
Swarm Intell (2016) 10:247–265
DOI 10.1007/s11721-016-0127-0

Electroencephalography as implicit communication
channel for proximal interaction between humans
and robot swarms

Luca Mondada1 · Mohammad Ehsanul Karim2 ·
Francesco Mondada2

Received: 13 April 2016 / Accepted: 12 October 2016 / Published online: 3 November 2016
© Springer Science+Business Media New York 2016

Abstract Search and rescue, autonomous construction, and many other semi-autonomous
multirobot applications can benefit from proximal interactions between an operator and a
swarm of robots. Most research on proximal interaction is based on explicit communica-
tion techniques such as gesture and speech. This study proposes a new implicit proximal
communication technique to approach the problem of robot selection. We use electroen-
cephalography (EEG) signals to select the robot at which the operator is looking. This is
achieved using steady-state visually evoked potential (SSVEP), a repeatable neural response
to a regularly blinking visual stimulus that varies predictively based on the blinking fre-
quency. In our experiments, each robot was equipped with LEDs blinking at a different
frequency, and the operator’s SSVEP neural response was extracted from the EEG signal to
detect and select the robot without requiring any conscious action by the user. This study
systematically investigates several parameters affecting the SSVEP neural response: blinking
frequency of the LED, distance between the robot and the operator, and color of the LED.
Based on these parameters, we study two signal processing approaches and critically analyze
their performance on 10 subjects controlling a set of physical robots. Our results show that
despite numerous artifacts, it is possible to achieve a recognition rate higher than 85% on
some subjects, while the average over the ten subjects was 75%.
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1 Introduction

Multirobot systems have extremely promising applications, such as search and rescue, envi-
ronmental monitoring, autonomous construction, or geographic mapping. The topic has been
extensively studied from various perspectives, including swarm robotics (Brambilla et al.
2013), collective robotics (Kernbach 2013), and distributed robotics (Martinoli et al. 2012),
each ofwhich refer to the formof interaction among the robots. In swarm robotics, researchers
and engineers have successfully designed scalable (Rubenstein et al. 2012), robust (Winfield
and Nembrini 2006), efficient (compared to single robot) (Bonani et al. 2012), and affordable
distributed multirobot systems (Rubenstein et al. 2014). On top of the challenge of design-
ing autonomous control strategies, researchers have recently shown an increasing interest in
another aspect of swarm robotics: human–robot interaction. While well-established control
interfaces exist for single-robot scenarios, human–swarm interaction (HSI) is still an open
research field (Kolling et al. 2016).

Amajority of researchers addressing the human interaction with a robot swarm use remote
control strategies, based on a centralized approach that allows the operator to have anoverview
of the mission (Kolling et al. 2016). This approach stands in stark contrast to several funda-
mental principles of swarm robotics, which relies on simple mechanisms, local interactions,
and spatially targeted communication, among others. These principles, normally applied to
robots only, can also be considered for human–robot interaction. This is possible, for instance,
when human and robot swarm share the same physical environment. In such situations, the
operator can interact locally with the part of the swarm close to him/her and observe the same
environment that the robots observe. In the literature, this interaction is called proximal, in
opposition to remote interactions (Kolling et al. 2016).

We therefore consider an application scenario in which an operator is surrounded by
mobile robots that have semi-autonomous behavior. This might be the case, for instance, in
an inspection or construction task. The operator simply interacts with the robots that are close
to her/him and share the same environment. The robots can either act independently or be
part of a swarm. In our application scenario, when the robots meet a predefined condition,
find some interesting information, or cannot solve an issue, they stop and request a command
from the operator. In the case of a swarm, the robots stopping and asking for interaction with
the operators could be either single robots or leaders of a subgroup of the swarm (Goodrich
et al. 2013). As several robots may be in this situation, the operator must select one of
them, based on criteria that are application dependent and managed by the operator himself.
Triggering interaction with a single robot within a group is a challenging HSI problem:
the communication channel should be easily accessible to the operator, combined with an
infrastructure that is distributed and compatible with the swarm robotics approach. Fong
et al. have proposed a simple selection protocol that uniquely identifies each robot using
a numbering system; the selection and manipulation of the robots were performed via a
remote control (Fong et al. 2003). Such systems require several explicit coding rules that add
on top of the communication channel, which reduces efficiency and is incompatible with a
distributed system. Other more intuitive methods, such as gesture recognition (Couture-Beil
et al. 2010; Jones et al. 2010; Monajjemi et al. 2013; Nagi et al. 2014), robot vision-based
user-gaze interpretation (Couture-Beil et al. 2010; Monajjemi et al. 2013; Pourmehr et al.
2013), and speech recognition (Pourmehr et al. 2013), have been studied. Several relevant
literature reviews exist on the topic (Goodrich and Schultz 2007; Kolling et al. 2016; Yanco
and Drury 2004).
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Most of the aforementioned methodologies have been tested on real robots. For example,
automated vision-based detection of hands and face combined with machine learning-based
spatial gesture analysis showed successful selection of a single drone from a group of four
just by robot vision. The research team claimed that their algorithm can scale up to 20 drones
(Nagi et al. 2014). Similar research has discussed the capacity of vision-based systems with
regard to the varying distances between the operator and the robot; in this case, the studied
range was 1–4m (Couture-Beil et al. 2010). However, speech and gesture interaction systems
have some practical limitations: (1) they require prior training of the operator to use specific
coded words or gestures that can be culture dependent (Trovato et al. 2013), limiting intuitive
interaction (Kirchner et al. 2015); (2) they are sensible to the detection of the intention to
interact, as they use communication channels that are common with other tasks (Rzepecki
et al. 2012); and (3) they are based exclusively on explicit communication, which generates
heavy protocols (Kirchner et al. 2015).

To address these issues, we studied the use of electroencephalography (EEG) signals as
a robot selection mechanism. This approach does not require the definition and learning of
explicit communication codes, as it is based on implicit information extracted by EEG from
the operator observing the robot. We define implicit information as information provided
by the operator in a passive way, in opposition to explicit information, which is exchanged
actively (Kirchner et al. 2015). We define implicit communication as an exchange of implicit
information. EEG-based implicit communication is not culture dependent, and EEG tech-
niques are more reliable than gesture- and speech-based techniques in detecting the intention
to interact (Rzepecki et al. 2012). Recent advances in neuroscience provide us with reli-
able and affordable devices that allow acquisition of two reliable and well-documented EEG
neural responses—the P300 and the steady-state visually evoked potential (SSVEP) (Beve-
rina et al. 2003; Bi et al. 2013; Zhu andBieger 2010). The P300 neural response is elicited as a
reaction to salient stimuli. The SSVEP, on the other hand, is measured when a visual stimulus
is repeatedly shown at a certain frequency. Although the P300 response has been given more
attention, recent studies show that target selection can be achieved efficiently using SSVEP
because it is possible to reliably distinguish different SSVEP responses corresponding to
different frequencies through computational analysis (Gao et al. 2003). Therefore, we used
the SSVEP response to lights blinking at different frequencies in our robot selection scenario
to detect the target being watched by the operator. This new communication channel is com-
patible with the swarm robotics approach but does not solve the question of the distributed
infrastructure, which will not be addressed in this paper. For this layer of HSI, we refer
the reader to the latest results in protocols implementing spatially targeted communication
(Mathews et al. 2015).

The SSVEP response can be extracted from an EEG signal following several approaches
(Bi et al. 2013). Most studies use machine learning, but this approach requires a training
phase, which we want to avoid in order to validate the fact that we use pure implicit com-
munication. Therefore, we applied two other techniques: a signal processing approach using
canonical correlation analysis (CCA) and a simpler short-time Fourier transform (STFT).
The CCA-based approach has been chosen because it does not require training and showed
very interesting results on the same equipment we used in our study (Lin et al. 2014). We also
compare the results obtained with CCA to the simpler short-time Fourier transform (STFT)
processing chain (Durak and Arikan 2003). The STFT is also relevant in such a scenario
because it can provide shorter response times. The response delay of the system is probably
the major limitation of most SSVEP-based approaches.

To obtain the best possible results, we began by exploring the role of three key system
parameters: the frequency of the blinking light, the distance between the operator and the
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robot, and the color of the visual stimuli. Once the optimal parameters were set, we tested
our approach on ten subjects, most of whom had no experience using EEG-based interfaces.

This paper is structured as follows. Section 2 presents the state of the art in SSVEP-based
brain–computer interfaces (BCI). Section 3 gives further details about the experimental setup
and, in particular, about the EEG device, the robot, and the general data collection protocol.
Section 4 presents the study of the three key parameters of our setup: the frequency, the
distance, and the color of the targets. Section 5 builds on the chosen parameters to study
the performances of ten subjects using the CCA and STFT approaches. A discussion section
concludes the paper.

2 State of the art

After the pioneering example ofBCI for the control of awheelchair byMillan et al. (2004), the
research community has shown a growing interest in this mobile robot interaction technique
(Bi et al. 2013). The main motivation behind these studies is to enable severely disabled
people to control wheelchairs. With a better understanding of these techniques, however,
other usages have appeared, including the control of mobile robots by healthy subjects in
various applications. The work by Kishore et al. (2014), targeting the control of a humanoid
robot, is a representative example of the most common approach: the interaction is made
through a screen, where all possible commands are associated with visual stimuli (Volosyak
et al. 2009).When the subject looks at a given command on the screen, the associated stimulus
frequency is detected in the EEG signal and the command is triggered. Stawicki et al. (2016)
follow the same approach, using a screen, but illustrate the commands in an interface based
on the subjective view of the robot, generated by a camera located on the mobile robot
itself. A slightly more sophisticated approach consists of introducing an avatar to represent
the possible actions (Faller et al. 2010). An additional abstraction can be introduced by
selecting a goal that can be achieved by a combination of actions, for instance by selecting
the destination in the scenario of driving a car (Xa et al. 2015). Most BCI studies targeting
the control of mobile systems follow this same approach, using a computer screen as support
for the visual stimulus (Bi et al. 2013). Computer screens offer flexibility in the graphical
expression of the commands and in the placement of the stimuli.

However, the fixed refresh rate of a screen reduces the usable frequencies to divisors of the
refresh rate, which can be seriously limiting. Güneysu and Akin (2013) control a humanoid
robot with a panel of LEDs instead of a computer screen. Although the principle of displaying
a set of possible commands on an LEDmatrix is identical to the principle used with computer
screens, the choice of LEDs allows a better flexibility in the choice of frequencies. Ortner et al.
(2010) also use LEDs on a control panel to define the movement direction of a mobile robot,
but they introduce a specially designed shape for their panel, better fitting its purpose. Still,
none of these studies allows a direct proximal interaction with the robot, always introducing a
control panel between user and robot. To our knowledge, only Jacobs (2013) studied a direct
interaction, with the visual stimuli created by LEDs on the robot itself. In his study, the LEDs
are placed at the end of three arms fixed on the robot. The three arms correspond to three
directions (forward, right, and left) that the user can choose by looking at the corresponding
LEDs. This work was very preliminary and tested on very few subjects.

Concerning the choice of the neural response used to detect user intention, SSVEP is
increasingly chosen as it achieves acceptable performances with most people (Guger et al.
2012). SSVEP-based target selection procedures allow choosing among many items. Gao
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et al. (2003) claim that their algorithm could successfully detect 45 different target frequen-
cies using green blinking LED lights. The performances of SSVEP-based systems can be
improved by coupling them with other neural responses, like the P300 (Yin et al. 2015). In
the domain of rehabilitation, the combination of SSVEP and P300 signals has been used to
control actual wheelchairs (Li et al. 2013). These performances come at a cost: they require
EEG acquisition systems that are extremely expensive and not portable, and experiments
must be carried out under conditions that are extremely controlled.

The goal of reaching practical applications pushed the development of affordable and
portable EEG headsets, but most consumer headsets have fewer than five electrodes and do
not allow exploration of a sufficiently large number of signals. Only two affordable systems
acquire signals on 14 or 16 electrodes: the OpenEEG and the Emotiv EPOC headsets. The
OpenEEG is an affordable system targeting research experiments (Salehuddin et al. 2011),
but it requires substantial deployment effort. The Emotiv EPOC is simpler to deploy (Jian
and Tang 2014; Van Vliet et al. 2012); compared to traditional systems that require gel on
the scalp as well as cumbersome wiring, Emotiv uses saline solution and a radio connection.
However, ease of use and affordability come at the price of reduced signal quality. Still, a
comparative analysis of SSVEP data acquired fromEPOC andmedical-grade EEG found that
the data acquired from EPOC are reliable (Liu et al. 2012), although the authors cautioned
that the Emotiv should not be used for medically serious cases (Duvinage et al. 2013). The
radio connection is also a limitation, but studies have shown its reliable use in real-time
applications (Hvaring and Ulltveit-Moe 2014).

3 Materials and methods

Our goal is to explore the use of neural responses for proximal interaction with a swarm of
robots without a computer screen, a panel of LEDs, or any other interfacing tools between
the robots and the operator.

For the acquisition of EEG signals, we used the Emotiv EPOC EEG headset (Stytsenko
et al. 2011). As described in Sect. 2, this headset is a good trade-off between affordable
price and level of performance. While it is affordable with respect to medical-grade devices,
it is expensive (approximately $700 with drivers to access raw data) compared to other
“consumer” headsets because of its 14 electrodes (see Fig. 1 for their positioning on the
skull), which allow several types of data acquisition. A final advantage is its compatibility
with open-source EEG signal acquisition and processing software for BCI design. This study
uses OpenViBE, a well-established open-source BCI design software (Renard et al. 2010).

We used Thymio II as the robot for our experiments; this programmable robot features
a differential drive system, infrared (IR) remote control receiver, and LEDs to change body
color (Riedo et al. 2013). Its small size (11×11×5 cm) and affordable price (approximately
$130) make it well suited for multirobot experiments. The communication between the com-
puter and the robot was supported by an infrared emitter dongle controlled by USB. In this
configuration, the computer only plays the role of the processing and communication unit of
the operator, establishing local communication with the robots that are in the field of view
of the operator.

Figure 2 summarizes the experimental setup. TheEEGsignal is acquired and transmitted to
a laptop running the various software tools: a driver to access to the EEG data, the OpenVIBE
software to manage the EEG data processing, an interface toward the infrared remote control
of the robots and MATLAB to analyze the results of the experiments.
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Fig. 1 Top view of the location
of the electrodes of the Emotiv
EPOC EEG headset on the skull
(forward looking direction
toward the top of the image), with
their international code labeling
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Fig. 2 Configuration of the experiment, showing the signal acquisition setup and the processing infrastructure

Each experiment was composed of a set of trials. In each trial, the subjects were instructed
to look at an indicated target robot. One second after the instruction, the robot began to flicker
and continued for 7 s. During the stimulus, the subjects were asked to look at the blinking
light; they were requested to blink as little as possible to limit EEG artifacts. A break of 3 s
was then introduced to avoid tiring the subject.

4 Preliminary study: parameter optimization

To optimize the extraction of the SSVEP response within the EEG signal, we studied the
effect of three important interaction parameters on the strength of the SSVEP response: the
blinking frequency, the distance to the stimulus, and the blinking color. These studies not
only make sense within the context of HSI but are also of fundamental scientific interest.

The LED blinking frequency is the first important parameter. The blinking frequencies
used in the literature vary from 4.5 to 50Hz (Zhu and Bieger 2010). However, since the
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signal-to-noise ratio in EEG is higher in the lower part of the spectrum, some researchers
have suggested using low frequencies for SSVEP-based applications (Akhtar et al. 2014).
In particular, Gao et al. 2003 found empirically that the usable range of frequencies for
SSVEP-based BCI is 6–24Hz. This is the range we used in our first experiment.

The distance between the target and the operator is the second critical parameter. Wu
and Lakany (2013) have studied the impact of distance on the SSVEP response, but using a
medical-grade EEG headset.

The third key parameter is the color. In the literature, white was predominantly preferred
over red, green, or blue (Akhtar et al. 2014; Aljshamee et al. 2014, 2016; Cao et al. 2012; Yin
et al. 2013). Cao et al. justified the preference: white is a combination of all the primary colors
and therefore excites cone cells associatedwith red, green, and blue light simultaneously (Cao
et al. 2012). Some studies, however, have successfully used red (Faller et al. 2010; Jian and
Tang 2014; Li et al. 2013) and green (Chua et al. 2004; Duvinage et al. 2013; Gao et al.
2003; Hvaring and Ulltveit-Moe 2014; Li et al. 2013; Mouli et al. 2013) alone as stimuli as
well. Some studies found red to be more effective than white (Faller et al. 2010; Hvaring and
Ulltveit-Moe 2014), while others found green to be more effective under similar conditions
(Chua et al. 2004; Duvinage et al. 2013). There is similar contradictory evidence between
the red and green colors; Mouli et al. observed green to be more effective (Mouli et al. 2013),
while others were more successful using red (Cao et al. 2012).

Based on these observations, we decided to conduct our own study on the impact of these
parameters on the SSVEP neural response when the stimulus is generated by the body of
several robots.

4.1 Evaluation metrics

To evaluate the quality of the SSVEP response, we computed a metric that indicates the
prominence of the stimulus frequency in the EEG signal. To compute this metric, we applied
a fast Fourier transform to the EEG signal from each trial to obtain the averaged frequency
spectrum. To quantify the detectability of the SSVEP response, we used the first peak to the
second peak ratio (FSR) (Zheng and Zhang 2010): given a particular frequency f , let F
and R be two disjoint subsets of the averaged spectrum such that F contains the spectrum
of the frequencies [ f − 1, f + 1], and R contains the other frequencies, that is, the range
[6, f − 1[ ∪ ] f + 1, 24]; the FSR ratio is then defined as:

q =: max F

max R
(1)

The FSR provides the ratio of the highest peak within [ f − 1, f + 1] to the highest peak in
the rest of the spectrum. The SSVEP neural response to a regularly blinking stimulation is
characterized by a peak in the spectrum of the signal at the same frequency as the blinking
frequency. Thus, if the FSR based on the stimuli frequency is above 1, then the highest
peak is within 1Hz of f , and the SSVEP can be considered detectable and recognized.
Otherwise, the SSVEP cannot be detected. We therefore call q the recognition ratio. Please
note that we decided to consider peaks within 1Hz of the stimulation frequency as valid
SSVEP responses because we always have at least 2Hz difference between one stimulation
frequency and another. This band could be restricted, as existing literature shows that neural
responses are, in general, very accurate (Gao et al. 2003).
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Fig. 3 Recognition of a red visual stimulus in the EEG spectrum based on its blinking frequency. Each of the
three subjects was subjected to five trials for each frequency; the trial period is 7 s. The plotted recognition
ratios for each frequency represent the values of the averaged power spectrum of the five stimulation trials

4.2 Parameter: stimulation frequency

Six frequencies were tested (9, 12, 15, 18, 21, and 24Hz). For each frequency condition, five
trials were performed on three different subjects. The subjects had normal or corrected-to-
normal vision and no history of major head injury. The blinking robot was set 1m away from
the subject. Figure 3 confirms the decrease in the amplitude of the neural response as the fre-
quency grows, as already described in the existing literature (Herrmann 2001); furthermore,
it shows that the detection fails beyond 15Hz. This is lower than what is described in the
literature with medical-grade EEG headsets; in Gao et al. (2003), the range used is 6–24Hz.
Therefore, we deduced that SSVEP activity can be measured with this headset and in these
physical conditions, provided that low frequencies are chosen. Based on these observations,
we restricted the frequency band in the following two studies to the interval [7, 17Hz].

4.3 Parameter: stimuli distance

As a second parameter, we analyzed the impact of varying distance between the operator and
the blinking target robots, taking into consideration the frequencies 7, 9, 12, 15, and 17Hz;
the tested distances were 30, 1, and 2m. Considering the small size (12cm in diameter) and
the weak light-emitting power of the robot (<300mW electrical power), these experimental
distances correspond to a range of 1.5–10m for a robot with a diameter of 60cm and a 7.5W
light, corresponding to a standard LED lamp. This range seems compatible with the proximal
interaction of an operator directly in contactwith the robot. Existing interactions using explicit
communication channels have amaximal range varying between 2.5m (Pourmehr et al. 2013)
and 5m (Nagi et al. 2014), enabling a good supervision of the robot.
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Fig. 4 Recognition of a red visual stimulus in the EEG spectrum based on the distance from the robot. Four
trials per subject for each distance and frequency combination were performed. The plotted recognition ratio
for each frequency and distance combination represents the values of the averaged power spectrum of all the
stimulation trials on all the subjects

The experiment was conducted on three subjects, and four trials were performed for
each subject at each frequency and each distance. Figure 4 summarizes the results; there
is not much difference in neural response between 30cm and 1m; however, the response
starts to deteriorate at 2m. Indeed, the recognition ratio at 2m falls under 1.0 at 13Hz. This
is because (1) the targets become smaller with increasing distance and (2) the LED light
intensity decreases, leading to a weaker SSVEP response.

4.4 Parameter: stimulation color

The experiment featuring stimulus color was similar to the stimulus-distance experiment.
Four trials were conducted for each combination of frequency (7, 9, 12, 15, and 17Hz) and
LED color (red, green, andwhite). The target robot was placed 1m from the subjects. Figure 5
shows that the best results were obtained using the red or green stimuli, which is in agreement
with part of the literature who did a direct comparison between white and red or green stimuli
(Chua et al. 2004; Duvinage et al. 2013; Faller et al. 2010; Hvaring and Ulltveit-Moe 2014).
White light did not increase the neural response, in opposition to the findings of Cao et al. as
documented in Cao et al. (2012). This can be explained by the specific configuration used by
Cao et al., who displayed the stimuli on a black background, achieving a high contrast with
white.

5 Robot selection by SSVEP response

Based on the results of the studies described above, we designed an experiment to implement
and test the robot selectionmethodology using CCA-based and STFT-based SSVEP analysis.
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Fig. 5 Recognition of a visual stimulus in the EEG spectrum based on its color. Four trials per subject for
each color and frequency combination were performed. The plotted recognition ratios for each frequency and
distance combination represent the values of the averaged power spectrum of all the stimulation trials on all
the subjects

The layout of this setup is shown in Fig. 6. Three Thymio robots blinking in red at frequencies
of 8, 10, and 12Hz are placed in a half circle, 90 degrees apart. In addition to the general
architecture presented in Fig. 2, we equipped the subject with an IR remote control. The
subject looks at the robot she/he wants to control, and the EEG signals acquired from the
Emotiv device are used to make a prediction with the processing chain. This information is
transmitted via IR to the robots. The selected robot turns green and executes the command
received from the IR remote control, while the other robots remain red and ignore these
commands.

The subjects underwent 15 trials: 5 trials at each frequency. Before each trial, the subjects
were told which of the three robots she/he should look at and was given 4s to prepare. During
the trial, the subject had to look only at that robot even though all three robots were blinking;
a 3-s break followed each trial. To assess the reliability of this methodology, the experiment
was conducted on 10 different subjects, seven of them having no previous experience with
EEG. The subjects were between 17 and 48 years of age: three women (age: 17, 32, and 44)
and seven men (age: 18, 18, 19, 29, 35, 37, and 48).

5.1 Signal processing

The objective of the signal processing methods used in this study is to classify the SSVEP
response from the occipital region of the brain (O1 and O2) into one of the following three
categories: 8, 10, and 12Hz. The occipital region of the brain is known to be neurologically
important in the SSVEP process, as it contains the visual cortex.

Figure 7 shows the details of the CCA signal processing chain. The signal processing
consists of a loop that is repeated until a successful classification is made. In the event
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of classification failure, a new attempt is made with a signal length increased by 0.25 s.
Initially, this signal length parameter is set to 2 s. It represents the length of the signal that
is used during the classification attempt. Increasing the length boosts the chances of success
of the new classification attempt by reducing the impact of the noise present in the signal;
however, it also introduces longer recognition delays as changing states do not affect the
predictions as quickly as before. If the signal length parameter reaches 8 s, the classification
is interrupted and no prediction ismade. Each loop iteration endswith a classification attempt.
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A classification is considered successful only if four consecutive classification attempts reach
the same prediction. This measure significantly reduces the false positives; the choice of four
consecutive attempts is based on the results of Lin et al. (2014).

During each iteration, the classification attempt is made using CCA: the measured EEG
signal is correlated with three other signals that are precomputed, and then the signal fre-
quencywith the highest correlation to themeasured signal is chosen. TheCCA can be thought
of as a generalization of the correlation measure to multivariate signals and has shown good
results in SSVEP recognition (Lin et al. 2014). The principle of this approach is as follows:
given two multivariate signals X , Y , the optimization problem of CCA is to find ρ such that

ρ = max
a,b∈Rn

ra�X,b�Y (2)

Here, ra�X,b�Y is the correlation between a�X and b�Y . This is achieved when a is the
eigenvector associated with the largest eigenvalue of S(X, X)−1S(X, Y )S(Y, Y )−1S(Y, X);
similarly, b is an eigenvector of S(Y, Y )−1S(Y, X)S(X, X)−1S(X, Y ), where S(X, Y ) is the
covariance matrix. The proof can be found in Rencher (2003).

In our case, the multivariate signals are precomputed models of an idealized reaction to
one of the three different blinking stimulations (blinking frequencies of 8, 10, and 12Hz).
For a given stimulation frequency, the model is composed of the sine, cosine, and first
harmonic of that frequency, known to be present in SSVEP responses (Herrmann 2001).
Linear combinations of these multidimensional signals allow to modulate arbitrarily the
model of the SSVEP response of the brain and search for a maximal correlation with the
measured signal.

For comparison, we applied to the same signals a standard STFT (Durak and Arikan
2003). Starting at the beginning of the stimulation period, the STFT was computed using the
longest time frames possible (up to 4 s) using the available signal, as longer time frames give
higher spectrum resolution. We therefore used a time frame of 0.5 s during the first second,
1 s during the second second, 2 s for the third and fourth seconds, and then a time frame of
4 s.
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Fig. 8 Frequency recognition rate versus time for two processing methods: canonical correlation analysis
(CCA) on the left and short-time Fourier transform (STFT) on the right. Only the first 6 s of this approach
is shown, as the performances are not increasing later on. These numbers are an average over 10 subjects
considering the 5 trials of 15 s each and the stimulation frequencies (8, 10, and 12Hz)
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Fig. 9 Frequency recognition rate per stimulation frequency and per delay between start of stimulation and
start of recognition process. These numbers are an average over 10 subjects considering the 5 trials of 15 s
each and the stimulation frequencies (8, 10, and 12Hz). The values for each subject are detailed in Fig. 10

Table 1 Frequency recognition rate per stimulation frequency and per delay between start of stimulation and
start of recognition process

Stimuli
freq. (Hz)

Recognition rate

Delay 0s Delay 2s Delay 4s

Average (%) Std deviation (%) Average (%) Std deviation (%) Average (%) Std deviation (%)

8 69.8 18.8 72.8 20.0 75.1 19.8

10 73.2 5.0 78.9 5.9 81.9 8.2

12 59.2 13.6 63.9 14.2 66.0 15.1

These data are plotted in Fig. 9

5.2 Results and discussion

Figure 8 shows the recognition rate as a function of time; the data presented were averaged
over all predictions made on all 10 subjects in all stimulations. The recognition rate starts
randomly and increases gradually, plateauing around 75%. The same increase in recognition
reliability after 4 s can also be seen inFig. 9 (Table 1); this graph shows the average recognition
rate per frequency. We can observe that the lowest reliability is at 12Hz, while the highest is
at 10Hz with a very small standard deviation. The variance between the subjects is shown in
more detail in Fig. 10 and the corresponding Table 2. The predominant reliability of 10Hz
can be seen in different subjects but especially in Subjects 5 and 7, where the recognition
rate at 10Hz is double compared to that at 12Hz. This graph also shows the divergences
between different people: Subject 1 has a 98% recognition rate at 8Hz, while Subject 5
has a recognition rate around 40% for the same frequency. This very high variability is
a characteristic that makes EEG analysis delicate and must be carefully considered when
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Fig. 10 Frequency recognition rate per subject and per stimulation frequency, considering the different stim-
ulation durations. The numerical values are given in Table 2

developing new applications. Also for this reason an average of 75% is considered a good
result.

For comparison, we also computed the STFT on the same data sets. However, Fig. 8 shows
that the STFT performed significantly worse than CCA.

Based on these results, the time required to recognize and select the robot in a reliable way
is four seconds. TheCCAapproach and the loop processing structure allow the first prediction
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Table 2 Frequency recognition rate per subject and per stimulation frequency, considering the different
stimulation durations corresponding to the plot of Fig. 10

0s (%) 2s (%) 4s (%) 0s (%) 2s (%) 4s (%)

Subject 1 Subject 2

8Hz 93.3 96.2 98.2 8Hz 73.3 79.2 83.6

10Hz 73.3 77.2 77.5 10Hz 70.0 73.5 77.7

12Hz 76.3 83.1 83.9 12Hz 58.7 64.6 69.5

Subject 3 Subject 4

8Hz 79.7 84.2 86.8 8Hz 88.6 93.1 94.5

10Hz 77.5 88.5 96.2 10Hz 80.0 84.9 88.6

12Hz 78.3 80.0 78.6 12Hz 60.3 64.2 72.3

Subject 5 Subject 6

8Hz 53.9 52.5 54.8 8Hz 72.4 75.8 75.0

10Hz 74.6 79.8 80.8 10Hz 63.7 68.4 67.7

12Hz 36.6 38.5 34.0 12Hz 48.9 52.3 58.2

Subject 7 Subject 8

8Hz 36.3 40.0 41.8 8Hz 89.0 93.8 95.9

10Hz 75.7 80.8 83.2 10Hz 75.6 82.4 84.8

12Hz 45.2 50.8 50.9 12Hz 53.3 59.2 62.3

Subject 9 Subject 10

8Hz 57.8 59.0 62.9 8Hz 53.7 54.6 57.3

10Hz 66.7 73.4 74.0 10Hz 74.6 80.0 88.8

12Hz 71.3 77.1 73.7 12Hz 63.0 69.2 76.8

using exclusively EEG signals acquired during the current stimulation to be made only three
seconds after the beginning of the stimulation. An additional second is required to reach the
best performances, which matches results achieved in the literature (Xa et al. 2015; Gao et al.
2003; Jian and Tang 2014; Li et al. 2013). Although this signal processing approach does
not require a training session, as opposed to systems that use machine learning algorithms,
this delay of 4 s is a clear drawback of this prediction system. With further study, this issue
could perhaps be addressed using a hybrid processing chain combining the reliability of CCA
with the rapidity of STFT. Nonetheless, the stability of this setup is remarkable: it shows that
despite the numerous artifacts, it is possible to achieve, on average, a recognition rate of 75%
at any time after the first 4 s.

Finally, we developed and conducted some further experiments combining the use of
EEG signals as illustrated above with some processing of the gyroscope mounted on the
EEG headset. In our tests we used the lateral movement of the head to trigger recognition.
This allows the operator not only to start a recognition by moving the head toward a new
target but also to restart the process after an inaccurate recognition by briefly shaking the
head laterally. A video illustrating the approach can be accessed at www.bit.ly/ssvep-bot.
These preliminary tests significantly improved the whole interaction and show the merit
of combining the EEG-based implicit communication with other human–robot interaction
methods.
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6 Conclusions

This study systematically analyzes twoSSVEPclassification techniques and someof their key
parameters in an effort to tackle the robot selection problem in proximal HSI using implicit
communication. In comparison with the literature based on explicit proximal communication
such as gestures or voice, this approach uses implicit information that is not culture dependent
and does not require prior learning. However, the SSVEP approach depends on the operator’s
brain activity, which is variable from subject to subject. This results in a modest average
success rate of 75%, but with some subjects having success rates higher than 85% and a
peak success rate of 98.2% on specific frequencies. These performances are comparable with
the success rates of other approaches such as gesture- or speech-based HSI (Nagi et al. 2014;
Pourmehr et al. 2013). This variability indicates that some subjects will perform poorly as
operators of these interfaces or will need training to obtain better performances.

Although distance is a parameter that is considered in gesture- and speech-based interac-
tions when evaluating the success rate, this is the first study to examine the effect of distance
on the recognition among several sources of the SSVEP neural response. Despite the limited
range utilized in our experiments, less than 2m, this distance must be considered with respect
to the size of the robot and the type of visual stimuli. Indeed, the setup used in this exper-
iment is equivalent to a robot with a diameter of 60cm placed up to 10m away and having
a blinking LED of 7.5W. This is a reasonable range for proximal interaction; the maximal
distance for existing interactions using explicit communication channels varies from 2.5m
(Pourmehr et al. 2013) to 5m (Nagi et al. 2014).

One limitation of the current setup comes from the number of available frequencies.
Although theoretically the 8- to 12-Hz frequency range could allow the classification of up to
20different frequencies (Gaoet al. 2003), the number of different robots that could be involved
in the interaction might limit the scalability of the approach. This limitation can be overcome
by reducing the range of interaction or by combining the SSVEP-based selection technique
with other approaches, such as detection of head orientation, allowing operators to preselect
part of the swarm followed by the EEG-based technique. The allocation of frequencies among
the various robots still requires specific distributed protocols (Mathews et al. 2015).

Another limitation of this approach is the required delay of four seconds before recog-
nition. This delay is similar to the delay in gesture recognition or speech interaction when
considering the complete time of interaction, and it is compatible with many applications.
Even in a search and rescue scenario where there is time pressure, repeating the selection
and losing another four seconds in one selection over five increases the selection time by
20%. Considering that selection is not the most time-consuming communication action, this
should only marginally impact the whole activity. Still, studies should verify whether this
delay can be reduced usingmore sophisticated processingmethods—for instance, combining
CCA with STFT. More importantly, such limitations of EEG processing techniques could
be solved using one of the greatest advantages of this approach: the possibility of combin-
ing it with other HRI channels. Indeed, using implicit information means that integrating
EEG analysis in other scenarios could enhance the global performance of the setup without
requiring any additional effort from the operator.

Some factors that are uncontrollable in real-world applications, such as muscular artifacts
or personal attitudes of the operator, could negatively impact the performances of such a
solution. This can be particularly significant if the robots are moving and the operator must
track them visually. Other factors, such as the relative surrounding brightness, the variable
distance to the targets, and blinking light interferences from other robots, should be carefully
considered to reach optimal performance.
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In conclusion, we believe that despite the limiting factors described here, the use of an
implicit EEG-based communication in the proximal interaction of a human with a robot
swarm could open new and interesting possibilities in HSI.
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