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Abstract Cooperative object transport in distributed multi-robot systems requires the coor-
dination and synchronisation of pushing/pulling forces by a group of autonomous robots in
order to transport items that cannot be transported by a single agent. The results of this study
show that fairly robust and scalable collective transport strategies can be generated by robots
equipped with a relatively simple sensory apparatus (i.e. no force sensors and no devices
for direct communication). In the experiments described in this paper, homogeneous groups
of physical e-puck robots are required to coordinate and synchronise their actions in order
to transport a heavy rectangular cuboid object as far as possible from its starting position
to an arbitrary direction. The robots are controlled by dynamic neural networks synthesised
using evolutionary computation techniques. The best evolved controller demonstrates an
effective group transport strategy that is robust to variability in the physical characteristics
of the object (i.e. object mass and size of the longest object’s side) and scalable to different
group sizes. To run these experiments, we designed, built, and mounted on the robots a new
sensor that returns the agents’ displacement on a 2D plane. The study shows that the feed-
back generated by the robots’ sensors relative to the object’s movement is sufficient to allow
the robots to coordinate their efforts and to sustain the transports for an extended period of
time. By extensively analysing successful behavioural strategies, we illustrate the nature of
the operational mechanisms underpinning the coordination and synchronisation of actions
during group transport.
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1 Introduction

Cooperative object transport in multi-robot systems is a process requiring coordination and
synchronisation of pushing/pulling forces by a group of autonomous robots in order to trans-
port items that can not be transported by a single agent (Groß and Dorigo 2004a). In natural
systems, ants have evolved extremely effective competencies to cooperatively retrieving items
that can be hundreds or even thousands times the weight an individual can carry (Czaczkes
et al. 2011). Cooperative transport is relatively ubiquitous in ants, being known in at least
40 genera of ants (Moffett 1992). Ants primarily engage in cooperative transport to retrieve
objects (e.g. food items) that are too heavy or too large to be moved by a single individ-
ual. Owing to cooperative transport, ants can perform faster prey retrieval reducing both the
exposition of foragers to predators, and the risk of food being caught and eaten by other
aggressive species (Hölldobler et al. 1978; Yamamoto et al. 2009). The fast retrieving of
preys also reduces the time workers are involved in transport tasks, freeing them for other
colony relevant tasks (Feener et al. 1990; Tanner 2008). Czaczkes and Ratnieks (2013) show
that cooperative transport also reduces the energetic cost of transport by allowing carriers to
keep up with the dense flow of traffic and by reducing the possibility of traffic jams.

As shownbyMcCreery andBreed (2014), not all species of ants are efficient in collectively
transporting large or heavy items. The alignment of agents’ travel directions that triggers
and sustains the transport is a complex process that not all ants species manage to execute
efficiently. In some species, workers simultaneously push and pull the object in opposite
directions, resulting in transport processes that are generally slow and interrupted by frequent
“deadlock” in which the workers cancel each other’s forces. In other species, the transport is
extremely efficient, fast, and without deadlocks (Czaczkes and Ratnieks 2013). It seems that
a variety of parameters including the item’s resistance to movement, the speed of transport,
as well as the item size, shape, and mass play a significant role for the recruitment and active
engagement of individuals into the transport (McCreery and Breed 2014). It has also been
observed that, for those ants species in which the transport is very fast and efficient, some
individuals seem to be more important than others in sustaining and directing the movement
during the collective effort (Gelblum et al. 2015).

In spite of the numerous studies focusing on this process, various hypotheses concerning
the mechanisms for alignment and coordination of forces during cooperative transport in
ants remain to be empirically verified. For example, it is still not clear what mechanisms are
used to assess consensus or quorum information about directional movements (McCreery
and Breed 2014). Hypotheses vary from parsimonious explanations based on the perception
of the object movement, to theories that require more complex structures for the perception
of the forces exerted on the object, or for direct communication between the agents involved
into the transport (Robson and Traniello 1998).

In recent years, the attempt of swarm roboticists to engineer groups of robots that generate
interesting collective responses through self-organisation has provided biologists with an
alternative method to investigate phenomena in social insects (Bonabeau et al. 1999). Like
for ants, swarm robotics systems are required to operate and to coordinate their actions
without using centralised control or global information, and without any form of global
communication, since this is very likely to impose restrictions on the scalability of solutions
for very large swarm size (i.e. hundreds or thousands of individuals) (Dorigo and Şahin
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2004). Detailed and comprehensive reviews of the state of the art in swarm robotics can
be found in Brambilla et al. (2013); Bayındır (2016). Cooperative transport is one of the
most studied phenomenon in swarm robotics, since it requires collective competencies that
can make swam robotic systems extremely effective in a variety of real-world applications,
such as waste retrieval and disposal, de-mining, or operations requiring object manipulation
in environments where a direct human intervention is impossible or impractical, such as in
space or in deep sea (Woern et al. 2006; Huntsberger et al. 2000; Parker and Zhang 2006).

Generally speaking, the objective of the studies in swarm robotics on cooperative trans-
port is to provide new engineering solutions to improve the effectiveness of the collective
responses (e.g. see Habibi et al. 2014, 2015). Some of these research works are also relevant
for biology since they represent a proof-of-concept demonstration on physical hardware of
the kind of mechanisms natural swarms could potentially use to coordinate their actions
during transport. In this study, we follow this multidisciplinary stance by engineering a
swarm robotics system that transports objects of various sizes and masses, using strategies
that proved to be robust and scalable to larger group sizes. At the same time, our work
demonstrates how a group of robots equipped with a minimalist sensory apparatus, and with
no means of direct communication, can effectively accomplish a collective transport task.
Throughout the paper, the adjective “minimalist” referred to the robots sensory apparatus is
used to indicate, in qualitative terms, robots that lack the capability to sense pushing/pulling
forces and to directly communicate to any of their swarm mates. Our results point to a rather
parsimonious explanation of the mechanisms required by real ants to transport an object. In
particular, we show that the indirect perception of the movement of the object to be trans-
ported modulates the frequency with which a robot changes the point of application of its
pushing forces. The perception of movements of the object reinforces pushing behaviour on
the same robot–object or robot–robot contact point. The perception of no object movement
induces the robot to change the point of application of its pushing forces. This mechanism
is sufficient for a robot to sense a quorum with respect to the direction of travel and to break
“deadlocks” in which the robots cancel each others’ forces.

In the next section, we briefly review some of those swarm robotics studies whose results,
like in our case, suggest that complex forms of social behaviour can be accomplished with
less than what originally thought to be necessary (see Sect. 2). Sections 3, 4 and 5 describe
the task and the simulation model, the robots’ neuro-controller and the algorithm used to set
its parameters, and the fitness function. Section 6 illustrates the experimental results and the
analysis of the operational mechanisms underpinning the single robot’s behaviour. In Sect. 7,
we discuss and comment on the results of this study and we point to interesting directions
for future work.

2 Background

As acknowledged in Groß and Dorigo (2009), sensitivity to size and shape of the object, and
undesired negative effects during tests on scalability with respect to group cardinality, seem
to be major obstacles to the design of efficient group transport strategies in swarm robotics
systems. Various hardware solutions and different types of control policies have been tested
to improve the performance of swarms of robots designed to accomplish collective transport
tasks. Chen et al. (2015) review this rather heterogeneous body of literature according to the
type of strategy used by the robots to transport the object, effectively dividing the systems
in three groups: those in which the robots push the object, those in which the robots pull the
object, and those in which the robots use a caging strategy (i.e. the robots first surround the
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object and then move it). After a careful analysis of advantages and disadvantages of each
approach, the authors describe an alternative group transportmethodwhich, rather than trying
to overcome the limitations imposed by occlusion of the goal, it exploits occlusion. The robots
are designed to push the object across the portion of its surface, where it occludes the direct
line of sight to the goal. The authors also provide an analytical proof of the effectiveness of
the method and show the results of successful empirical tests in physical robots with objects
of different shapes (see Chen et al. 2015).

In this section, our objective is to briefly review the literature on cooperative transport in
swarm robotics bymainly focusing on studies whose results have also a relevance for biology.
Our goal is to provide the reader with a brief overview of works whose aim is twofold: (i) to
illustrate new structural/functional elements that prove to be effective engineering solutions
for swarm robotics systems engaged in object transport scenarios and (ii) to generate new
hypotheses about the mechanisms that may underpin the process of collective transport
in natural swarms. Similarly to these studies, we describe a swarm robotics system that
proves to be particularly effective in transporting, using pushing strategies, objects of various
masses and sizes. We also generate a specific hypothesis on the characteristics of the sensory
apparatus required by natural organisms to align pushing forces and to sustain the transport
of heavy objects. The distinctive feature of this work and our contribution to the literature
are to show that force sensors are not required to initiate and sustain the collective transport.

The starting point of the kind of research studies mentioned above can be identified in
the pioneering work of Kube and Zhang (1997) on box pushing by a multi-robot system.
This study is considered the first research work that formally represented in “hardware”
the dynamics of collective object transport. In this study, the effectiveness of the individual
mechanisms underpinning cooperative transport is tested with respect to their sensitivity to
the group size. The authors demonstrate that coordinated efforts in the box pushing task are
possible without use of direct communication or robot differentiation. The work described
inKube andBonabeau (2000) further develops themodel described inKube andZhang (1997)
with the addition of a stagnation recovery strategy. Stagnation refers to a deadlock condition
in which robots cancel each other pushing forces due to the way in which they are distributed
around the object. The authors provide the robots with a realignment or repositioning strategy
to allow the agents to overcome stagnation by redistributing the pushing forces around the
object. In this study, the authors also evaluate the group transport strategies with objects of
different shapes in scenarios in which the objects have to be transported toward a moving
target.

The study described in Berman et al. (2011) tries to mimic the behaviour of natural
swarms by looking for the individual rules that generate robust group-level responses. The
authors observed a particular species of ants Aphaenogaster cockerelli in order to extract
and reproduce in a simulated swarm robotics system those rules that govern the individual
actions during group transport. The authors created a detailed model based on a qualitative
analysis of the role and contribution of single ants during transport of food items to the nest.
The collected data have been used to create a model of the ants’ behavioural rules during
transport. The model has been validated by comparing the behaviour of simulated and real
ants.Wang et al. (2004) propose a decentralised control algorithm to control a swarmof robots
in which the cooperative transport is coordinated by a leader robot that knows the direction
of transport. The algorithm is directly implemented and tested on a robotic system in which
the robot can only push the object. The authors show that the follower robots can interact
with the leader robot by simply sensing the forces/movements on the object. This form of
indirect communication through the object is sufficient to allow the robots to exert forces and
to move the object along the transport trajectory known by the leader. Similarly, Wang and
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Schwager (2016) develop a mechanical model for leader/follower multi-robot systems. The
followers calculate the force and the velocity needed to exert forces on the object in order to
reinforce the leader’s efforts. Although the robots do not require any explicit communication
mechanism, the model requires the robots to know the mass and the friction coefficients of
the object beforehand in order to measure the velocity and acceleration at the centre of mass
of the object. The swarm robotics model described in Groß and Dorigo (2008) demonstrates
that communication between robots involved into the collective transport need not be direct.
Stigmergic forms of communication suffice to achieve coordination of forces and alignment
in a group of robots retrieving heavy objects.

In this study, we describe a further swarm robotics model targeting cooperative transport
for simple robots that can only exert pushing forces. In this work, a group of physical e-puck
robots are required to push an elongated cuboid object which is heavy enough to require
the combined efforts of all the members of the group to be transported. The robots have to
coordinate and align their movements in order to agree on a common direction of transport
and to push the object for an extended period of time. As mentioned above, the distinctive
feature of our model is the minimalist sensory apparatus provided to the robots. Contrary to
similar previous studies (see for example Aiyama et al. 1999; Groß and Dorigo 2004b; Groß
et al. 2006a, b; Nouyan et al. 2006; Pettinaro et al. 2005; Wang et al. 2006, 2004; Wang and
Schwager 2015, 2016), our robots have no means to directly perceive and measure forces
applied either directly or indirectly on the object or to the robots themselves. We use robots
equipped with a sensory apparatus made of proximity sensors, a camera, and an “optic-flow”
sensor, appositely designed, built, and mounted on the e-puck chassis to allow each robot to
get a precise estimate of its movement on a 2D plane. This information, in combination with
the readings of the distance sensors, generates a sensory stimulation that effectively informs
the robot on the direction of movement of the object.

The optic-flow sensor is a relatively cheap hardware component that can be easily inte-
grated in various robotic platforms. It is also extremely robust and capable of generating
highly precise reading in operating conditions in which the floor is relatively flat. The results
of our study unambiguously demonstrate that the feedback generated by the optic-flow sensor
is sufficient to allow a swarm of robots to align their pushing forces, to agree on a common
direction of transport, and to sustain the transport of heavy objects for an extended period of
time. In view of these promising results, it is important to clarify that, from an engineering
perspective, we do not claim that alternative solutions to those based on force sensors have to
be always privileged in swarm robotics. The specific conditions in which a swarm is required
to operate, the physical structure of the robots, aswell as other contingent phenomena, are ele-
ments that have to be carefully taken into account to make important methodological choices
whose significance has to be empirically tested. In this spirit, we believe that our results,
generated with this minimalist set-up, can be used in the future as a term of comparison
to verify whether the use of whatever more complex or simply different sensory apparatus
returns any substantial benefit in term of group performance.

This paper is based on and extends a preliminary study described in Alkilabi et al. (2016b).
We complement the initial evaluation of the system already illustrated in Alkilabi et al.
(2016b) with an extensive series of further analyses focused on the description of the individ-
ual behavioural strategies used by the robots to coordinate and to synchronise their efforts.We
also evaluate the scalability of the group transport strategies with respect to the cardinality of
the group, and their robustness to a larger set of operating conditions, in which we vary mass
and size of the object. In this study, we explicitly avoid to directly or indirectly impose to
the robots a direction of transport, because we are interested in the emergence of alignment
of pushing forces by means of local interactions. In a further study described in Alkilabi
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et al. (2016a), we extended the e-puck competencies by designing mechanisms that allow
e-puck robots first to move a heavy object in an arbitrary direction and subsequently to push
it toward a specific target location.

3 The task and the simulation model

In this study, neuro-controllers are synthesised using artificial evolution to allow a homoge-
neous group of four autonomous robots to push an elongated cuboid object (30cm length,
6cm width and height, 600g mass) as far as possible from its initial position. The parameters
of the neuro-controllers are set in a simulation environment which models kinematic and
dynamic features of the experimental conditions in which simulated e-pucks are required to
operate. The robot’s sensory apparatus includes infrared sensors, a camera, and the optic-
flow sensor appositely designed, built, and integrated into the e-puck structure for this task
(see Fig. 1a). During evolution, the robots are initially positioned in a boundless arena with
flat terrain, at 50cm from the object. The robots starting positions correspond to randomly
chosen points on a circle’s circumference of 50cm radius that has the object in its centre (see
Fig. 1b). This circle is divided in four equals parts. Each robot is randomly placed in one
part of this circle with random orientation in a way that the object can be within an angular
distance of ±60◦ from its facing direction. These criteria should generate the required vari-
ability to develop solutions that are not sensitive to the robots initial positions. The objective
of the robots is to move the object 2m away from its initial position. The object mass is set
so that the coordinated effort of all four robots is required to move the object.

Using a trial and error procedure,we found that for a group of three e-puck robots, all robots
are required to initiate (i.e. to change the zero linear momentum of the cuboid object) and
sustain (i.e. to continuemoving the cuboid object when it has already a linear momentum) the
transport when the mass to be transported is within the interval [450g, 530g]. The transport
of a cuboid object of mass lower than 450g requires less than three robots to be sustained.
The transport of a cuboid object of mass higher than 530g requires more than three robots
to be initiated. For example, the transport of a cuboid object of mass within the interval
[530g, 600g] cannot be initiated, although it can be sustained, by a three robots groups. The
transport of a cuboid object of mass higher than 600g cannot be initiated nor sustained by a
three robots groups. For a group of four e-puck robots, all robots are required to initiate and
sustain the transport when the mass to be transported is within the interval [600g, 680g].
The transport of a cuboid object of mass lower than 600g requires less than four robots to
be sustained. The transport of a cuboid object of mass higher than 680g requires more than
four robots to be initiated. Based on these measurements, we worked out that for groups of
cardinality N , the lowest (Lm) and the highest (Hm) mass requiring the contribution of all
N robots to both initiating and sustaining the transport can be expressed using the following
formulas: Lm = N × 150; Hm = (N × 150) + 80. We have empirically verified with tests
on physical robots the reliability of the above-mentioned formulas. This approach clearly
generates only a rough estimation of the lowest and highest object’s masses that can be
transported by groups of cardinality N . The reason for this being the influence of multiple
factors that cannot be systematically controlled. For example, small variability of the terrain
surface, dust, wheels’ slippage, the distribution of the points of application of pushing forces
can considerably contribute to determine the mass of the object whose transport requires all
N robots of the group to be both initiated and sustained.

The robots can perceive the object with their camera, and when sufficiently close to it,
they can sense it with their infrared sensors. The task requires the robots to independently
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(a)

(b)
Fig. 1 a E-puck robot with details of the optic-flow sensor. b The robots starting position during the evolu-
tionary phase. The black circles indicate the robots and the grey rectangle refers to the object

search for the object and move toward it. Once in the proximity of the object, the robots
have to coordinate their actions in order to push the object by exerting the forces required to
transport it as far as possible from its initial position.

To take into account the dynamic aspects of this group transport scenario (e.g. forces,
torque, friction), the agents and their environment have been simulated using the Bullet
physics engine. The object has a cuboid shape (30cm length, 6cm width, 6cm height) with a
mass of 600g. As mentioned above, our simulation models an e-puck robot (Mondada et al.
2009). The robot model consists of three rigid bodies, a cylindrical chassis (3.55cm radius,
6.2 cm height, 200g mass), and two motorised cylindrical wheels (2.05cm radius, 0.2 cm
height, 20g mass) connected to the chassis with hinge joints. Both wheels can rotate forward
and backward at a maximum speed of 8cm/s (see also Alkilabi et al. 2015 for a detailed
description of the simulator).

Every robot is provided with eight infrared sensors (IRi with i ∈ {0, . . . , 7}), which give
the robot a noisy and nonlinear indication of the proximity of an obstacle (e.g. the object or
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another robot). The IR sensor values are computed using a nonlinear regression model of
the sensor readings collected from the physical e-puck. Once the values are computed, they
are subject to noise: IR sensors perceiving objects are subject to noise drawn from a random
uniform distribution in the range ±25% of the sensor maximum readings. IR sensors not
perceiving any objects are subject to noise drawn from a random uniform distribution in the
range ±7% of the sensor maximum readings. Each robot is also equipped with a camera that
can perceive coloured items (i.e. the object which is green, or robots which are all red). The
camera has a receptive field of 30◦, divided in three equal sectors Ci , with i = {1, 2, 3}, each
of which can return one of four possible values: 0 if no item falls within the sector’s field of
view; 0.4 if one or more red items are perceived; 0.7 if a green item is perceived; 1.0 if red
and green items are perceived. The camera can detect coloured objects up to a distance of
50cm.

The new optic-flow sensor is an optical camera mounted underneath the robot chassis and
located inside the slot originally hosting the robot battery (see Fig. 1a). This sensor captures
a sequence of low-resolution images (i.e. 18 × 18 pixels) of the ground at 1500 frames per
second. The images are sent to the on board DSP which, by comparing them, calculates the
magnitude and the direction of movement of the robot. This information is subsequently
communicated to the robot controller in the form of four normalised real values in [0, 1]:+X
and −X representing the displacement on the positive and negative direction of the x axis,
respectively; +Y and−Y representing the displacement on the positive and negative direction
of the y axis, respectively. The optic-flow sensor returns readings at a maximum speed of
12 ips (inches per second) and can operate on different type of flat surfaces. To improve
portability of solutions to physical hardware, in simulation, +X,−X, +Y, and −Y are subject
to uniformly distributed random noise in [−0.025, 0.025]. A detailed description of the optic-
flow sensor’s characteristics can be found at http://www.aber.ac.uk/en/cs/research/ir/dss/#
swarm-robotics.

The optic-flow sensor generates a sensory stimulus which is a direct feedback on the
consequences of the signals sent to the motors. In a collective object transport scenario,
multiple contingencies can result in a robot failing to execute its desired action. For example,
a forward movement command may not produce the desired action if the robot is pushing a
stationary object, or an object that is moving in the opposite direction due to forces exerted
by other robots. The optic-flow sensor generates readings that can be used by the agents to
differentiate between the former and the latter condition and to respond accordingly. The
results of this study show that the extended sensory apparatus of the e-puck robots generates
readings that are sufficiently informative to allow the robots to coordinate their effort in order
to collectively transport in an arbitrary direction an object that cannot be moved by single
robots.

4 The controller and the evolutionary algorithm

The robot controller is composed of a continuous time recurrent neural network (CTRNN)
of 19 sensor neurons, 6 internal neurons, and 4 motor neurons (see Beer and Gallagher 1992,
and also Fig. 2 which illustrates structure and connectivity of the network). The states of
the motor neurons are used to control the speed of the left and right wheels. The values of
sensory, internal, and motor neurons are updated using Eqs. 1, 2, and 3.

yi = gIi ; i ∈ {1, . . . , N }; with N = 19; (1)
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Fig. 2 The robot’s controller. The continuous line arrows indicate the efferent connections for only one
neuron of each layer. Hidden neurons receive an afferent connection from each input neuron and from each
hidden neuron, including a self-connection. Output neurons receive an afferent connection from each hidden
neuron. Sensors to sensor neurons correspondence is indicated underneath the input layer, with IRi referring
to the infrared sensors, Ci to the camera sensors, +X,−X,+Y,−Y to the readings of the optical flow sensor,
and Oi referring to the output of the network at previous time step

τi ẏi = −yi +
j=N+6∑

j=1

ω j i f j ; i ∈ {N + 1, . . . , N + 6}; (2)

yi =
j=N+6∑

j=N+1

ω j i f j ; i ∈ {N + 7, . . . , N + 10}; (3)

with f j = σ(y j + β j ); and σ(x) = (1 + e−x )−1. In these equations, using terms derived
from an analogy with real neurons, yi represents the cell potential, τi the decay constant,
g is a gain factor, Ii with i ∈ {1, . . . , N } is the activation of the i th sensor neuron (see
Fig. 2 for the correspondence between robots sensors and sensor neurons), ωi j the strength
of the synaptic connection from neuron j to neuron i, β j the bias term, f j the firing rate. All
sensory neurons share the same bias (βI ), and the same holds for all motor neurons (βO).
τi and βi of the internal neurons, βI , βO , all the network connection weights ωi j , and g are
genetically specified networks’ parameters. At each time step, the output of the left motor is
ML = fN+7 − fN+8, and the right motor is MR = fN+9 − fN+10, with ML , MR ∈ [−1, 1].
Cell potentials are set to 0 when the network is initialised or reset, and Eq. 2 is integrated
using the forward Euler method with an integration time step T = 0.13.

A simple evolutionary algorithm using roulette wheel selection is employed to set the
parameters of the networks (see Goldberg 1989). The population contains 100 genotypes.
Generations following the first one are produced by a combination of selection with elitism,
recombination, and mutation. For each new generation, the eight highest scoring individuals
(the elite) from the previous generation are retained unchanged. The remainder of the new
population is generated by fitness proportional selection from the 60 best individuals of the
old population. Each genotype is a vector comprising real values coding for the network’s
connection weights, decay constants, bias terms and gain factor. Initially, a random popula-
tion of vectors is generated by initialising each component of each genotype to values chosen
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uniformly random from the range [0, 1]. New genotypes, except the elite, are produced by
applying recombination and mutation. Each new genotype has a 0.3 probability of being cre-
ated by combining the genetic material of two parents. During recombination, one crossover
point is selected. Genes from the beginning of the genotype to the crossover point are copied
from one parent, and the other genes are copied from the second parent. Mutation entails
that a random Gaussian offset is applied to each real-valued vector component encoded in
the genotype, with a probability of 0.04. The mean of the Gaussian is 0, and its standard
deviation is 0.1.

During evolution, all vector component values are constrained to remain within the range
[0, 1]. Genetically encoded values were linearly mapped into CTRNN parameters with the
following ranges: input neuron biases βI ∈ [−4, 4]; hidden neuron biases β j ∈ [−5, 5];
output neuron biases βO ∈ [−5, 5]; connection weights from input to hidden neurons ω j i ∈
[−8, 8]; connection weights from hidden to hidden and from hidden to output neurons ω j i ∈
[−10, 10]; and gain factor g ∈ [1, 13]. Decay constants were first linearly coded in the
range τi ∈ [0, 2.2] and then exponentially mapped into τi ∈ [100, 102.2]. These parameter
ranges were chosen on the basis of having proven useful in other CTRNN experiments. The
large range of the exponentially mapped decay constants is meant to allow for evolution to
select both neurons that tend to change their state (cell potential) radically every time step
(i.e. neurons with small decay constants), and neurons that tend to change their state only
minimally every time step (i.e. those with large decay constants).

5 The fitness function

During evolution, each group undergoes a set of E = 12 evaluations or trials. A trial lasts
900 simulation steps (i.e. 117s, with 1 stimulation step corresponding to 0.13 s). A trial is
terminated earlier if the groupmanages to displace the object 2maway from its initial position.
At the beginning of each trial, the controllers are reset, and the robots are positioned in the
arena as shown in Fig. 1b. Each trial differs from the others in the initialisation of the random
number generator, which influences all the randomly defined features of the environment,
such as the noise added to sensors and the robots initial position and orientation. The robots
initial relative position with respect to the object is an important aspect which bears upon the
complexity of this task. This is because the robots initial positions contribute to determine
the orientation with which they approach the object and consequently the nature of the
manoeuvres required by the agents to coordinate and synchronise their actions.

In each trial (e), an evaluation function Fe rewards groups in which the robots remain
close to the object, and transport the object as far as possible from its initial position. Fe is
computed in the following:

Fe = f1 + f2 − f3 (4)

f1 =
R∑

r=1

(1 − dr ); f2 = ΔO pos

2
; f3 = t/T ; with T = 900; R = 4; (5)

dr is the normalised Euclidean distance between the centroid of robot r and the centroid of
the object. dr is set to zero if the robot gets closer than 20cm to the object. ΔO pos is the
Euclidean distance between the position of the object’s centroid at the beginning and at the
end of the trial. 2m is the maximum distance an object can be moved from its initial position.
t is the trial duration in simulation steps. f1 rewards groups in which the robots approach the
object and remain close to it. f2 rewards groups that transport the object as far as possible.
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f3 rewards groups for minimising the time required to move the object 2 metres away from
its initial position. The fitness of a genotype (F̄) is the average team evaluation score after it
has been assessed E = 12 times: F̄ = 1

E

∑E
e=1 Fe.

6 Results

The primary aim of this study is to design control systems for homogeneous groups of
physical e-pucks required to transport objects in a cooperative way. Our objective is to
generate solutions that are robust with respect to the object mass and length and scalable
with respect to the group cardinality. To design the robots’ controller, we run 20 differently
seeded evolutionary simulations, each simulation lasting 3000 generations. In order to choose
the controller to be ported onto the physical robots, we re-evaluated, in simulation, the best
genotypes from generation 1000 to generation 3000 for every run. During re-evaluations,
we evaluated homogeneous groups of 3, 4, 5, and 6 simulated robots, for their capability to
collectively transport rectangular cuboid objects of 30 and 40cm lengths. Objects of each
length are tested with two different masses. Object width and height are not changed with
respect to evolutionary conditions. The total number of re-evaluation trials per group (i.e.
320) is given by all the possible combinations of the above-mentioned parameters (i.e. two
object lengths, two object masses, four different values for group cardinality), with each
combination repeated for 20 trials (i.e. five trials for each of the starting position shown
in Fig. 3a). In order to enforce the requirement of collective transport, the masses of the
object vary with respect to the cardinality of the group in a way that the object is always
heavy enough to require the combined effort of all robots of the group to be successfully
transported. In each evaluation trial, the object is placed in the centre of a boundless flat
arena, and the robots are placed at about 50cm from the object. Each evaluation trial can
last 180s (i.e. 1384 simulation steps), and it is terminated earlier if the group manages to
transport the object at least 2m away from its initial position. Only in this later case, the trial
is considered successful.

The results of this re-evaluation test are shown in Fig. 3b, where the bars indicate the
success rate (%) of the best evolved homogeneous group of each evolutionary run. In this
graph, the runs are sorted from the best to the worst. The graph indicates that seven runs
managed to generate a best evolved group with a success rate higher than 80%. Twelve out
of 20 runs generated a best evolved group with a success rate higher than 70%. The very
best group had a success rate higher than 90%. The solution (i.e. the genotype coding for
the controller) with the very best re-evaluation score has been selected to be ported onto the
physical e-pucks for further evaluations. In the next section, we describe the results of the
first test with physical robots, and we compare these results with those of simulated robots
controlled by the same controller and evaluated in similar operational conditions.

6.1 First evaluation test with physical e-pucks

The first evaluation test with physical e-pucks has been designed to investigate the scalability
of the controllers with respect to the number of robots in the group, as well as the robustness
with respect to objects of different length and mass, and with respect to varying initial
conditions. Recall that during evolution, we used only groups of four robots and only one
type of elongated cuboid object (30cm length, 6cm width and height, 600g mass). During
the test with physical robots, we evaluated homogeneous groups of 3, 4, 5, and 6 physical
e-pucks, for their capability to collectively transport cuboid objects of 30 and 40cm length.

123



196 Swarm Intell (2017) 11:185–209

(a)

(b)
Fig. 3 a Starting positions during post-evaluation tests in simulation. Black circles indicate starting positions
of three robot groups. For four robot, five robot and six robot groups, the starting positions can be obtained
by including circles with stripes, grey circles, and white circles, respectively. Black rectangles represent the
object. b Graph showing the success rate (%) of the best evolved controller for each simulation run. Runs are
sorted from the best to the worst

Objects of each length are tested with two different masses. Object width and height are
not changed with respect to the evolutionary conditions. The total number of re-evaluation
trials with physical e-pucks (i.e. 160) is given by all the possible combinations of the above-
mentioned parameters (i.e. two object lengths, two object masses, and four different values
for group cardinality), with each combination repeated for ten trials (i.e. five trials for each of
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Fig. 4 Graph showing the success rate (%) of homogeneous groups controlled by the best evolved controller.
Black bars refer to the performance of groups of physical e-pucks; white bars refer to the performances of
groups of simulated e-pucks. The x-axis shows mass (in grams, first row) and length (in centimetres, second
row) of the objects, and group cardinality. Each bar refers to the average performance on a set of ten trials

the starting positions 1 and 2 shown in Fig. 3a). In each evaluation trial, the object is placed in
the centre of a bounded square arena (220cm side length), and the robots are placed at about
50cm from the object. Each evaluation trial can last up to 180s. A trial is terminated earlier
if the group is successful (i.e. if the object is transported 1m away from its initial position).
A Vicon tracking system is used to track the object movements in a 2D coordinates plane.

The results of the first evaluation test are shown in Fig. 4, where the bars indicate the
success rate (%) of homogeneous groups controlled by the best evolved controller in 16
different evaluation conditions. Black bars refer to the performance of groups of physical
e-pucks; white bars refer to the performances of groups of simulated e-pucks evaluated in
similar experimental conditions (i.e. same object length, same mass, same group cardinality,
and approximately same robots initial positions). The comparison between physical and
simulated robots ismeant to capture differences in performancewhenmoving fromsimulation
to reality. We notice that the performances of both physical and simulated robots are close
to or largely above 80% success rate in almost all evaluation conditions, demonstrating that
the robots’ controller can successfully operate with larger groups than those used during the
design phase, and with heavier and/or longer objects.1

The results shown in Fig. 4 tell us that performances drop for the group of 6 e-pucks,
transporting an object of 30cm length, and of 980g mass. This drop in performance can
be explained with reference to two elements: the length of the longest size of the cuboid
object (hereafter, referred to as L̄) and the sum of the diameter of the robots in the group
(hereafter, referred to as D̄). The number of robots that are forced to indirectly push the object
through physical contact with other robots progressively increases when L̄ becomes smaller

1 Data and graphs not shown in the papers, as well as movies of physical and simulated robots can be found
at http://www.aber.ac.uk/en/cs/research/ir/dss/#swarm-robotics.
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than D̄. The higher the number of robots pushing other robots, the higher the frequency
of “detachment events” during transport. A detachment event refers to the case in which
a robot loses physical contact with the element that it is currently pushing. In case of a
detachment event, a robot needs to relocate itself in a new position in order to keep on
actively contributing to the collective transport. Detachment events have a negative impact
on the group performance, since during such an event the group loses the contribution of one
robot. Detachment events are more frequent when robots are required to push other robots
thanwhen robots directly push the object. This is because the e-pucks have a cylindrical shape
which makes it relatively difficult for a robot to push another non-stationary robot. Generally
speaking, we could say that the smaller the L̄ compared to D̄, the higher the frequency of
detachment events, the poorer the group performance. However, there are exceptions. As
shown in Fig. 4, the L̄ smaller than D̄ condition only minimally affects the performance
of groups of 6 physical e-pucks transporting a slightly lighter object (see Fig. 4, six robots,
30cm length, 900g object, black bar). This is because, as long as the group manages to exert
a sufficient force to move the object, the smaller linear momentum due to the object’s lighter
mass makes the detachment events less disruptive for the group performance. In other words,
with a progressively lighter object, even if all the group members are required to initiate the
transport, not all the robots are required to push a moving object to sustain the transport.
Therefore, in this condition, detachment events are less disruptive with respect to the group
performance.

Although the results shown in Fig. 4 indicate that our simulation environment proved to be
an effective methodological tool for the design of robust and reliable robot controllers, mod-
ifications to the characteristics of the robot–world model can be certainly made to improve
the robustness of the evolved group strategies. For example, in the condition with 6 agents
pushing a 30cm length and 980gwe observe the largest difference between the performances
of physical and simulated robots. In this condition, the longest side of the object is too short to
allow all robots to directly push the object (i.e. small (L:D) ratio). Thus, in order to initiate and
sustain the transport, some robots have to push other robots that are in contact with the object.
As discussed above,when physical robots push other robotswe observe a relatively high num-
ber of detachment events, certainly higher than those that we observe in similar circumstances
with simulated robots. Since detachment events tend to disrupt the group performance, phys-
ical robots perform worst than simulated one whenever the (L:D) ratio is small. The results
of this comparative test seem to suggest that our simulator tends to “simplify” the dynamics
corresponding to the circumstance in which one robot pushes another robot that pushes the
object, so that potentially disruptive phenomena that tend to occur with physical robots are
not observed in simulation. We believe that if we could more accurately model the dynamics
related to the configuration in which one robot pushes another robot that pushes the object
we could design controllers that can more effectively cope with these dynamics, resulting in
improved group performances and more robust and more scalable transport strategies.

In summary, the result of the first set of evaluations tell us that we succeeded in designing
a controller to allow a swarm of physical e-pucks to effectively transport heavy objects
in a cooperative way. Performances are scalable and robust to deal with varying operating
conditions. The results also demonstrate that group coordination of actions and alignment
of pushing forces can be reached with a simple sensory apparatus made of distance sensors
and the optic-flow sensor to indirectly perceive the object movement (see also Sect. 6.3). The
cylindrical shape of the robots negatively impacts on the group performance when the length
of the object is shorter than the sum of the robots’ diameter. This negative effect tends to
disappear when the transport can be sustained by less robots than those required to initially
move the object.
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Fig. 5 Graph showing the sinuosity of the trajectories of the object when transported by physical robots
during successful trials. The experimental conditions given by mass (in grams, first row) and length of the
objects (in centimetres, second row), and group cardinality are indicated on the x-axis. Each point in the box
refers to the group performance in a single trial. The number of successful trials per experimental condition
is indicated above each box. Grey boxes refer to a condition in which there is a significant difference between
the sinuosity recorded in trials with the light and heavy object (Wilcoxon rank sum test, p < 0.05). White
boxes refer to conditions in which this difference is not significant. Boxes represent the inter-quartile range
of the data, while dashed horizontal bars inside the boxes mark the median value. The whiskers extend to the
most extreme data points within 1.5 times the inter-quartile range from the box

6.2 Behavioural analysis of physical robots’ groups using the sinuosity metric

In this section, we discuss the performance of physical robot groups with an analysis of the
trajectories of the object in each of the 16 different evaluation conditions described above.
This analysis is based on a metric referred to as sinuosity (S), which is defined as follows:

S = P

ΔO pos
(6)

where P corresponds to the object’s path length during transport, andΔO pos is the Euclidean
distance between the position of the object’s centroid at the beginning and at the end of
the trial. Both P and ΔO pos are computed with reference to the object’s centre of mass.
This metric has been originally proposed in McCreery and Breed (2014) to evaluate the
effectiveness of group transport strategies in real ants. It is assumed that the higher the
sinuosity the less efficient the transport strategy. This is because very sinuous trajectories are
generated by frequent changes in directions of transport which generally result from a poor
coordination between the agents while pushing the object. Low sinuosity instead tends to be
associated to an effective coordination in which a consensus on the direction of transport is
quickly found and maintained during the entire duration of the transport. The lowest value
sinuosity can take is 1, which is achieved when the object is transported on the shortest
possible path between the start and the final object position.

Figure 5 shows the sinuosity of the object trajectories of successful trials in 16 different
evaluation conditions in which we vary the object mass, the object length, and the number
of robots in the group. Recall that in each condition each group performs ten trials, and in
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each trial, the group transport successfully ends when the object is transported to 1m away
from its initial position. The graph in Fig. 5 suggests that for each group size sinuosity tends
to increase for heavy objects. Using the Wilcoxon rank sum test, we compared sinuosity in
trials with the light and the heavy object for each object length of each group cardinality.
The results of this analysis are shown in Fig. 5, where grey boxes refer to a condition in
which there is a significant difference between the sinuosity recorded in trials with the light
and the heavy object (Wilcoxon rank sum test, p < 0.05); white boxes refer to conditions in
which this difference is not significant. The statistical test indicates that, for all group sizes,
but only for objects of 40cm, the sinuosity recorded with the heavy object is significantly
higher than the sinuosity recorded with light object. The results of our analysis suggest that,
for the 40cm object, the heavier the object the more difficult for the group to coordinate
their individual efforts to find a common direction of transport. In other words, the mass
and the length of the longest object’s side bear upon the quality of the transport trajectory.
This can be due to multiple not mutually exclusive reasons. We observed that the longer and
the heavier the object, the higher its tendency to generate rotational (i.e. object rotating on
the axis perpendicular to the floor) rather than translational movements when subject to the
robots pushing forces. Rotational movements, in turn, directly increases the sinuosity of the
object transport trajectory, since they tend to produce a change in the direction of transport.
However, future work is required to clarify this issue.

For the short object (i.e. 30cm), only for the group with 5 robots, the sinuosity recorded
with the heavy object is significantly higher than the sinuosity recorded with a light object
(see Fig. 5, five agents, 30cm). For the other three group size, there is no significant difference
between the sinuosity recordedwith the light and the heavy 30cmobject. Howcanwe account
for these results? For the condition with six agents, 30cm object, the statistics are largely
influenced by the fact that the heavy object turned out to be a too difficult transport task,
with only two successful trials out of 10. The object turned out to be too small and too heavy
with problems mainly caused by the fact that coordination was often achieved having more
agents pushing other agents than those directly pushing the object (see also Sect. 6.1). For
the other two conditions (i.e. 3 agents 30cm object, and 4 agents 30cm object), multiple
factors can account for the not significant difference between the sinuosity recorded with the
light and the heavy object including the uneven friction between the object and the ground.
Uneven friction makes it harder to trigger the initial object movement, and it can interrupt a
successful transport with a consequent lost of coordination. The latter phenomenon, that has
been observed more often in trials with 30cm than with 40cm objects, has a clear impact
on the sinuosity of the object trajectory, and it can account for the not significant difference
between the sinuosity of light and heavy 30cm objects.

The results of our tests with physical robots also suggest that both sinuosity and duration
of transport tend to increase as the size of the group increases. We analysed the results using
the Friedman test (Conover 1999). As the Friedman test is a rank-based nonparametric test,
it does not require scaling the performance measure (i.e. sinuosity and duration) computed
for each trial nor formulating any restrictive hypothesis on the underlying distribution of the
different performance measures (see also Francesca et al. 2015). We represent the results
of the Friedman test in a graphical way: two plots, one for duration and one for sinuosity
of the trials, that show the expected rank obtained by each group size, together with a 95%
confidence interval. If the confidence intervals of two groups do not overlap, the difference
between the expected rank of the two is statistically significant. The graphs in Fig. 6 show
that the six robots group performs significantly worse than all other groups both in terms of
sinuosity and in terms of duration of trial. Unfortunately, with only six physical robots in our
lab, we could not further explore this correlation between group size and performance drop
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(a) (b)
Fig. 6 Friedman test on aggregate data from the four group size concerning: a sinuosity; b duration of trial.
Both in terms of sinuosity and in terms of time, the six robot group performs significantly worse than all other
groups. The graphs show the expected rank obtained by each group size, together with a 95% confidence
interval. When the confidence intervals of two groups do not overlap, the difference between the expected
rank of the two is statistically significant. See also Sect. 6.2 for an explanation of how to read the plot

in terms of quality of transport. However, if what suggested by the graphs in Fig. 6 would be
confirmed by further tests with larger groups, we would account for this trend calling upon
the effect of robot–robot collisions. The larger the group, the more frequently these collisions
occur. If a collision results in both robots occluding each other camera, as it happens during
collisions with the object to be transported, the colliding robots may mistake each other for
the object. Thus, instead of resolving the collision, they tend to reinforce it. Such an event
inevitably increases the time required for the coordination of actions and directly affects
the sinuosity and the time of transport. This is because, when two robots collide, the group
tends to generate rotational instead of translational movements of the object, due to the lack
of required forces to transport the item. We also need to remember that, in our set-up, the
object mass increases as number of robots increases. Thus, in order to transport the object
successfully, the coordination (i.e. the alignment of pushing forces on a common direction
of transport) and the synchronisation (i.e. synchronous exertion of the pushing forces) of
actions have to be progressively more accurate and effective. This means that, the object
transportation tends to be interrupted more frequently and the direction of transportation
also tends to change more frequently. These events are more likely to influence duration and
trajectory of transportation in large groups than small groups.

In the next section, we complement our analysis of the behaviour of physical robot by
showing the results of several post-evaluation tests aimed at unveiling the individual mech-
anisms used by the agents to coordinate and synchronise their actions.

6.3 An analysis of the individual mechanisms underpinning the group
coordination of action

How do the robots manage to coordinate their actions to cooperatively transport the object?
To answer this question, we describe the results of a further series of evaluation tests on a
single physical robot. In these tests, the robot undertakes multiple trials where it is required
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Fig. 7 Graph showing the results of four tests conducted with a single physical robot. The tests are described
in the text. Each box refers to the number of repositioning events on a set of ten trials. A repositioning event
happens any time the robot stops pushing the object and immediately after starts pushing the object again in a
slightly different position. Every trial last for 60 s. The experimental conditions L , H, S, and R refer to trials
with different type of objects. In L (light), we use 30cm length and 150g mass object. In H (heavy), we use
30cm length and 600g mass object. In S (short), we use 400g mass and 20cm length object. In test R (long),
we use 400g mass and 40cm length object

to push an object with varying characteristics (e.g. a light, a heavy, a short, and a long object).
During these tests, we record the number of repositioning events. That is the number of times
the robot changes the point of exerting forces on the object. A repositioning event happens
anytime the robot stops pushing the object and immediately after starts pushing the object
again in a slightly different position. During each trial, we recorded the activation of the robot
sensors’ readings, andwe use the readings from the front infrared sensors to count the number
of repositioning events. A repositioning event corresponds to a variation of the front infrared
sensors that deviate frommaximum activation when the robot stop exerting pushing forces on
the object and return to maximum activation when the robot regains physical contact with the
object. In the biological literature, repositioning events are considered to be direct evidence
of “persistence”: that is, the individual tendency to perseverate with a given behavioural
strategy. Persistence is low when the number of repositioning events is high, and vice versa.
As discussed inMcCreery and Breed (2014), persistence is an individual-level parameter that
modulates transport efficiency. Our objective is to use the concept of persistence as a tool
to move a step forward in the understanding of the operational mechanisms underlying the
alignment of forces required for group transport. In particular, we are looking for relationships
between characteristics of the object (i.e. its mass, length, and its direction of movement with
respect to the robot heading) and persistence.

In test A and test B, a physical robot is positioned in front of a cuboid object, facing the
object at about 20cm from it. In each trial, the robot is given 60s to push the object. All
tests are repeated for 10 trials. Condition L differs from condition H for the object mass. In
L , the object length is 30cm, and the object mass is 150g. The robot can easily transport
the object. In H , the object length is 30cm, and the object mass is 600g. The object is too
heavy to be moved by the robot. Condition S differs from condition R for the object length.
In S, the object mass is 400 g, and the object length is 20cm. The robot has neither the
capability to transport nor to rotate the object. In H , the object mass is 400g, and the object
length is 40cm. Contrary to S, in R the robot can rotate the object by exerting pushing forces
on either end of the longest side, but it cannot transport it. Figure 7 shows the number of
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repositioning events counted during each trial of each test. The results clearly show that the
number of repositioning events changes with respect to whether or not the object can be
moved or simply rotated. When the object is so heavy that it cannot be moved or rotated by
the robot, we observe a very high number of repositioning events. This indicates that the agent
persistence is low (see Fig. 7, box H and box S, test A and test B). When the object is light
enough to be moved or rotated by the robot, we observe a very low number of repositioning
events. This indicates that the agent persistence is very high (see Fig. 7, box L and box R,
test A and test B, respectively). We conclude that the agent perception of the object linear or
rotational movement, through the optic-flow sensor, increases the agent persistence. In other
words, the robot keeps on looking for new points on which to exert pushing forces if the
object does not move. The robot does not change the point of contact with the object if the
object moves while it is pushed.

In test C and test D, we look at whether the persistence can vary during a single trial
in response to variations on how the object responds to the robots’ actions. During group
transport, changes in the way in which the object responds to the robot’s actions are relatively
frequent, since these responses are determined by the degree of alignment of the pushing
forces. We simulated these variations by manually altering the object mass adding/removing
an iron bar of 450g to the object. When the object is light, it can be transported by the robot.
When the object is heavy, it cannot be moved/rotated by the robot. In this series of tests,
the object’s length is fixed to 30cm. For each test, we conducted 10 trials, each trial lasting
180s. The object mass is altered every 60s interval. At the beginning of each trial, the robot
is position in front of the cuboid object, facing the object at about 20cm from it. In test C, the
object mass is heavy during the first 60 s (“H”, 600g), then light for the following 60s (“L”,
150g), and then heavy again in the last 60 s interval (“H”, 600g). On the other hand, in test
D, the object mass is light during the first 60 s (“L”, 150g), then heavy during the following
60s (“H”, 600g), and then light again in the last 60 s interval (“L”, 150g).

The graph in Fig. 7 test C and testD shows that the number of repositioning events is altered
by the way in which the object responds to the robot actions. The number of repositioning
events is quite low when the object is light (see Fig. 7 condition L in test C, and test D), and
it is higher when the object is heavy (see Fig. 7 condition H in test C, and test D). The graph
also indicates that the behaviour of the robot is only determined by the current object mass,
with no effect of previous experiences. When the object returns heavy after being light, the
number of repositioning events increases (see Fig. 7 second condition H in test C), while
when the object returns light after being heavy, the number of repositioning events drops (see
Fig. 7 second condition L in test D). It seems that the controller maintains no memory of
previous experience with respect to how the object responds to its actions. For more details
see movies of the tests available in the supplementary material that can be found at http://
www.aber.ac.uk/en/cs/research/ir/dss/#swarm-robotics.

We also ran a further test in which we looked at relationship between persistence and
object movement. In this test, the object length is set to 30cm, its mass to 600g. This object
is too heavy to be moved by the robot. We run 10 trials without interfering with the robot
actions, and 10 trials in which we intentionally moved the object in the opposite direction
of the robot heading while the robot is pushing the object. We refer to the trials with no
experimenter interference as static object trials, and the trials with the intervention of the
experimenter as non-static object trials. In each of the static and non-static trials, we counted
the repositioning events with pushing forces exerted on the first touched long side of the
object. We stopped counting as soon as the robot touches the other long side of the cuboid
object. The aim of this test is to estimate how long it takes (in terms of repositioning events)
the robot to invert the direction of its pushing forces when the object does not move (static
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Table 1 The number of repositioning events during each trial of the evaluation test in which a single robot
pushes either a static object or a non-static object intentionally moved in the opposite direction of the robot
heading

Trial 1 2 3 4 5 6 7 8 9 10

Static object 6 6 5 6 5 6 5 6 5 6

Non-static object 0 0 0 0 0 0 0 0 0 0

object) and when the object moves against its heading (non-static object). The results of
this test, shown in Table 1, clearly indicate that no repositioning events are observed when
the robot perceives the object moving against its heading. In other words, the robot quickly
changes direction of pushing forces if it perceives the object moving against its heading. The
response of the robot is to move away from the object with a circular trajectory that rather
quickly takes it to the opposite side of the object1. As shown in Table 1, for the static object,
when no object movement is perceived, the robot keeps on looking for new points on which
to exert pushing forces on the same side of the object.

By visually inspecting the robots’ strategies during group transport, keeping in mind
the results of our single robot evaluation tests, we noticed that robots heavily rely on the
perception of the object rotational movement as a mean to align their forces. Robots exerting
forces on the direction of the object rotation tend to have high persistence, while the robots
exerting forces on the opposite direction of the object rotationalmovement tend to swap sides.
When all the robots are on a single side, the force exerted on the object causes the object to
switch from rotational to translation movement, and the transport begins. In the absence of
rotational movements (e.g. with very heavy objects), the alignment certainly becomes more
difficult, and it definitely takes longer for the robots to coordinate their efforts. Nevertheless,
the robots eventuallymanage to position themselves on the same side of the object and to exert
the required forces to move it. In these circumstances, we think that alignment is favoured
by correlation between robot–robot interactions and by slightly individual differences in
persistence that emerge during the course of a trial. However, further investigations are
required to better understand this process.

6.4 Scalability analysis

In this section, we illustrate the results of tests on scalability with respect to group size of
the best evolved controller. In these tests, each homogeneous group undergoes a set of 120
simulated trials given by all the possible combinations of the parameters object length and
mass—we used three object lengths and two object masses—with each combination repeated
for 20 trials (i.e. 5 trials for each of the starting positions shown in Fig. 3a). In order to adjust
the length of the longest object’s side with respect to the group cardinality, we proceeded in
the following: we first compute three reference (L:D) ratios for a group of four robots and
objects of 20, 30, and 40cm length. Then, for each group size we adjusted L in order to keep
the (L:D) ratio equal to the three reference ratios. For what concerns the object mass, we set
the mass in a way that the object is always heavy enough to require the combined effort of all
robots of the group to be transported. The mass is set to 450 and 530g for the smallest three
robots group. For any extra robot added to the group, the objectmass is increased by 150g. For
example, the four robots group is tested with an object of 600g, and with an object of 680g;
the five robots group is tested with an object of 750g, and with an object of 830g, and so on,
until the 16 robots group. A trial lasts 180s (i.e. 1384 simulation steps). A trial is considered
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Fig. 8 Graph showing the results
of the scalability test in
simulation. Each bar shows the
success rate (%) of homogeneous
groups controlled by the best
evolved controller during 120
trials. A trial is considered
successful if the group manages
to transport the object 2m away
from its initial position

successful if the group manages to transport the object 2m away from its initial position.
The graph in Fig. 8 shows that for each group the average success rate is higher than 80%.
This indicates that the group transport strategies of the best evolved controller scale relatively
well with respect to the group cardinality. The average group performance tends to slightly
degrade when the group size increases. This slight performance drop can be attributed, on the
one hand, to an increase in the number of robot–robot collisions which hinders the process of
alignment of the pushing forces, and on the other hand to the increment of the time required
to align the pushing forces. Indirect evidence of the difficulties encountered by large groups
comes from the observation of failed trials, where the groups proved unable to transport
the objects for the required distance (2m) within the trial time limits. However, the groups
transported the object more than 50% of the distance required to judge the trial successful.
We intentionally decided to keep the duration of each trial fixed for all group size. However,
this has a clear negative impact on the performance of larger groups, for which more time is
required to align the pushing forces.

7 Conclusions

We have described a study in which homogeneous groups of autonomous robots are required
to perform a collective object transport task. The robots are controlled by dynamic neural
networks synthesised using evolutionary computation techniques. The best evolved controller
has been extensively tested on physical e-puck robots in various operating conditions inwhich
we varied the size of the object, its mass, and the number of robots in the group. The results
show that the collective transport strategies are fairly robust with respect to variations of the
object characteristics and relatively scalable with respect to the group size.

Themain contribution of this study is in providing a proof-of-concept demonstration of the
effectiveness of group transport strategies generated by robots that cannot feel forces applied
to the object to be transported. From an engineering perspective, this result demonstrates
that robots equipped with a relatively simple sensory apparatus can develop complex group
dynamics related to the alignment of pushing forces and the synchronisation of actions.
These group dynamics proved to be effective in initiating and in sustaining the transport of
heavy objects. Through an extensive analysis of the operational mechanisms underpinning
individual responses, we have identified the main behavioural rules that guide the robots
during the initial phase of the task, in which the agents have to agree on a common direction
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of transport. In particular, we have shown that the perception of the movement of the object,
mainly through the feedback generated by the optic-flow sensor, modulates the frequency
with which a robot changes the point of application of its pushing forces. The perception
of rotational and translational movements of the object reinforces the pushing behaviour on
the same robot–object or robot–robot contact point. The perception of no object movement
induces the robot to change the point of application of its pushing forces. These simple rules
are sufficient for a robot to sense a quorum with respect to the direction of travel and to break
“deadlocks” in which the robots cancel each others’ forces.

From a biological perspective, the results of our study point to a rather parsimonious
explanation of the nature of themechanisms underpinning object transport in natural swarms.
We suggest that the perception of the object movement could be an important cue that guides
the behaviour of single ants during the coordination of actions in collective object transport
tasks. Evidence in support of this hypothesis could be gathered replicating on real ants the
tests described in Sect. 6.3, where the persistence metrics are used to describe the behaviour
of individuals while facing either objects that are too heavy to be moved or simply rotated,
or facing objects that can be only just rotated, or light enough to be moved.

Another lessonwe learn from this study is on the effectiveness of the evolutionary robotics
methodology used to design the robots controllers (i.e. artificial evolution in combination
with artificial neural network controllers). The advantages and disadvantages of using the
evolutionary robotics approach in the context of swarm robotics are extensively discussed
in Trianni et al. (2014). We wish to emphasise that with the evolutionary approach applied
to swarm robotics we managed to generate effective group transport strategies for physical
robots in spite of the fact that controllers have been developed in a simulated environment.
The substantial match between the performances of simulated and physical robots illustrated
in Sect. 6.1 shows that the evolutionary approach can cope with the inevitable discrepancies
between the reality and the simulation environment by generating robust and effective con-
trollers even for complex tasks in which the dynamics of the system cannot be left out from
the robot–world model (see Birattari et al. 2016 for an analysis of the issues related to the
transfer from simulation to reality of control software). Visual observations of the robot per-
formances, in particular in unsuccessful trials, allowed us to identify and discuss phenomena,
such as the case of robots pushing each other illustrated in Sect. 6.1, that in future work can
be better modelled to improve the portability of the solutions on to the physical hardware.
We also wish to clarify that the specific contribution of various implementation details (e.g.
structural and functional properties of the robots’ controllers, the roulette wheel proportional
fitness selection algorithm to search the problem space) remain to be empirically evaluated in
specifically designed future comparative studies. Within reasonable limits, we have explored
various different solutions and tested different combinations of values for the large set of
parameters of the system. The implementation details illustrated in this paper are those that
returned the best results in term of quality of the group transport strategies and effectiveness in
generating these strategies with the evolutionary algorithm. However, we cannot exclude that
alternative methodological solutions would not result in the emergence of equally effective
or even more robust and more scalable group transport strategies. Finally, our experimental
design (i.e. number of evolutionary runs, number of genotypes, number of evaluations per
genotype) and the evaluation criteria for physical and simulated robots (i.e. number of trials)
are a reasonable compromise between exploration of the problem and exploitation of the com-
putational resources at our disposal.Weconsidered that any action thatwould result in a longer
evolutionary simulation timeor longer evaluation timehad to be avoided not only for the limits
imposed by our computational resources, but also in view of an acceptable scientific practice
in which hypotheses can be tested and parameters can be set in a reasonable amount of time.
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Future work will concentrate on extending the behavioural capabilities of the robots to
allow the group to operate in more complex environments. We have already run further
experiments in which the robots capabilities have been extended to deal with tasks requiring
the transport of object in an arbitrary direction and toward a specific target area (see Alkilabi
et al. 2016a). We are currently looking at collective object transport scenarios in which the
presence of obstacles along the transport trajectory requires the group to adjust the direction
of motion. These types of scenarios can be extremely challenging because they require the
group to maintain the consensus while making a number of serial decision on where to go
next before reaching the target location. A recent research work with real ants (P. longicornis)
has shown that these insects are highly effective at navigating environments in which various
types of obstacles obstruct the transport of the object toward a nest area (see McCreery et al.
2016, for details). This study shows that ants implement a flexible collective transport strategy
that proved to be effective even in difficult circumstances in which the group has to transport
the object in the opposite direction of the target location. One of the aims of our future work
is to verify whether the perception of the movement of the object is sufficient for the agents to
maintain consensus and to repeatedly change directions of transport while avoiding eventual
obstacles and searching for the way to the target location.
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