from

Zr =Mz, +b, (1D

where b is a constant offset in R? and M is a ¢ x g matrix. The recurrence relation’s initial
term is defined as z;. The work of Poli (2009) and Bonyadi and Michalewicz (2016b) utilizes
a well-known theorem from analysis, namely
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Theorem 3.1 The sequence (z;) converges for any initial condition zo € RY and offset
b € R? ifand only if p(M) < 1, where p denotes the spectral radius (Atkinson and Han
2009).

In order to utilize the non-stagnate distribution assumption, as defined in Sect. 3.1, a
generalization of the sufficient condition of Theorem 3.1 is needed. Such a generalization is
presented in the next section.

4 Stability proof

This section presents a derivation of necessary and sufficient conditions for order-1 and order-
2 stability of PSO under the non-stagnant distribution assumption. The section starts with
a fundamental definition from analysis followed by two small Lemma’s which are used to
improve the flow of the more substantial Lemma 4.3. Lemma 4.3 is an extension of a classic
theorem from mathematical analysis. The main result is then presented in Theorem 4.1.

Definition 4.1 (Uniform Operator Convergence). A sequence (T ) of operators T',, : R? —
R is said to be uniformly operator convergent to the operator T if |T,, — T| — 0, where
I - || is an operator norm. (Kreyszig 1978)

Lemma 4.1 Let (T,,) be a sequence of bounded linear operators (Kreyszig 1978) from RP

to RP, all with equal spectral radius, and let (T ) be uniformly operator convergent. If

p(Ty) <1, then lim T,T,_1---T| = O, where O is the null operator; p(T) is used to
n—o0

indicate the spectral radius of T 1.

Proof Itis known that for any § > 0, there exists a norm || - ||s such that p(T1) < ||T1]|s <
p(T1) + 6 (Kreyszig 1978), and since p(7T'1) < 1, a § can be selected such that there exists
ao where ||T||s < o < 1. The same is true for any element of the sequence (T',). Since
(T}) is uniformly operator convergent, and each p(T,) < 1, there exists a N, o, and norm
Il - ls such that || T,|| < o < 1forall n > N. Furthermore, since (T',) is uniformly operator
convergent, there exists a bound such that | T, || < & for all n. It then follows that, for all
n>N,

NTwTp—y- - TNTN-1---Tills <N TpTp-1-- - TNyillsITNTN-1---T1lls

<o NgN (12)

Given that N and £ are finite, 0" V¢V — 0asn — oo. Since ||TpTp_1---T1lls — O,
T,T,—1---T; — ©,as was to be proved. o

Lemma 4.2 Let (T),) be a sequence of bounded linear operators from RP to RP, and let
(T') be uniformly operator convergent. Then for any finite j, the sequence (T, --- Ty ;) is
also uniformly operator convergent.

Proof An inductive argument is used. For j = 0 operator convergence is directly obtained
from the given assumption. The inductive step is as follows: assume that (7, --- T,,—;) is
convergent. Since both (T,—;_1) and (T, --- T,_;) are convergent, they are bounded, so
there exists an 7y and n suchthat || T, --- T, ;|| < nyand |T,,—j_1|| < n2,foralln.Italso
follows that for any € > O there exists a N¢ j—1 such that,if m > n > N j_1 form,n € N,
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then |T)—j—1 — Th—j—1ll < 2% Similarly, there exists an N, such that, if m > n > N,
then [Ty - Ty—j—Ty---Tp—jll < %M.LetN =max{N¢, N¢ j_1}.1fm > n > N, then

”Tm"'Tm—j—l - Tn"‘Tn—j—l”
=< ”Tm "’Tm—j—l - Tm"’Tm—an—j—IH
+ 0T Ty—jTy—j—1 =Ty Ty—j—1l
ST T il Tim—j—1 — Ty—j1ll
H 0T Ty —Tn Ty jllITn—j-1ll
SliTm—j1 = Tp—jill +mlTy - Tp—j —Ty---Tpjll
<e€ (13)

Therefore, (T, - - - Ty, j—1) is Cauchy, and therefore convergent, proving the inductive step.
This concludes the proof of the lemma. O

Lemma 4.3 Let (x,) be a sequence in RP, defined as
Xy =Tpxp—1 + bnfl (14)

where (T ) is a sequence of bounded linear operators from RP to R? which is uniformly
operator convergent, with each element having equal spectral radius, and (b,,) is a sequence
in RP. The term x is used to indicate the initial condition. Now, if p(T ) < 1 for all n and
(b)) converges, then (x,) converges.

Proof Firstly, it is assumed that p(T,,) < 1 for all n and that (b,,) converges. As a notational
convenience, let C(5 o) = T¢Tc—1---T5 whens < e, and C( ) = I whens > e, where /
is the identity operator. As in Lemma 4.1 it is known that there exists a norm || - || such that
[|Ty|| <o < 1. This norm will be used for the remainder of the proof.

Since the lemma is set in a finite-dimensional space, it is sufficient to prove that (x,) is
Cauchy in order to prove convergence (Kreyszig 1978), which is now done. Let m,n € N
and m > n. Unwinding x, leads to

xXp=Tux, +bn71
=TTy 1xp2+by2)+by

n—2
=Can—nx1 + Z Cot1—imbn_1-i (15)
i=0
Now, using equation (15),
1% — Xl
m—2
=ICam-1x1+ D Cont1—iimbm-1-i
i=0
n—2
—Capn-nx) — Z Cosri—imbn—1-ill
i=0
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< (Cam=1) — Can=n)) x1ll

m—2 n—2
+1Y . Comsr—imbm-i—i = Y_ Ciugr-imbn-1-il] (16)
i=0 i=0

Considering the first term of the summation in Eq. (16), it is seen that

1(Cam-1) = Can—1y) X1l < 1 (Ctm-1) = Ccrn—1)) Il %1l a7

since p(T,) < 1 for all n, and using Lemma 4.1, the sequence of operators (C i ,)) is
convergent, and therefore Cauchy. It follows that || (C a,m—1) —Cq, ”,1)) || convergences to
zero, and trivially so does Eq. (17).

Focusing on the second term of the summation in Eq. (16),

m—2 n—2
1Y Contr-imbmi—i = Y Ciur1-imbn-1-ill
i=0 i=0
m—2
<1l Y. Conti-imbmr-ill
i=n—1
n—=2
+ 1D (Comtr1—imbm—1-i = Cugr-imbn1-i) | (18)
i=0

Note that, for the first term in Eq. (18), since (b,) is convergent, there exists a ¢ such that
[1b,|| < ¢ for every n. It therefore follows that

m—2 m—2

1) Contizimbmi=ill < Y NComi1—imll [1bm-1-ill
i=n—1 i=n—1

m—2 m—1-—i

< Z NCm1—imll e < > [T ITjl¢ (19)

i=n—1 i=n—1 j=m

It is also known that ||T ;|| < o < 1. It therefore follows from Eq. (19) that

m—2 m—1—i m—2 m—1—i
o1 nrie< Y ]"[a;—cZa (20)
i=n—1 j=m i=n—1 j=m i=n—1

Since o < 1, the elementary geometric series formula can be used to transform Eq. (20) to

n—1 m—1
; o" ' —0o
e E o’“:{li — Qasn,m — oo
—0o
i=n—1

Focusing on the remaining term in Eq. (18),

n—2
Il Z (Contr=imybm—1-i — Cng1=imbp—1-i) |
i=0
n—2
<I Z (Conti-imybm—1-i — Cinsi—i,mbn—1-i) |

i=0
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n—2

+ I Z (Comti—imbn—i—i — Cinr1—imybn-1-i) 21
i=0

Both terms of Eq. (21) require a more subtle mathematical treatment, given the complexity
of the internal terms. The standard epsilon-n approach from analysis will be used. Consider
the first term of Eq. (21),

n—2
1> (Conti—imbm—1-i = Comsr—imbn1-i) |
i=0
n—2
< NCwmr1—imll lbm—1-i = bu1 ]l
i=0
n—2 )
<Y o bw1-i —ba1ill
i=0
n—2 n—2
<Y o' bwoii —bll+ ) o' by — b (22)
i=0 i=0

Letz; = bij+1 —b. Since b; — b, ||z;|| — 0, there exists a T € R such that ||z;|| < 7 for
all i, because (z;) is convergent. Now there exists a n¢, such that " < € and ||z,+1|| < €
for all n > n. So, for the second term of Eq. (22),

n—2 n—2

4 o
E o' ||bp_1—; — bl| = E "7 ||biy1 — b
i=0 i=0

ne—2 n—2
<t 2 0n7271 i 2 O,n7271
i=0

i=ne—1

o N _Gn—l 1 — gh—ne
< T+ €
1—0o 1—0
ot e
- l—ar+ 1—0
1
§T+ € (23)
1—0

Now, since m > n, the same argument can be made for the first term of Eq. (22) as was
used for the second term. This implies that, for a large enough n and m, Eq. (22) can be made
less than an arbitrarily small € > 0.

The last remaining term requiring analysis is the second term of Eq. (21). Note that, since
o" — 0 for any € > 0, there exists a n¢ such that o < € (1 — o) /(2¢) if n > n.. Equation
(21) can then be handled as follows:

n—2
1> (Conti-imba-i—i = Cinr1-imbn-1-i) |
i=0
n—2
<Y NCwmr1-im) — Cnrr—imllba1-i]
i=0
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ne—1 n—2

<t Z 1€ m+1-im) — Cnrr—imll + & Z 1Cms1-im) — Cnr1—imll
i=1 i=ne
ne—1 n—2

<Y MCmp1—im — Cari-iml +2¢ > o
i=1 i=ne

ne—1 ne

o
<2 Y 1Cmi1-im = Corimiml +2¢ 7
i=1
ne—1
<D NCms1-im — Coupr-imll +€ (24)

i=1

Now that m and n have been decoupled from the summation limit of the first term in Eq. (24),
the limit can be dealt with directly. It is known from Lemma 4.2 that, since (7,,) was con-
vergent, then (T, --- T,,_;) is also convergent for a finite i. It then follows that for every
8 > 0 and for each sequence (C (,41—i,n)) Where 0 <i < n. there exists a ns; such that, if
m > n > ng i, then [|Cont1-im) — Cwm+1-imll < 8/(Ene). Letng = max{ns ;|0 <i < ne}.
Then Eq. (24) becomes

ne—1

¢ Z ICont1—iim) — Cu1—imll +€ <8 +¢€ (25)

i=1

Since € and § can be made arbitrarily small, this completes the proof. O

Now that Lemma (4.3) has been proved, the focus is moved to the main result on PSO
stability. In this paper, all PSO variants with update equations of the form

Xt + 1) =xx(Oa +xx(t — DB + i (26)

are considered, where k indicates the vector component, « and B are well-defined random
variables, and (y;) is a sequence of well-defined random variables. In the context of this
paper a random variable is said to be well defined if it has an expectation and variance.
This class of PSOs includes CPSO, fully informed PSO (Kennedy and Mendes 2003), and
unified PSO (Parsopoulos and Vrahatis 2004), though many others exist. Furthermore, this
class also allows arbitrary distributions to be utilized for all vector components, provided they
are dimension independent and have well-defined expectations and variances. It should be
noted that the considered class of PSOs does not cater for PSO variants with time-dependent
random variables o and B, or for PSO variants where « or 8 do not have well-defined
expectations and variances. Both of these mentioned variants are beyond the scope of this

paper.

Theorem 4.1 The following properties hold for all PSO variants of the form described in
Egq. (26):

1. Assuming i; converges, particle positions are order-1 stable for every initial condition if
and only if p(A) < 1, where

A= [E[I“] Egﬂ]} and i; = [E[OV’]} 27)
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2. The particle positions are order-2 stable if p(B) < 1 and (j,) converges, where

E[a] E[B] © 0 0
1 0 0 0 0
0 0 E[«?] E[*] 2E[ap]
0 0 1 0 0
0 0 Ele] 0 E[B]

B =

and

Ely]
0

ji=| EvA (28)
0
0

under the assumption that the limits of (E[y:«]) and (E[y:B]) exist.
3. Assuming that x(t) is order-1 stable, then the following is a necessary condition for
order-2 stability:

I —Ela] -E[B]#0 (29)
1—Ehﬂ—Ewﬂ—(§%%¥%ﬂ>>o (30)

4. The convergence of Ely;] is a necessary condition for order-1 stability, and the conver-
gence of both Ely;] and E [ytz] is a necessary condition for order-2 stability.

Proof 1t should first be noted that there is no coupling between dimensions in the PSO
variants considered in this theorem. Therefore, analysis can be performed in one dimension
only without loss of generality. This is possible because each dimension can be modeled as an
independent problem. Furthermore, since the coefficients and distributions used are the same
in each dimension, the stability criteria for one dimension is the same for all dimensions. As
a result the dimension subscript k is dropped.

Property 1 is proved first. The application of the expectation operator to Eq. (26) yields

Elx(t + D] = E[x()]E[a] + E[x(t — DIE[B] + E[y/] 3D

which is reformulated to

Uy = Au;_] + il‘ (32)
where u; = [E[g[(;(—;]l)]], A= |:E[1a] Egﬂ]], and i, = [E[Oy,] . Direct application of

Lemma 4.3 shows that (u,) converges if p(A) < 1 and (i;) is convergent, implying order-1
stability of particle positions. From Theorem 3.1 it is known that if i; is constant, then
p(A) < 1 is a necessary condition for convergence. Since a constant i; is a special case
of Eq. (32), p(A) < 1 is also a necessary condition for convergence of u; (specifically,
p(A) < 1 ensures convergence for all possible initial conditions).

Now, consider property 2. In order to study the variance of Eq. (26), defined as,

VIx(t + D] = E[x*(t + D] + E[x(t + D] (33)

the dynamics of E[x%(r + D] and E[x (t)x(t — 1)] need to be considered.
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The term x2(¢ + 1) is calculated as
X+ 1) =20 + 221 - DB+ yP + 2x(Dya
+ 2x()x(t — Dap +2x(t — DBy (34)
Application of the expectation operator produces
Elx*(t + D] = EX*(O]E[e®] + E[x*(t — DIE[B*] + E[y}]

+ 2E[x()]Elysa] + 2E[x(1)x(t — D]E[af]
+ 2E[x(r = DIE[By] (335)

The expectation of x (#)x (¢t — 1) is obtained by multiplying Eq. (26) by x (¢) and applying the
expectation operator to yield

E[x(t + Dx()] = E[@]E[x*()] + E[BIELx(1)x(t + D]+ E[x()]Ely]  (36)

Given Eqgs. (31), (35), and (36), the dynamics of E[x%(t+1)]and E[x(r)x(t — 1)] are derived
by relying on a five-dimensional recurrence relation, as there are five unknowns in the system,
namely E[x(#)], E[x(t — 1)], E[x2()], E[x2(t — 1)], and E[x()x (¢t — 1)]. If the recurrence
relation has a limit, then so does V[x(¢)], implying order-2 stability. The specific recurrence
relation under consideration is

g =Big,_+J, 37
where

Ela] E[B] O 0 0

1 0 0 0 0
B, = | 2E[y,a] 2E[y1B] Ele?] E[B*] 2E[af] (38)
0 0 1 0 0
Ely/] 0 Ele] 0  E[B]
Ex(1)] Ely:]
E[x(t — 1)] 0
g = El*®] |, J,=|E] (39)
E[x2( — 1] 0
E[x()x(t —1)] 0

Since the limits (E[y;«]), (E[y:B]) and (E[y;]) exist by Assumption 3.6, then so does the
limit of (B;). One of the conditions of Lemma 4.3 is that the spectral radius of B, must be the
same for all r. The eigenvalues of B; were calculated using MATLAB’s symbolic toolbox
and are given in appendix A. The eigenvalues actually do not contain the terms E[y;«],
E[y:B], or E[y,] at all. The absence of y; in any term implies that the spectral radius of
B; is constant, and therefore, direct application of Lemma 4.3 shows that g, converges if
p(B;) < 1 and j, is convergent, implying order-2 stability of PSO particles as was to be
proved. Furthermore, since the spectral radius of B; does not depend on E[y;«], E[y; 8], or
E[y:], the spectral radius of B, with E[y;a], E[y;8] and E[y;] all set to zero, is equivalent
to the spectral radius of B;. Therefore, the conditions under which p(B;) < 1 are the same
as the conditions under which p(B) < 1.

The proof of property 3 follows directly from the work of Blackwell (2012). It was shown
by Blackwell that if y; is a constant random variable and that if x () is order-1 stable, then
Egs. (29) and (30) are necessary conditions for order-2 stability. Note that a constant y; is
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simply a special case of Eq. (26), which implies that the necessary conditions hold equally
for the class of PSOs under consideration in Eq. (26).

Property 4 is now proved. First note that, trivially, (E[y;]) converges if and only if (i;)
converges and that (E[y;]) and (E [y,z]) converge if and only if (j,) converges. The approach
taken is to prove property 3 by contradiction. Assume that (i;) diverges, but that (u,) con-
verges. Equation (32) can now be reformulated to

us — Au[71 = i[ (40)

Because (u;) converges and A is continuous, the summation (u; — Au,_1) is also convergent.
But, this is impossible as (i;) is divergent by assumption, hence a contradiction. The same
approach can be used to show that (j,) must be convergent if (y,) is, and therefore the
convergence of both (E[y,]) and (E [y,z]) are necessary conditions.

This completes the proof of properties 1, 2, 3 and 4. O

S Direct application of stability theory

This section provides an illustrative example using Theorem 4.1 to provide the reader with a
simple procedure for using Theorem 4.1 to derive stability criteria for new PSO variants that
comply with the formulation given in Eq. (26).

A general version of CPSO is considered. Specifically, the components cir; = 6y,
cary = 6>, and w are allowed to be arbitrary independent random variables with well-defined
expectations and variances, as considered in Bonyadi and Michalewicz (2016b). It is shown
that the same criteria as in Bonyadi and Michalewicz (2016b) can be derived for both order-1
and order-2 stability utilizing Theorem 4.1 under the less restrictive non-stagnant distribu-
tion assumption. It should be noted that while E[y;], E[y;], V[y:], and E[;] are assumed to
exist under the non-stagnate distribution assumption, the moment’s explicit values are never
needed in the derivation of order-1 and order-2 stability criteria in this section.

Rewriting the general version of CPSO in the form of Eq. (26) is achieved by setting the
following terms:

a=(14w)—0; —6
p=—w
Vi =01y + 623 41

where y; and ¥, the personal and neighborhood best positions, respectively, are modeled as
sequences of random variables which are convergent in expectation and variance. In order to
use Theorem 4.1, it should first be verified if (i;) and (j,) are convergent. Note that, because
E[6:1] and E[6,] are constant and the limit of (E[y;]) exists, the limit of (E[y;]) also exists,
where E[y,] = E[01]1E[y:] + E[62]E[¥]. The existence of the limit of (E[y,]) implies that
(i;) is convergent. In order for (j,) to be convergent, the limit of (E [ytz]) must also exist.
Observe that

Ely?] = E[03]E[y}] + 2E[0|1E[0]E[y,1E[$/] + E[631E[$7]
Because V[x] = E[x%] — (E[x])?, with x an arbitrary random variable, it directly follows

that E [912] and E [912] exist. Similarly, the limit of (£ [y,z]) exists, and as a result so does the
limit of (E[y]).
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Now applying properties 1 of Theorem 4.1, along with the existence of the limit of (E[y;]),

the criteria for order-1 stability are directly calculated as

E[6 E[6
1 <E[w]l<1 and 0 < EOU+EO] (42)
E[lw]+1
Using the criteria for order-1 stability of Eq. (42), and property 4 of Theorem 4.1, along
with the assistance of MATLAB’s symbolic toolbox, and using similar steps to that of Bonyadi
and Michalewicz (2016b), the following necessary criteria for order-2 stability are obtained:
Elw]

_ 2 .
0 < E[6,] + E[0:] < 2(E[w]* + VIw] — 1)

- VIO Ve D (L ELwD
U= Elwl+ =55 )7

(44)

It should be noted that the expected values of E[«], E[o?], E[B], E[B?], and E[«f] are
needed for this calculation. The detailed calculation of these expected values can be found
in Bonyadi and Michalewicz (2016b).

The next step is to verify that Eqs. (43) and (44) are in fact sufficient conditions for order-
2 stability, using properties 3 of Theorem 4.1. The existence of the limits of (E[y,;«]) and
(E[y;B]) must first be shown. Observe that

Elyia] = E[011E[y,1(1 + E[w]) + E[6:]E[5:1(1 + E[w]) — E [67] El]
— 2E[O1E[0)E[Y1E[5,1 — E [07] E[5:] (45)

and
El[y,B] = —E[w]E[61]1E[y;] — E[w]E[62]E[3/] (46)

Both the limits of (E[y;«]) and (E[y, B]) clearly exist since the limits of (E[y,]) and (E[y,])
exist. In order to obtain the sufficient conditions for convergence, the condition p(B) < 1
must be simplified. Unfortunately, due to the generality of the considered CPSO variant, the
simplification of the condition p(B) < 1 becomes intractable. However, the conditions in
Eqs. (43) and (44) can be empirically verified to be sufficient for convergence using an empir-
ical approach similar to Bonyadi and Michalewicz (2016b). The experimental procedure is as
follows: 10'? random combinations of the form {E[w], E[01], E[62], V[w], V[01], V[62]}
were constructed such that Eqs. (43) and (44) were satisfied. It was then tested whether or
not p(B) < 1. It was found that in 100% of the cases, if Eqs. (43) and (44) were satisfied,
then the condition p(B;) < 1 would held. This provides strong evidence that Egs. (43) and
(44) are in fact also the sufficient conditions for order-2 stability.

Itis also seen via the application of property 4 of Theorem 4.1 that convergence of (E[y;]),
(E[3:]), (V[y:]), and (V[¥,]) are in fact necessary conditions for order-1 and order-2 stability.

Itis informative to note that the criteria for order-1 and order-2 stability of the regular CPSO
algorithm can be directly obtained from Egs. (42), (43), and (44). Let w be a constant, and
let 61 = cyr1, 62 = cor2 as in the regular CPSO algorithm. Then it follows that E[w] = w,
E[0] = 9, E[6] = 3, V[w] = 0, V[6i] = % and V[6] = % Substituting the
calculated expectations and variances into Eq. (42) leads to the following criteria for order-1
stability:

—1l<w<l1 and O<ci+ce<4w+1) 47
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The criteria for order-1 stability in Eq. (47) agree with the criteria for order-1 stability
as derived by Poli (2009) under the more restrictive stagnation assumption. Furthermore,
substituting the calculated expectations and variances into Eqgs. (43) and (44) leads to the
following criteria for order-2 stability:
24(1 — w?)
—1l<w<l1 and O<ci4+op< ——— (48)
7—5w

The criteria in Eq. (48) for order-2 stability are in exact agreement with the criteria derived
by Poli (2009) under the more restrictive stagnation assumption.

While this section focused on a general version of CPSO, the same procedure can be
followed with any new or existing PSO variant that is contained in the class of positional
updates described by Eq. (26).

It should be noted that the use of Theorem 4.1 does still rely on a simplifying assump-
tion, specifically, the non-stagnate distribution assumption. In order to verify whether or not
newly derived stability criteria are truly representative of the unsimplified PSO variant under
consideration, it is still recommended to perform some form of empirical verification of the
criteria in an assumption free context. Such an empirical approach is detailed in Cleghorn
and Engelbrecht (2015).

6 Conclusions and future work

This paper provided a meaningful extension to the theoretical stability analysis currently
performed on PSO. The criteria for order-1 and order-2 particle stability were provided for
a large class of PSO variants. The stability criteria were derived by modeling, in the sim-
plest case, the personal and neighborhood best positions as convergent sequences of random
variables. It was also shown that the non-stagnant distribution assumption is a necessary
condition for order-1 and order-2 stability.

In terms of potential future work, there are still a few relatively unexplored areas of PSO
stability analysis. The first is the theoretical derivation of stability criteria for PSO variants
where the control coefficients are time dependent, specifically the following class of PSO
update equations could be considered

et + 1) = xx(Oor +x(t — Dt + 1 (49)

where k indicates the vector component, («;), (8;), and (y;) are sequences of random vari-
ables. The class of PSOs described by Eq. (49) includes numerous PSO variants where the
inertia, cognitive and/or social coefficients are altered over time, as in many self-adaptive
PSOs (Nakaet al. 2001; Ratnaweera et al. 2003; Suganthan 1999; Yoshida et al. 1999; Perman
et al. 2003; Harrison et al. 2016). The second relatively unexplored area is to perform theo-
retical stability analysis on PSO variants where the particle position update equation does not
operate on dimensions independently. A good example of a PSO variant with this coupling
between dimensions is standard PSO 2011 (SPS0O2011), as proposed by Clerc (2011), as well
as the PSO variant proposed by Bonyadi et al. (2014). The required mathematical techniques
needed to perform this type of analysis in a tractable fashion are, unfortunately, not imme-
diately apparent. The last interesting areas of research is the development of an approach to
predict long-term behavior of PSO variants which rely on random variables without well-
defined order-1 and order-2 moments. An example of such a PSO variant would be that of
Miranda and Fonseca (2002) if a Cauchy or Lévy distribution was sampled from for the
inertia perturbation, or even for the perturbation of ¢; and c5.
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Appendix: Eigenvalues from theoretical analysis

For the sake of completeness, this appendix contains the five eigenvalues of matrix B;, from

Sect. 4. The presented eigenvalues were generated using MATLAB’s symbolic toolbox. Given

the length of some of the eigenvalues, they have been typeset in a compact manner.
Eigenvalue 1:

Ela]/2 — (E[a]2 +4E[BD(1/2)/2
Eigenvalue 2:

Ela]/2+ (Ela]2 +4E[BD(1/2)/2
Eigenvalue 3:

E[B)/3+ Ela”1/3 + (E[*1/3 + (E[B] + El[a”])2/9 — (E[B]E[e])/3
+ QE[a]E[aB])/3)/(E[B] + E[*])3/27 + ((E[B] + E[e*)(E[B*] — E[BIE[?]
+2E[a]E[af])/6 + (E[«]E[B*])/2 — (EIBIEIB])/2 + ((E[B]

+ E[e?1)3/27 + ((E[B]1+ E[o*)(E[B*] — E[BIE[?]
+2E[e]E[ep])/6 + (E[«]E[B*])/2 — (E[BIEIB*D/2)2 — (E[B1/3
+(E[B] + E[e®])2/9 — (E[BIE[a?*])/3

+ QE[«]E[ef])/3)3)(1/2))(1/3) + (E[B] + E[?1)3/27 + ((E[B]
+ E[e*)(E[B*] — EIBIE[a?] + 2E[«]E[ef])/6 + (E[«]E[S*])/2
— (E[BIE[B*))/2 + ((E[B] + Ela®])3/27 + ((E[B]

+ E[o*1)(E[B*] — E[BIE[e?] + 2E[«]E[aB)))/6 + (E[«]E[$%])/2
— (E[BIE[B*))/2)2 — (E[B*1/3 + (E[B] + E[?])2/9

— (E[BIE[¢*])/3 + QE[«]E[af])/3)'3)(1/2))'(1/3)

Eigenvalue 4:

E[B)/3+ E[e*]/3 — (3°(1/2)((E[B*1/3
+ (E[B] + E[«*1)2/9 — (E[BE[e*])/3
+ QE[a]E[af])/3)/(E[B]
+E[a®1)'3/27 + ((E[B] + E[«*)(E[B*] — E[BIE[0*]
+2E[a)E[ef])/6 + (E[«]E[B>])/2 — (EIBIE[B*))/2
+ (((E[B] + E[e?1)3/27 + ((E[B] + E[«*(E[B*] — E[BIE[?]
+2E[a]E[af])/6 + (E[a]E[B*])/2 — (E[BIE[B*])/2)2
— (E[B*1/3 + (E[B] + E[o*1)'2/9 — (E[BIE[e*])/3
+ QE[a]E[ef])/3)3)(1/2))(1/3) — ((E[B] + E[a*1)'3/27 + ((E[B]
+ E[e®)(E[B*] — E[BIE[e?] + 2E[a]E[af)) /6 + (E[a]E[B*))/2
— (E[BIEIB*D/2 + ((E[B] + E[e*1)'3/27 + (E[B] + E[e*)(E[B*]
— E[BIE[e*] + 2E[a]E[af)/6 + (E[«]E[B*])/2 — (E[BIE[B*1)/2)2
— (E[B*1/3 + (E[B] + E[*1)'2/9 — (E[BIE[e*])/3
+ QE[a]E[ef])/3)3)(1/2))(1/3)1i)/2
— (E[B*1/3 + (EIB] + E[«*1)2/9 — (EIBIE[2*])/3
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+ QE[«]E[ef))/3)/ RUEIB] + E[e*1)3/27 + (E[B] + Ele*)(E[B*]

— E[BIE[e®] + 2E[a]E[aB))) /6 + (E[«]E[B*])/2 — (E[BIE[B*])/2 + ((E[B]

+ E[0?1)3/27 + (E[B] + E[e*1)(E[B*] — E[BIE[0*]

+2E[a]E[ef])/6 + (E[«]E[B*])/2 — (E[BIE[B%])/2)2 — (E[B*1/3 + (E[B]

+ E[@®])2/9 — (E[BIE[a?])/3

+ QE[a]E[af])/3)3)(1/2))(1/3)) — (E[B] + E[e*1)3/27 + ((E[B]
E[®])(E[B*] — EIB)E[®] + 2E[]E[af]))/6 + (E[«]E[S%])/2

— (E[BIEIB*D/2 + ((E[B] + E[e*1)3/27 + (E[B] + E[e*(E[B*]

— E[BE[e] + 2E[a]E[aB]) /6 + (E[«]E[B*])/2 — (E[BIEIB*])/2)2

— (E[B*1/3 + (E[B] + E[«*1)2/9 — (E[BIE[2*])/3

+ QE[]E[ef])/3)3)'(1/2))(1/3)/2

Eigenvalue 5:

E(B1/3 + E[¢*1/3 + (3°(1/2)(E[B*)/3 + (E[B] + E[«*1)2/9 — (E[BIE[2*])/3
+ QE[«]E[af))/3)/(E[B] + E[a?])3/27 + (E[B] + E[a*)(E[B*] — E[B]E[e?]
+2E[a]E[ef])/6 + (E[«]E[B*])/2 — (E[BIE[B*])/2 + ((E[B] + E[e?])3/27
+ ((E[B1 + E[«*(E[B*] — E[BIE[e*] + 2E[]E aﬁ]))/6 o+ (E[a (8%1)/2
— (EIBIE[B*D/2)2 — (E[B*1/3 + (E[B] + E[¢*])2/9 — (E[B1E[e?])/3
+ QE[)E[af])/3)3)'(1/2))(1/3) — (E[B] + E[a2]>A3/z7 + ((E[ﬂ]

+ E[e®)(E[B*] — E[BIE[e?] + 2E[a]E[af]) /6 + (E[«]E[B)/2

— (EIBIEIB*D/2 + ((E[B + E[?1)3/27 + ((E[B] + E[*)(E[B?]

— E[BE[’] + 2E[a]E[aB)) /6 + (E[«]E[*1)/2 — (E[BIEIB])/2)2
—(E[B*1/3 + (E[B] + E[o*1)'2/9 — (E[BIE[e*])/3

+ QE[a]E[eB])/3)'3)'(1/2))(1/3)1)/2 — (E[B*1/3 + (E[B] + E[*1)2/9
— (EIBIE[e?])/3 + QE[«]E[af])/3)/(2((E[B] + E[a*])3/27

+ ((E[B] + E[e*)(E[B%] — E[BIE[a®] + 2E[«]E[aB))) /6 + (E[«]E[£%])/2
— (EIBIEIB*D/2 + ((E[B + E[a?1)3/27 + ((E[B] + El*)(E[B?]

— E[BIE[’] + 2E[a]E[aB]) /6 + (E[«]E[%1)/2 — (E[BIEIB])/2)2
—(E[B*1/3 + (E[B) + E[e*1)'2/9 — (E[BIE[e*])/3

+ QE[a]E[f])/3)'3)'(1/2))(1/3)) — ((E[B]+ E[a*1)'3/27 + (E[B]

+ E[e®)(E[B*] — E[BIE[a?] + 2E[a]E[af]) /6 + (E[a]E[B)/2

— (E[BIEIB*D/2 + ((E[B] + E[e*1)'3/27 + (E[B] + E[e*)(E[B*]

— E[BIE[’] + 2E[a]E[aB)) /6 + (E[«]E[*1)/2 — (EBIEIB])/2)2

— (E[B*1/3 + (E[B) + E[e*1)'2/9 — (E[BIE[e*])/3

+ QE[a]E[aB])/3)3)'(1/2))(1/3)/2
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