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Abstract Continuous response threshold functions to coordinate collaborative tasks inmulti-
agent systems are commonly employed models in a number of fields including ethology,
economics, and swarm robotics. Although empirical evidence exists for the response thresh-
old model in predicting and matching swarm behavior for social insects, there has been no
formal argument as to why natural swarms use this approach and why it should be used for
engineering artificial ones. In this paper, we show, by formulating task allocation as a global
game, that continuous response threshold functions used for communication-free task assign-
ment result in system level Bayesian Nash equilibria. Building up on these results, we show
that individual agents not only do not need to communicate with each other, but also do not
need to model each other’s behavior, which makes this coordination mechanism accessible
to very simple agents, suggesting a reason for their prevalence in nature and motivating their
use in an engineering context.

Keywords Threshold-based task allocation · Swarm robotics · Social insects · Game
theory · Global games

1 Introduction

Task allocation subject to communication constraints is ubiquitous in nature inmany different
organisms, ranging from cellular systems (Yoshida et al. 2010; Suzuki et al. 2015) to social
insects (Robinson 1987; Gordon 1996; Bonabeau et al. 1998; Theraulaz et al. 1998) to
large animal herds (Conradt and Roper 2003, 2005) and human society (Raafat et al. 2009).
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Inter-agent communication in large systems is not always possible or desired, either due to
physical limitations at the agent level (cellular/insect systems) or properties of the task itself
(adversary behavior in humans). Here, we show that formalizing task allocation problems
as a global game, a concept from the field of game theory, reveals that a simple threshold
strategy leads to Bayesian Nash equilibria (BNE) despite the absence of communication
between agents. This result not only provides a hypothesis about the inner workings of a
wide range of systemswith limited communication between agents but also provides a formal
analysis tool for threshold-based task allocation in social insects. In particular, we show how
noise in the perception apparatus of individual agents leads to commonly observed sigmoid
response threshold functions that control the trade-off between exploration and exploitation
(Bonabeau et al. 1997) in natural systems and can be used to design engineered systems
ranging from swarm robotics (Martinoli et al. 1999; Krieger et al. 2000; Kube and Bonabeau
2000; Matarić et al. 2003; Gerkey 2004) to smart composites (McEvoy and Correll 2015),
made of computational elements with very low complexity.

1.1 Related work

Task allocation is a canonical problem in multi-robot systems (Gerkey 2004; Brambilla et al.
2013) and is the problem of allocating individuals among different tasks, usually to satisfy
some metric of optimality. Task allocation is distinct from task partitioning (Pini et al. 2013),
which is concernedwith breaking a larger problem into consecutive and parallel subtasks. The
simplest possible task allocation approach is to use fixed probabilities for individuals to switch
between tasks. The resultingMarkov chains lead to equilbria,which correspond to the ratios of
probabilities (Correll 2008). Whereas robots equipped with sufficient means for computation
and communication might employ more sophisticated means for task allocation, e.g., using
market-based approaches (Amstutz et al. 2008; Vig and Adams 2007; Choi et al. 2009) or
using leader–follower coalition algorithms (Chen and Sun 2011), probabilistic algorithms
are of particular interest for swarm robotics with individually simple controllers (Dantu et al.
2012) and little to no communication ability. Recruitment of an exact number of robots to a
particular task has been extensively studied using the “stick pulling” experiment (Lerman et al.
2001; Martinoli et al. 2004). The problem of distributing a swarm of robots across a discrete
number of sites/tasks with a specific desired distribution has been studied in Berman et al.
(2009) and Correll (2008). We showed in Kanakia and Correll (2016) that these problems are
related, as they can be cast as instances of sigmoidal threshold task allocation problems with
varying slopes. Similarly, Mather et al. (2010) present a stochastic approach that is a hybrid
between the work in Berman et al. (2009) and Martinoli et al. (2004), allowing allocation to
tasks requiring a varying number of robots. Yet, formally understanding probabilistic task
allocation strategies is an open challenge. Although there exist differential equation models
for specific classes of foraging problems (Lerman et al. 2006; Liu and Winfield 2010) that
allow one to study the relationship between robot control parameters and resulting dynamics,
results are purely phenomenological and leave it open whether there exist better or worse
approaches for task allocation given the individual agent’s capabilities. Other works address
this question empirically, byperforming comparisons of probabilistic anddeliberate strategies
for certain classes of task allocation problems (Kalra andMartinoli 2006; Correll 2007). Here,
the general insight is that stochastic task allocation is beneficial under the influence of noise,
which leads to failure of “optimal” assignment techniques, thereby making them comparable
with a stochastic strategy under such conditions. Most importantly, however, there currently
exists no formal underpinning for threshold-based task allocation mechanisms.
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There exists also a rich body of work that uses techniques from game theory to multi-
agent coordination (Parsons and Wooldridge 2002; Nisan et al. 2007) and task allocation
in particular (Shehory and Kraus 1998). For games with perfect information and specific
structures, such as potential games, weakly acyclic games, generalized potential games, or
anti-coordination games, one can utilize learning algorithms, such as log-linear-learning and
fictitious play with inertia to reach efficient strategies (Tumer and Wolpert 2004; Arslan
et al. 2007; Marden et al. 2009; Grenager et al. 2002). These approaches are not applicable
here, where we consider systems with imperfect information and no communication between
agents. For this class of systems, there exists a branch of game theory in which information
about characteristics of the other players is incomplete. These class of games are known
as Bayesian games (Harsanyi 2004) and are of particular interest to multi-agent systems
problems that involve uncertainty. Here, global games (Carlsson and Van Damme 1993)
are a subset of Bayesian games, in which players receive possibly correlated signals of the
underlying state of the world, making them an interesting, but yet unexplored, avenue for
modeling and understanding stimulus-response task allocation systems.

1.2 Outline of this paper

This paper provides a formal analysis framework for threshold-based task allocation
by formulating it as a “global game” (Sect. 2) and formally showing that a simple,
communication-free threshold policy (Sect. 3) leads to a BayesianNash equilibrium (Sect. 4).
We then show that such a policy is equivalent to a sigmoid response threshold pol-
icy, which is commonly observed in social insects and used in swarm engineering, in
Sect. 5.

2 Global games: a brief overview

Game theory is the study of strategic interactions among multiple agents or players, such
as robots, people, and firms where the decision of each party affects the payoff of the rest.
A fundamentally important class of games is one with incomplete or imperfect information
where each agent’s utility depends not only on the actions of the other agents, but also on
an underlying fundamental signal that cannot be accurately ordained by the agents. The
class of global games with incomplete information was originally introduced in Carlsson
and Van Damme (1993) where two players are playing a game and the utility of the two
players depends on an underlying fundamental signal τ ∈ R, but each agent observes a noisy
variation of this signal, xi . For example in a firefighting task, this fundamental signal τ is the
magnitude of the task of putting out the fire, i.e., the number of robots needed to do so. The
size and intensity of the fire along with environmental and other site-specific factors all play
a major role in determining whether an agent should begin the task or wait for more help to
arrive.

While we use the term magnitude to describe τ in the above example, it is a stand-in
for a simplified representation of a more abstract quality of any task. All tasks demand
completion and the act of completion requires resources, be it time and/or energy of some
form. In swarms of minimalist agents with limited capabilities, the resource required to
collaboratively complete a task is invariably quantized into the number of agents attempting
to complete that task.
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3 Task allocation as global games

Consider a group of agents performing a task contributing to a common goal, which we refer
to as a concurrent benefit. This benefit is related to a stimulus τ that can be observed by
all agents, albeit subject to sensing noise. Agents do not share any information. All agents
decide, for themselves, whether or not to engage in the task. A task is successfully attempted
if a critical mass of agents is willing to participate in it. Otherwise, the attempt fails.

Situations like this arise in a number of different fields including neurology (Yoshida et al.
2010; Suzuki et al. 2015), ethology (Robinson 1987; Gordon 1996; Bonabeau et al. 1998;
Theraulaz et al. 1998), sociology (Raafat et al. 2009), economics (Morris and Shin 2000),
and robotics (Martinoli et al. 1999; Krieger et al. 2000; Kube and Bonabeau 2000; Pynadath
and Tambe 2002; Gerkey and Mataric 2003; Matarić et al. 2003; Gerkey 2004; Kanakia and
Correll 2016). All of these multi-agent scenarios share the common notion of a joint action or
response to a commonly observed stimulus. The task can take on many forms ranging from
neurons simply firing in concert, collective decision problems like flocking, herd grazing,
and colony defense to individual actions based on the environment and other agents’ beliefs
like foraging, bank runs, and political revolutions.

In the case of a bank run (Morris and Shin 2000), τ is an aggregate stimulus parameter that
represents the strength of the economyof a nation.Here, agents decidewhen towithdraw their
assets from banks based on their own noisy estimate of the economy together with a simple
threshold. In the case of social insects foraging for food (Bonabeau et al. 1996; Theraulaz
et al. 1998; Krieger et al. 2000), τ represents a number of environmental cues such as the
(imperfect) measurement of food stores in a colony, pheromone levels (Robinson 1987),
or the waiting time for food transfer from one agent to another (Seeley 1989). A complex
combination of these internal and external cues (Gordon 1996) tempers an agent’s perception
of the magnitude of a task. In an engineering context, τ can be seen as the magnitude of a
fire (heat intensity and area covered) as sensed by a robot using onboard instruments in an
automated firefighting scenario (Kanakia and Correll 2016). Figure 1 illustrates each of these
three examples with their corresponding stimulus parameters.

The group dynamics in the above examplesmay seem orthogonal at first; while adversarial
behavior between agents drives bank runs, collaborative behavior between robots is essential
for the automated firefighting scenario. Both scenarios, however, share the notion that to
be successful an agent not only needs to assess the magnitude of the task itself but also the
likelihood of the other agents to act. This is because only acting in concert leads to the desired
group action, be it because using up water resources to put out a fire is futile before critical
mass is reached, or disengaging from the banking system is non-desirable unless there is a
major crisis. In a system with multiple tasks, such as an ant colony, coordination is required
to achieve a desirable proportion between tasks.

We build on results from global games (Carlsson and Van Damme 1993) to show that the
observed behavior in all these scenarios can be effectively emulated by assuming that each
agent makes their individual decision on whether or not to perform a task based on some
internal threshold value which is compared to their noisy estimates of the collective task’s
stimulus τ . This was shown for the canonical bank run example (Morris and Shin 2000).
While the classical global game assumes each agent must predict the other agents’ behavior,
it turns out that agents can reach an equilibrium without this capacity. This, and the fact that
agents do not need to communicate, makes this approach widely applicable to a wide range
of multi-agent systems.
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Fig. 1 Robotic firefighting, ant foraging, and bank run scenarios presented as global games. Each player’s
imperfect estimate of the task is represented by xi , comprising of the global stimulus parameter τ and noisy
sensor measurements ηi . In the robot firefighting scenario, τ is representative of the magnitude of the fire,
while in the case of a bank run τ is indicative of an agent’s current level of trust in the nation’s economy. For
the ant foraging scenario, τ represents an ant’s willingness to take part in the foraging task based on a number
of internally measured parameters such as the distance to the food source (tt ), the wait time to deliver food
(tw), and the food stores currently at the nest (s), among others

Consider a set of n agents and suppose that each agent has an action set Ai = {0, 1}where
0 represents not participating in the task and 1 represents participating in the task. Every
agent is also aware of the total number of other agents, n in the system. For the purpose of
analysis, we assume the decision to act or not to act is made by all agents at the same time,
i.e., this is a one-shot game with no notion of time. We let the stimulus τ be a real number
that belongs within the interval E = [c, d] inR. Finally, we let ui : Ai ×Z

+ ×R → R be the
utility of the ith agent, where ui (ai , g, τ ) is the utility of the ith agent when g other agents
have decided to participate in the task. In general, the utility of each agent depends on the
joint actions of the rest of the agents. For simplicity, we assume the utility to be proportional
to the number of agents participating in the activity.
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The utility function discussed throughout this paper has the following properties:

(a) ui (1, g, τ ) − ui (0, g, τ ) is an increasing and continuous function of τ for any g. We
further assume that |ui (1, g, τ ) − ui (0, g, τ )| ≤ τ p for some p ≥ 1.

(b) For extreme stimulus ranges, taking part in the activity is either appealing or repelling,
i.e., there exists τ , τ̄ ∈ (c, d)with τ ≤ τ̄ such that for any τ ≥ τ̄ we have ui (1, g, τ ) >

ui (0, g, τ ) where all agents participate in very easy tasks, and for τ ≤ τ we have
ui (1, g, τ ) < ui (0, g, τ ) so the only equilibrium of the game is for all agents to not
participate as the task is too difficult.

Note that in order to have a task with such an utility, we need the above conditions to hold for
all the agents, i.e., for all i ∈ {1, . . . , n}. An example of a utility function that would satisfy
such conditions is a function ui (ai , g, τ ) = ai (1 − e−(g+1) + τ).

The main challenge in devising task allocation strategies is that the true value of τ is not
easily accessible to the agents, for example, due to limited perception capabilities and sensor
noise. We model this imperfect knowledge by assuming that agent i observes xi = τ + ηi
where ηi is a GaussianN (0, σ 2

i ) random variable. Note that this makes the game a Bayesian
game and in this case, the type of each player is represented by the random variable xi .
Throughout our discussion, we assume that the task stimulus τ is a Gaussian random variable
and is independent of η1, . . . , ηn . This analysis is extendable to a larger class of random
variables, but for the simplicity of the discussion, we consider Gaussian random variables
here. Given these constraints, the question is what strategy the agents should follow to reach
a BNE, that is an outcome in which no agent has the incentive to deviate from its current
strategy.

A strategy si for the ith agent is a measurable function si : R → Ai , mapping measure-
ments (observations) to actions. Strategy si prescribes what action the ith agent should take
given its own measurement (type) xi . Given this, consider a set of agents with strategies
s1, . . . , sn . Let us denote the strategies of the n − 1 agents other than the ith agent by the
vector S−i = {s1, . . . , si−1, si+1, . . . , sn}. We say that a strategy si is a threshold strategy
if si (x) = step(x, Υi ), i.e., the step function with a jump from 0 to 1 at Υi , where Υi is
the internal threshold value of the ith agent. For the ith agent, we define the best-response
BR(S−i ) (to the strategies of the other agents) to be a strategy s̃ that for any x ∈ R:

BR(S−i )(x) = s̃(x) ∈ argmax
ai∈Ai

E(ui (ai , g, τ ) | xi = x)

= argmax
ai∈Ai

E

⎛
⎝ui

⎛
⎝ai ,

∑
j �=i

s j (x j ), τ

⎞
⎠ | xi = x

⎞
⎠ ,

where E(·|·) is the conditional expectation of ui given the ith agent’s observation. The best
response of player i simply is the best course of action for agent i given that the strategies of
the other players is given. The expression argmaxai∈Ai

E(ui (ai , g, τ ) | xi = x) is the set of
best actions that player i can take given its information, the aggregate action g of the other
players, and the intensity τ . Note that given the ith agent’s observation xi , the observations
of the other agents, and hence their actions, would be random from the ith agent perspective,
i.e., given xi and τ , all s ∈ S−i are effectively random variables with respect to the ith agent.
A strategy profile S = {s1, . . . , sn} is a sensible strategy, if it leads to a BNE (Fudenberg
1998), given si = BR(S−i ) for all i ∈ {1, . . . , n}.
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4 Communication-free threshold-based task allocation strategy

Any task with concurrent benefit admits a threshold strategy BNE—meaning it is sufficient
for the agents to follow a simple algorithm:

1. Compare your noisy measurement xi to a threshold value Υi ,
2. If the measurement is above Υi take part in the collaborative task, otherwise hold off.

This algorithm is extremely simple and can be implemented on systems with a wide range
of capabilities, yet leads to a BNE as we will show below.

To show that there exists a sensible threshold strategy for the class of tasks with concurrent
benefit leading to Theorem 1, we will first show that the best response to threshold strategies
is a threshold strategy (Lemma 1) and then show that there exists an equilibrium of threshold
strategies (Carlsson and Van Damme 1993; Morris and Shin 2000) (Lemma 2).

Lemma 1 Let S = {s1, . . . , sn} be a strategy profile consisting of threshold strategies for a
task with concurrent benefit. Let s̃i = BR(S−i ). Then s̃i is a threshold strategy.

Proof We first show that if for some observation xi = x , we have BR(S−i )(x) = s̃i (x) = 1,
then s̃i (y) = 1 for y ≥ x . To show this, we note that P(x j ≥ τ j | xi = x) is an increasing
function of x as x j − xi is a normally distributed random variable. Therefore, using the
monotone property of concurrent tasks and the fact that xi = τ + ηi , we conclude that:

E

⎛
⎝ui

⎛
⎝1,

∑
j �=i

s j (x j ), τ

⎞
⎠ | xi = y

⎞
⎠

− E

⎛
⎝ui

⎛
⎝0,

∑
j �=i

s j (x j ), τ

⎞
⎠ | xi = y

⎞
⎠

> E

⎛
⎝ui

⎛
⎝1,

∑
j �=i

s j (x j ), τ

⎞
⎠ | xi = x

⎞
⎠

− E

⎛
⎝ui

⎛
⎝0,

∑
j �=i

s j (x j ), τ

⎞
⎠ | xi = x

⎞
⎠ ≥ 0.

Therefore s̃i (y) = 1. Similarly, if for some value of x , we have s̃i (x) = 0, then it follows
that s̃i (y) = 0 for y ≤ x . Therefore, s̃i would be a threshold strategy. ��

We can view the best response of threshold strategies as a mapping from R
n to R

n that
maps n thresholds of strategies to n thresholds of the best-response strategies. Denote this
mapping by L : Rn → R

n . To show that there exists a BNE threshold policy, we show that
the mapping L has a fixed point. Note that not all the functions from R

n to R
n admit a fixed

point. For example, the function

f (x) =
{−1 x > 0
1 x ≤ 0

does not admit a fixed point value, i.e., a point x∗ such that f (x∗) = x∗. In order to show
that L has a fixed point, we use the fact that L is continuous.

Lemma 2 The mapping L that maps the threshold values of threshold strategies to the
threshold values of the best-response strategies is a continuous mapping.
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Proof Let x−i = (x1, . . . , xi−1, xi+1, . . . , xn) be the vector of observations of n − 1 agents
except the i th agent. Note that the vector (x−i , τ ) given xi = x is a normally distributed
random vector with some continuous density function fx (x−i , τ ). Now, let {α(k)} be a
sequence in R

n that is converging to α ∈ R
n . Let {β(k)} be the sequence of thresholds

corresponding to the best-response strategy of the strategy with threshold vector α(k). Let s
be the threshold strategy corresponding to the threshold vector α and let α∗ be the threshold
strategy corresponding to the BR(α). By the definition of the best-response strategy, βi (k)
is a point where

∫
Rn

fβ(k)(z, t)

⎛
⎝ui

⎛
⎝1,

∑
j �=i

uα j (k)(x j ), τ

⎞
⎠

−ui

⎛
⎝0,

∑
j �=i

uα j (k)(x j ), τ

⎞
⎠

⎞
⎠ d(z × t) = 0.

Using the fact that f has a Gaussian distribution and is continuous on all its arguments and
the fact that |ui (·, ·, τ )| ≤ τ p , by taking the limit k → ∞ and the dominated convergence
theorem:

∫
Rn

fβ(z, t)

⎛
⎝ui

⎛
⎝1,

∑
j �=i

uα j (x j ), τ

⎞
⎠

− ui

⎛
⎝0,

∑
j �=i

uα(k)(x j ), τ

⎞
⎠

⎞
⎠ d(z × t) = 0,

where ur is a threshold strategy with threshold r . Therefore, the limk→∞ L(α(k)) = L(α)

for a sequence {α(k)} that is converging to α. ��

Using these lemmas, we can show the existence of a threshold strategy for global games
with concurrent benefit.

Theorem 1 For a concurrent benefit task T , suppose that the stimulus parameter τ is a
Gaussian random variable. Also, suppose that xi = τ +ηi where η1, . . . , ηn are independent
Gaussian random variables. Then, there exists a strategy profile S = (s1, . . . , sn) of threshold
strategies that is a BNE.

Proof By Lemma1, the best response of a threshold strategy is a threshold strategy, and
hence, it induces the mapping L from the space of thresholdsRn to itself. Also, by Lemma 2,
this mapping is a continuous mapping. Now, if Υi is a sufficiently large threshold, then
the second property of concurrent benefit tasks implies that the Υ̃i ≤ Υi because a large
enough measurement xi implies that agent i itself should take part in the task. Similarly, for
sufficiently low threshold Υi , we will have Υ̃i ≥ Υi . Therefore, the mapping L maps a box
[a, b]n to itself, where a is a sufficiently small scalar and b > a is a sufficiently large scalar.
Since the box [a, b]n is a convex closed set, by the Brouwer’s fix point theorem (Border
1990) we have that there exists a vector of threshold values α∗ such that α∗ = L(α∗) and
hence there exists a BNE for the concurrent benefit task T . ��
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5 From discrete thresholds to sigmoidal response functions

Observations in ethology suggest sigmoid threshold functions (Bonabeau et al. 1996), rather
than fixed thresholds as suggested by our analysis. Also, roboticists have started using
sigmoid-shaped threshold functions to engineer swarm systems (Bonabeau et al. 1996;
Theraulaz et al. 1998; Krieger et al. 2000), as tuning the shape of a sigmoidal response
threshold function allows balancing between exploration, i.e., performing a random action,
and exploitation, i.e., using all available information in decision making such as a fixed
threshold. We argue that this behavior can be a direct result of using a simple discrete thresh-
old under the influence of perception noise. Indeed, one can show that a sigmoid threshold
function is the outcome of deterministic threshold functions on noisy observations. Suppose
that all agents share the same utility function u(ai , g, τ ) and also assume that the observation
noise of the n agents (η1, . . . , ηn) are independent and identically distributed (IID)N (0, σ 2)

Gaussian random variables. Then, it is not hard to see that there exists a BNE with threshold
strategies that have the same threshold value Υ (Morris and Shin 2000).

Consider a realization of τ = τ̂ and suppose that we have a large number of agents n
observing a noisy variation of τ̂ . Take, for example, the case of firefighting agents, and let τ̂
be the magnitude (including type, intensity, and area) of the fire. Then, since the observations
of the n agents are IID given the value of τ , they will be distributed according to N (τ̂ , σ 2).
Now consider the relative number of agents taking part in the activity given τ̂ as defined by

Nrel(τ̂ ) := #agents with xi ≥ Υ

n
.

We can now show that for the relative number of agents Nrel(τ̂ ), we have

lim
n→∞ Nrel(τ̂ ) = Φ

(
τ̂ − Υ

σ 2

)
(1)

where Φ is the cumulative distribution function (cdf) of a standard Gaussian, which is illus-
trated numerically in Fig. 2 and shown in Theorem 2:

Theorem 2 For the relative number of agents Nrel(τ̂ ), we have

lim
n→∞ Nrel(τ̂ ) = Φ

(
τ̂ − Υ

σ 2

)
(2)

where Φ is the cumulative distribution function (cdf) of a standard Gaussian.

Proof Note that Nrel(τ̂ ) =
∑n

i=1 Ixi≥Υ

n where Ii≥ j is the indicator function for i ≥ j . For
a given τ̂ , xi are IID N (τ̂ , σ 2) random variables and hence, Ixi≥Υ are IID random vari-
ables. This follows from the fact that if X1, . . . , Xn are independent random variables, then
g1(X1), . . . , gn(Xn) are independent randomvariables for a deterministic (measurable) func-
tions gi : R → R [cf. Theorem 2.1.6 in Durrett (2010)]. Also, we have

E(Ixi≥Υ ) = P(xi ≥ Υ ) = Φ

(
τ̂ − Υ

σ 2

)
.

Therefore, by the law of large numbers, it follows that:

lim
n→∞ Nrel(τ̂ ) = Φ

(
τ̂ − Υ

σ 2

)
.

��
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Fig. 2 Visualization of Theorem 2 as Nrel estimates Φ(·). The plot was generated by running Eq. 1 10,000
times for each point in τ̂ = 1–10 in increments of 0.1. n = 10, Υ = 5 and xi = τ̂ + ηi (ηi ∼ N (0, σ 2)).
Each solid line in the plot is generated by sweeping σ 2 = {0.1, 1, 2, 10}, with σ 2 = 0.1 being close to a step
function and σ 2 = 10 having the flattest slope. The shaded region provides a difference comparison between
the Nrel estimate of Φ(·) and Φ(·) itself, which is plotted using dotted lines

The final step to explain the prevalence of sigmoid functions in multi-agent settings is to
note that: ∣∣∣∣∣∣

Φ

(
τ̂ − Υ

σ 2

)
− 1

1 + e
−d

(
τ̂−Υ

σ2

)

∣∣∣∣∣∣
≤ 0.01,

for all τ̂ ∈ R and some optimal value d ≈ 1.704 as described in Camilli (1994). This
means that the aggregate behavior of the agents following deterministic threshold strategies
would closely follow (to within a constant error term) the shape of the commonly observed
logistic sigmoid function whose drift is directly proportional to Υ and the slope is inversely
proportional to σ 2.

Therefore, despite agents usingdeterministic threshold strategies, theiraggregate behavior
would appear to an outside observer as a continuous sigmoid threshold function instead of
numerous discrete thresholds.

6 Discussion

We have formally shown that a simple response threshold method as it is customary in swarm
robotics and social insects will lead to a Bayesian Nash equilibrium, without the need for
individuals to communicate, but solely requiring perception of a common stimulus signal.
This makes this approach simple to implement and is another argument for its ubiquity in
nature and engineering.

Although we have shown how a simple threshold-based policy for task allocation can
resemble behavior observed in social insects, we caution that all proofs in this paper assume
Gaussian distributions for the stimulus parameter and its noisy observations. While these
assumptions can easily be accommodated in an engineering system, they do not necessar-
ily hold in a biological context. Studying the true distributions in systems of interest and
extending the results presented here for other distributions is therefore subject to further
work.
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We note that the proposed task allocation mechanism is not optimal in terms of the allo-
cations it can generate, but simply the best strategy for an individual agent given that other
agents are using the same policy, which is the definition of a Nash equilibrium. This strategy
is therefore only interesting if communication between agents is impossible or otherwise
undesirable. In this case, the presented results provide an analysis framework, which makes
such an approach viable in an engineered system in which a Bayesian solution is acceptable.
Yet, further work is needed to formally show what the lower performance bounds of such a
policy are.

The existence of a BNE in a global game is contingent on individuals not communicating
with each other. This is immediately obvious as the availability of information to some agents,
but not to others, might allow them to improve some global metric by changing only their own
policy. As both engineered and natural systems could easily achieve better results by com-
municating (see related work on optimal task allocation), we interpret probabilistic response
threshold task allocation mechanisms to be a suitable baseline strategy. When observed in
natural systems, their existence could serve as a clue that individuals do not communicate
directly for one or the other reason.

Results from this paper assume that the response threshold is constant, which is not
necessarily the case in natural systemsor swarm robotics (Castello et al. 2016),where adaptive
thresholds can improve performance. Formally extending the methods presented here to
include adaptive thresholds is subject of future work.

7 Conclusion

We are studying a class of task allocation problems that require joint action of a certain
average number of agents in order to be successful and in which agents do not communicate,
but only have access to a common (noisy) stimulus signal. These assumptions are very basic,
making this approach accessible to a wide range of platforms.

Due to the limited information available to individuals in such systems, we are employing
a probabilistic response threshold algorithm that is prominent in both engineered and natural
systems such as social insects that have limited computational and communication abilities.
We show that the information requirements of the problem studied in this paper are akin to
those encountered by human beings during bank runs and revolutions. This insight allows us
to leverage methods and tools from the field of game theory, which describes such a situation
as a global game. Building up on existing proofs, we show that such a policy leads to a
Bayesian Nash equilibrium, that is, on average, no player has anything to gain by changing
only their own strategy.Albeit this result does not imply that such a policy results in an optimal
allocation, it provides—for the first time—a formal understanding for why a probabilistic
response threshold strategy is actually desirable.

Furthermore, we show how a noisy perception of a global, deterministic threshold signal
can be interpreted as a deterministic observation of a sigmoidal threshold function, which
are commonly observed or applied in natural or engineered swarms, respectively. Seemingly
sigmoidal response functions can be explained by a noisy observation of a deterministic
threshold and therefore do not need to be hardcoded in the system. Rather, the resulting
balance between exploration and exploitation that is common to swarm systems can be tuned
by increasing or decreasing noise in the perception apparatus.

In future work, we are interested in better understanding the relationship between the
existence of BNE and various optimality criteria for task allocation. Here, the growing field
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of games with imperfect information is a promising direction to possibly show that response
threshold functions lead not only to Nash equilibria, but also to globally optimal task alloca-
tions in case of communication between individuals either not being permissive or possible.
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