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Abstract Ant colony optimization (ACO) has been successfully applied to classification,
where the aim is to build a model that captures the relationships between the input attributes
and the target class in a given domain’s dataset. The constructed classification model can
then be used to predict the unknown class of a new pattern. While artificial neural networks
are one of the most widely used models for pattern classification, their application is com-
monly restricted to fully connected three-layer topologies. In this paper, we present a new
algorithm, ANN-Miner, which uses ACO to learn the structure of feed-forward neural net-
works. We report computational results on 40 benchmark datasets for several variations of
the algorithm. Performance is compared to the standard three-layer structure trained with
two different weight-learning algorithms (back propagation, and the ACOpg algorithm), and
also to a greedy algorithm for learning NN structures. A nonparametric Friedman test is used
to determine statistical significance. In addition, we compare our proposed algorithm with
NEAT, a prominent evolutionary algorithm for evolving neural networks, as well as three
different well-known state-of-the-art classifiers, namely the C4.5 decision tree induction
algorithm, the Ripper classification rule induction algorithm, and support vector machines.
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1 Introduction

Machine learning is an active research area involving the development of methods for auto-
mated data mining and analysis, which aims to uncover useful knowledge for decision making
applications in real-world domains (Bishop 2006; Witten et al. 2010). Classification is a cen-
tral data mining task concerned with predicting the class of a given pattern based on its input
attributes, using a well-constructed model (classifier) (Han et al. 2011a; Tan et al. 2005).
Bank credit scoring, financial fraud detection, churn analysis, and targeted advertising are
examples of well-known classification problems, in addition to applications in numerous,
diverse fields, including bioinformatics, healthcare, and engineering (Han et al. 2011a; Tan
et al. 2005; Witten et al. 2010).

The process of building a classifier consists of two stages. The training stage utilizes a
training set of labeled patterns—i.e., a set of patterns along with their correct class labels—that
should be sufficiently representative of the domain of interest. A classification algorithm uses
the training set to construct a model that captures the relationships between the attributes of
the input patterns and their corresponding class labels. Then, during the subsequent operating
stage, the model is used to predict the class of new unlabeled patterns that were not present
during the training stage.

Inspired by biological systems, artificial neural networks (NN) (Haykin 2008) are one
of the most widely studied and applied models for pattern discrimination (classification).
NN s are generally presented as systems of inter-connected computational units (neurons)—
each takes inputs and produces an output—and a set of real-valued weights associated with
inter-neuronal connections. The connectivity structure of a NN, the activation function of
the neurons, and the connection weights determine the decision boundaries that separate
patterns with different classes in the data space, and are used to determine the class of a
new pattern. The most commonly used pattern discrimination NNs are feed-forward neural
networks (FFNN) with a three-layer topology (structure). The structure consists of an input
layer, a single hidden layer, and an output layer, with full connectivity between the neurons
in one layer and the neurons in the following layer. In a FENN, the size of the input and
output layers are determined by characteristics of the dataset, while the number of neurons
in the hidden layer is often manually determined by practitioners based on various heuristics
involving the number of input and output neurons, the size of the training set, the expected
number of training iterations, and the estimated difficulty of the problem at hand.

In general, much of the work in the NN literature has focused on studying and developing
techniques for training (i.e., learning the connection weights of) a NN with a given user-
defined structure. Allowing arbitrary feed-forward topologies and automatically optimizing
the structure of a NN—based on a dataset at hand—can lead to more effective pattern classifi-
cation models. The present paper is an extended version of the ANTS 2014 conference paper
(Salama and Abdelbar 2014), where ANN-Miner, an Ant-based Neural Network structure
learning algorithm, was introduced.

In this paper, we build on the work described by Salama and Abdelbar (2014) in six ways.
First, we use the ACOp algorithm (Socha and Dorigo 2008) for training the NN structures
produced by our ANN-Miner algorithm. ACOR is a state-of-the-art ant colony algorithm for
continuous optimization problems, which has been applied to training NNs with the standard
three-layer structure (Blum and Socha 2005; Socha and Blum 2007). We also compare ANN-
Miner to standard ACOR with the three-layer structure. Second, we use the quadratic loss
function as a more effective function for evaluating the quality of the candidate constructed
NNs, compared to the simple accuracy quality evaluation function that was used by Salama
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and Abdelbar (2014). Third, we compare our ACO-based algorithms with a baseline greedy
hill-climber (GHC). Fourth, the number of datasets used in the experimental evaluation is
increased from 20 to 40. Fifth, we compare our proposed approach to three different state-of-
the-art classifiers, namely the C4.5 decision tree induction algorithm, the Ripper classification
rule induction algorithm, and support vector machines (SVM), as well as to two well-known
baseline classifiers, namely one-nearest-neighbor and Naive Bayes. Sixth, we compare our
proposed approach to NEAT (Stanley and Miikkulainen 2002; Stanley et al. 2005b, 2009),
a prominent evolutionary algorithm for evolving neural networks.

The remainder of the paper is organized as follows. An overview of the ACO meta-
heuristic is given in Sect. 2. We discuss the ACO related work—generally in classification
and specifically in NNs—in Sect. 3. A background on feed-forward neural networks, along
with different techniques for NN weight learning, is provided in Sect. 4. In Sects. 5 and 6, we
describe our ANN-Miner algorithm and its related variations. Section 7 presents a review of
related neuroevolutionary methods. Sections 8 and 9 report our experimental methodology
and results, respectively. We conclude with some general remarks and directions for future
research in Sect. 10.

2 Ant colony optimization

Ant colony optimization (ACO) (Dorigo et al. 1999; Dorigo and Stiitzle 2004, 2010) is a
meta-heuristic for combinatorial optimization problems, inspired by the behavior of natural
ant colonies. The basic principle of ACO is that a population of artificial ants cooperate with
each other to find the best path in a graph, analogously to the way that natural ants cooperate
to find the shortest path between two points such as their nest and a food source (Dorigo and
Stiitzle 2004, 2010; Dorigo et al. 1996).

In ACO, each artificial ant constructs a candidate solution to the target problem, repre-
sented by a combination of solution components in the search space. Ants cooperate via
indirect communication, by depositing pheromone on the selected solution components for a
candidate solution. The amount of pheromone deposited is proportional to the quality of that
solution, which influences the probability with which other ants will use that solution’s com-
ponents when constructing their solution. This contributes to the global search aspect of ACO
algorithms. In addition, the probability of an ant choosing a solution component often also
depends on the value of a heuristic function that measures the desirability of that component.

The global search aspect is also promoted by the fact that a population of ants will search
for the best solution in parallel, thus exploring possibly different regions of the search space
at each iteration of the algorithm. As a result of this global search, ACO is less likely to get
trapped in local optima than conventional greedy algorithms, which increases the chances of
finding a near-optimal solution in the search space. Note that in some widely used variations
of the ACO procedure (e.g., MAX-MZIN Ant System (Stiitzle and Hoos 2000)), multiple
ant solutions are created in an iteration of the algorithm, and then the ant with the best created
solution updates the pheromone trail. We use this behavior of the MAX-MZN Ant System
in our ANN-Miner algorithm, as described in Sect. 5.2.

3 Related work on ACO for pattern classification

ACO has been successful in tackling the classification problem of data mining. A number of
ACO-based algorithms have been introduced in the literature for learning different types of
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classification models, including classification rules, decision trees, Bayesian networks, and
neural networks.

Ant-Miner (Parpinelli et al. 2002) is the first ant-based classification algorithm which
discovers a classification model comprised of a list of IF-THEN classification rules. The
algorithm has been followed by several extensions, such as Ant-Miner+ (Martens et al. 2007),
FRANTIC-SRL (Galea and Shen 2006), cAnt-Miner (Otero et al. 2009), Multi-pheromone
Ant-Miner (Salama et al. 2011, 2013), and recently cAnt-Minerpg (Otero et al. 2013; Otero
and Freitas 2013).

ACDT (Boryczka and Kozak 2010, 2011) and Ant-Tree-Miner (Otero et al. 2012; Salama
and Otero 2014) are two different ACO-based algorithms for inducing decision trees for
classification. Salama and Freitas have recently employed ACO to optimize the dependency
relationships in various types of Bayesian network classifiers, such as Bayesian network
augmented naive-Bayes (Salama and Freitas 2013b), Bayesian multinets (Salama and Freitas
2014b, 2015), and class Markov blankets (Salama and Freitas 2013, 2014a).

In the context of pattern classification neural networks, the ACO meta-heuristic was uti-
lized for learning NN weights in two previous works. Liu et al proposed ACO-PB, a hybrid
of the ant colony and back propagation (BP) algorithms, to optimize NN weights (Liu et al.
2006). They use ACO to search a discretized set of weight values, and then use BP to fine-tune
the discrete weights found by ACO. Blum and Socha applied ACOg, an ACO algorithm for
continuous optimization (Socha and Dorigo 2008; Liao et al. 2014), to train feed-forward
neural networks (Blum and Socha 2005; Socha and Blum 2007). We revisit ACOg in more
detail in Sect. 4.2 as we use it in our experiments with our ANN-Miner algorithm.

Note that, to the best of our knowledge, ACO has not been previously applied to learning
the structure of neural networks prior to the introduction of our ANN-Miner algorithm. For a
comprehensive review of ACO algorithms in data mining, the reader is referred to the survey
by Martens et al. (2011).

4 Feed-forward neural networks

One of the most popular and well-established methods for pattern classification are feed-
forward neural networks (FFNN), which are neural networks in which the pattern of
connections between neurons is acyclic. The most common FFNN topology is a three-layer
structure in which neurons are arranged in an input layer, a hidden layer, and an output layer,
with full connectivity between layers—i.e., the output of every neuron in a layer feeds in as
an input to every neuron in the succeeding layer. The external input to the network feeds into
the input layer, and the network’s external output is the output of the output layer.

Each neuron i is fairly simple and can be considered to be a simple circuit which receives
r inputs oy, . .., o, (these inputs may represent the outputs of neurons in the previous layer
or may represent the network’s external inputs) and produces a single output o;:

net; = Zwijoj- + 6; 1)
=
oi = f(net;) 2)

where each input o; is the output of a neuron in the previous layer, the weight w;; represents
a real-valued weight between neuron j and neuron i, 6; represents a weight associated with
neuron { itself called the neuron’s self-bias, and f is a nonlinear activation function. Note
that input neurons do not have self-biases.
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After an input pattern x is presented to the network, the output of the network is observed
and is referred to as the actual output vector y’. A discrepancy function E is used to com-
pare the target output y to the actual output y’ resulting in a scalar error value. A common
discrepancy function is the simple sum of squared error:

E=>E, (©)

peP

where P is the set of training patterns and

1 m
Ep=5 2 i =)’ @)

i=1

where m is the number of classes.
In pattern classification applications, the target vector y is m-dimensional where m is the
number of classes. For a pattern with class label ¢:

1 ifk=c¢
= 5
Yk [0 otherwise ®)

The weights and self-biases of a given FFNN are collectively referred to as the network’s
weight vector w. For example, a FFNN with four neurons in the input layer, five neurons in
the hidden layer, and three neurons in the output layer would have a weight vector of 43 real
numbers. If the weight vector for a given network is fixed, then the output of the network is
a function of its input, and the total error E of the network is a mathematical function of the
training set. If the training set is fixed, then the error E is a function of the weight vector w.
Our objective is to find the value of the weight vector w which minimizes the error E.

4.1 Backward error propagation

One of the earliest, and still most popular, approaches to neural network learning is based
on gradient descent. For each element w; of the weight vector, the partial derivative %
1

represents w;’s contribution to the network error. Therefore, the gradient-descent principle
is that each w; should be changed by an amount Aw;,

w; = w; + Aw; (6)
such that:
oFE
Aw; X ——— @)
Wi
This can be implemented as:
0E
Aw; = —n— (@)
Bw,-

where 7 is referred to as the learning rate.

The back propagation (BP) algorithm (Werbos 1994) provides a mechanism for computing
g—uﬁ for each element w; in the weight vector by first computing the contribution of each
neuron in the output layer to the error, and then propagating backwards through the network
to compute the contribution of each neuron and weight in previous layers to the error.
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4.2 Using ACOp, to learn NN weights

The ACOgr algorithm has recently been applied to learning the weights of a fixed-topology
FFNN (Blum and Socha 2005; Socha and Blum 2007). In this application of ACOg, an
archive of L previous solutions is maintained, where a solution in this context refers to
an instantiation of the weight vector w. In ACOg, the solution archive plays the role that
pheromone plays in other ACO algorithms.

In each iteration, each ant in the colony generates a candidate solution, again where each
candidate solution is an instantiation of the weight vector. If there are m ants in the colony,
then m solutions (weight vectors) are generated per iteration, and these m solutions are added
to the archive, which is now temporarily of size (L +m). The worst m solutions in the archive
are then identified and discarded, thereby returning the archive to size L.

To evaluate a candidate solution (weight vector) w, the weight vector w is used to initialize
the weights of a neural network. The training set is then applied to the network, and the total
error over the training set is taken as a measure of the quality of the candidate solution—the
lower the error, the better the solution.

At the start of each iteration, the solutions in the archive are sorted by quality, with the
best solution being given a rank of 1 and the worst a rank of L. Each solution s; of rank i is
given a coefficient w; computed as:

w; =g 1,9L) )
where g denotes the Gaussian function:

1 _G-w?

27 (10)

g(xs p,0) = e
o2m
This means that the coefficient w; is assigned to be the value of the Gaussian function
with argument i, mean 1.0, and standard deviation equal to g L, where ¢ is a user-supplied
parameter. Note that smaller values of ¢ cause the better ranked solutions to have higher
coefficients w. Further, note that:

w] > Wy > > Wy, (11)

Next, let us consider how an ant constructs a solution. Let u denote the solution being
constructed. Recall that u is a weight vector whose dimensionality depends on the topology
of the network. The first step to constructing u is to select one of the L solutions in the
archive by which to be influenced in the construction process. If the r-th solution in the
(sorted) archive, of rank r, is denoted s,, then a solution is selected based on:

Pr(select 5,) = —t— (12)

r=1®r

Let s, be the archive solution that is selected according to Eq. (12). Each element of u is then
generated by sampling the Gaussian probability density function (PDF):

uj ~ N(sqj, 0qj) (13)

where N (i, o) denotes the Gaussian PDF with mean p and variance o2, s, j represents the
value of the j-the element of the solution s, selected using Eq. (12), and o is computed as:

L
|5aj — srjl
oaj=E D “2_ 1” (14)

r=1
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where £ is a user-supplied parameter of the algorithm which plays arole similar to evaporation
rate in other ACO algorithms. The higher the value of £, the slower the speed of convergence
of the algorithm.

Once each ant has constructed its solution, the archive is updated as described above. The
process repeats until the desired termination criteria are met.

5 A novel ACO algorithm for learning neural network structures

Unlike many neural network applications that use a simple three-layer network topology
with full connectivity between layers (as discussed in Sect. 4), we allow our ACO-based
technique to deviate from this, as follows. ANN-Miner allows connections to be generated
between hidden neurons and other hidden neurons—under the restriction that the topology
remain acyclic—as well as direct connections between input neurons and output neurons.
This permits the production of networks with a variable number of layers, as well as arbitrary
connections that skip over layers. The ACO elements of the ANN-Miner algorithm are defined
in the following subsections.

5.1 ACO construction graph

In general, the core element of an ACO-based algorithm is the construction graph, which
contains the solution components in the search space, and with which an ant constructs a
candidate solution. In the case of the problem at hand, a candidate solution is a network
structure, and the solution components are the selected connections between the neurons.
The number of input neurons and output neurons depends of course on the dataset and the
representation that is used for the attributes of the dataset, while the total number of hidden
neurons is a user-supplied parameter. Suppose the total number of neurons is N, with N;
input neurons, N, output neurons, and N, hidden neurons. The set of available potential
connections, denoted C, will then be comprised of four types of potential connections:

1. Connections between input and hidden neurons (specifically N; x Nj connections),
2. Connections between hidden and output neurons (specifically Nj, x N, connections),
3. Connections between input and output neurons (specifically N; x N, connections),
4. Connections between different hidden neurons.

The available connections between the N, hidden neurons are defined as follows. In order
to ensure that the network structure is acyclic, we impose the restriction that the connection
(n;j — nj) is not available if n; > n;. In other words, each hidden neuron has a numeric
index, and we only allow connections from a given hidden neuron #; to a higher-numbered
neuron n;. It is well known that any directed acyclic graph is isomorphic to a graph where
the nodes are lexicographically ordered, and for all arcs (u, v) in the graph, u precedes v in
the lexicographic order. Hence, the number of available connections between the N, hidden
neurons is

(Np =D+ WNp=2)+---+1+0=Np(Ny — 1)/2

As previously mentioned, the number of input and output neurons, N; and N,, are deter-
mined by the characteristics of the dataset. In the work described in this paper, we set the
number of available hidden neurons to N, = N; + N,.

Itisinteresting that our ACO procedure can be viewed as pruning the maximally connected
network structure that contains all |C| possible connections by selecting which connections
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to include in the network structure and which connections to exclude. Note that using the
maximally connected NN structure may harm the generalization ability of the produced NN.
That is, a NN model with a large number of connections can potentially overfit the training
(in-sample) data during the training phase, by capturing noisy relationships related only to the
training set. Consequently, this model might not perform well on new (out-of-sample) data.

Hence, each potential connection ¢ = n; — n, connecting neuron i to neuron j, has two
solution components in the construction graph: D¢, representing the decision to include
connection n; — n; in the current candidate NN structure being constructed by the ant, and
DZ alse, representing the decision not to include the connection. Each solution component D¢
is associated with a pheromone amount (indirectly representing an estimate of the quality of
this component in constructing effective candidate NN models). Therefore, the construction
graph can be represented as a two-dimensional 2 x |C| array, consisting of an element D¢
foreveryc=1,...,|Cl,and a € {false, true}.

5.2 A high-level view of the ANN-miner algorithm

The pseudo-code of the ANN-Miner algorithm is given in Algorithm 1. In the initialization
step of ANN-Miner (line 4), the amount of pheromone assigned to each solution component
D¢—where a can be true or false—in the construction graph is initialized with the value 0.5.
Hence, for each connection ¢, the probability of including i — j (i.e., selecting D"¢) in

the topology equals the probability of not including i — j (i.e., selecting D'Cf alse).

Algorithm 1 Pseudo-code of ANN-Miner.

1: Begin

2: NNpsr = &;

3r=1;

4: Initialize Pheromone();

5: repeat

6 NNipest = &

7 Otbest = 0;

8 fori =1 — colony_size do

9 NN; = ant;.CreateSolution();
10 Q; = EvaluateQuality(N N;);
11 if O; > Qpesr then

12 NNipest = NNj;

13 Otpest = Qi3

14 end if

15: end for

16: Update Pheromone(N Nipests Qtbest):
17 if Qtpest > Qbpsy then

18 NNbe:NNtheSﬁ

19 Obsf = Otbests

20 end if

21 t=t+1;

22: until t = max_iterations or Convergence(conv_iterations);
23: NNyinai = PostProcessing(N Npgy);

24: return NN fipq;

25: End

The pseudo-code of the ANN-Miner algorithm follows the approach of MAX-MZIN
Ant System (Stiitzle and Hoos 2000), where in each iteration, each ant in the colony constructs
a solution, and the ant with the best constructed solution updates the pheromone trail. In the
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inner for-loop (lines 8—15), each ant; in the colony creates a candidate solution N N;, i.e., a
complete neural network (line 9). Then the quality of the constructed solution is evaluated (line
10). The best solution N N;pes; produced in the colony is selected to update the pheromone
trail by an amount that is proportional to the quality of its solution Qypes;. After that, the
algorithm compares the iteration-best solution N Nypes; With the best-so-far solution N Ny ¢
(the if statement in lines 17-20) to keep track of the best solution found so far during the
algorithm’s execution.

This set of steps is considered an iteration of the outer repeat-until loop (lines 5-22)
and is repeated until the same solution is generated for a number of consecutive itera-
tions specified by the conv_iterations parameter (indicating convergence) or until
max_1iterations isreached. The values of conv_iterations,max_iterations
and colony_size are user-specified. The parameter settings used in our experiments are
shown in Sect. 8.2.

The best-so-far neural network undergoes an (optional) post-processing step (line 23) to
produce the final neural network NN fiuq to be returned by the algorithm. Basically, the
algorithm learns the final weights of the connections in the neural network N Njsr—which
uses the best NN structure found during the search process of the ACO algorithm. This is
discussed in Sect. 6.2.

5.3 Creating a candidate solution

Algorithm 2 Pseudo-code of solution creation procedure.

1: Begin CreateSolution()

2: NN « ¢;

3: for c € C do

4. D¢ = Select DecisionComponent();
5:  if D¢ == D! then

6 NN =NNU (i = j);

7 end if

8: end for

9: TrainNeuralNetwork(NN, 1});
10: return NN;
11: End

Algorithm 2 describes the process of creating a new candidate solution (neural network),
which is called as a subroutine in line 9 of Algorithm 1. The procedure starts with an empty
(edge-less) neural network (line 2). For each connection ¢ in the available set of connections
C, the ant selects D¢ to decide whether to include this connection in the candidate network

NN or not (line 3)—by either selecting solution component DZ"*¢ or D'Cf as¢ The selection
of the solution component at each step is based on the following probabilistic state transition
formula:

© (Dg)
T (Dérue) +T (D,Cfalse)

where p(D¢) is the probability of selecting decision D for connection c, and t(D¢) is the
current amount of pheromone associated with D¢. Note that, in this ACO algorithm, we do
not use any heuristic information, that is, the probability of selecting a solution component
is solely dependent on the current pheromone amounts associated with each component.

p(DY) = (15)
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If the selected component is DI""¢, that is, the ant selected the decision to include con-
nection ¢ in the NN structure, the corresponding connection (n; — n ;). is appended to the
candidate network NN (the if statement in lines 5-7). After the ant visits all the available
connections in the construction graph and performs the include-or-not decision, the network
structure of NN is now complete, and the weights of the neural network are ready to be
learned. If a given neuron i either does not have an incoming path from any of the network
inputs or does not have an outgoing path to any of the network outputs, then that neuron i is
not included in the constructed network. If it happens that one of the network outputs does
not have an incoming path from any of the network inputs, then the constructed network is
assigned a poor quality evaluation without applying the BP weight-training process.

We train the neural network NN (line 9) using the back propagation (BP) procedure
(described in Sect. 4.1), with some optimized parameter values (discussed in the following
section), as a “quick and dirty” method to obtain a complete neural network and evaluate
its pattern classification quality. We use BP for training the candidate neural network, not
because it is the best weight optimization method, but because it is a fast procedure that is
going to be repeated many times over the course of the computation. In addition, we are only
interested in the relative quality difference between different NN structures trained by the
same (even if not very efficient) BP procedure.

5.4 Evaluating the quality of a candidate solution

A key objective of a pattern classification algorithm is to learn models with good general-
ization capabilities, i.e., models that are able to accurately predict the class labels of new
unknown data patterns. Overfitting occurs when the induced model has good classification
performance (fit) on the training (in-sample) data used in the learning process, yet shows bad
predictive performance (generalization) on new/testing data. Therefore, we split the training
set 7 at the beginning of the algorithm into two mutually exclusive parts: 1) the learning set
71, which contains 80 % of the training set and is used to learn the candidate NN structure
and weights (line 9, Algorithm 2); and 2) the validation set 7, which contains 20 % of the
training set and is used to evaluate the quality of the model (line 10, Algorithm 1).

Let m denote the number of classes, ¢ denote the true (correct) class for a given pattern x,
and ¢ denote the class that is predicted by the neural network NN (i.e., ¢ = argmax;{o;}).
Recall from Sect. 4 that we use y to denote the m-dimensional target output vector of the
network, and use y’ to denote the actual output vector, where y' = (01, 02, ..., 0;). The
output vector can be transformed into a vector p of class probability scores through a simple
normalization:

Ok
Pk =om—
ijl 0j

A simple, and perhaps the most widely used, classification measure is accuracy. This is the
quality measure that was used in previous work on ANN-Miner (Salama and Abdelbar 2014).
For a given pattern x,

(16)

lifc=c
Acc(NN|x) = [Oifé;éc (17)
For an entire validation set 7,
1
Qacc(NNIT)) = 1= > Acc(NNIx) (18)
v xeT,
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where Q 4. is the pheromone amount to be deposited in the pheromone update step (line 16,
Algorithm 1); the higher the value of Q s..(N N|7,), the better the quality of NN.

The accuracy measure has a deficiency, which can be illustrated using the following
example. Suppose we have a pattern x where m = 3 and ¢ = 1. Consider three candidate
NNs with the following probability score vectors given pattern x: N Ny(x) = (0.9, 0.1, 0),
NNy(x) = (0.6,0.4,0) and NN3(x) = (0.6,0.2,0.2). In the three NNs of the example,
Acc(x) will be equal to 1 for all three probability vectors. However, it is obvious that N Ny
should receive a better quality preference than N N, and N N3, since it produces a higher
probability for the true class.

In this work, we use the quadratic loss function (QLF), which is a widely used error
measure, to evaluate the quality of constructed candidate N N models. For a given pattern x:

m
2
QLF(NNIx) =D [y — %] (19)
k=1
Because components of the y vector are equal to 1 for the correct class and to O for all other
classes, this equation can be rewritten as:

QLF(NNIx)=(—pa)*+ D (p)’ (20)
ke[l,m]:k#c

In the same aforementioned example, the three probability vectors would have Q L F' values
of: 0.02, 0.32, and 0.24. Thus, the QL F error measure would prefer NNy, followed by
N N3, followed by N N;. Thus, not only does QL F favor the models that produce a higher
probability for the true class, but it also favors the models that produce the lowest probabilities
for the other classes.

For an entire validation set 7y,

1

QoLr(NN|Ty) =1-
QLF v |Z)|

> QLF(NN|x) 21

xeTy

where Qg F is the pheromone amount to be deposited in the pheromone update step.

5.5 Updating pheromone trails

After the quality Q; is computed for each candidate solution N N; constructed by all the ants
in the colony at iteration ¢, the iteration-best solution is identified and used to update the
pheromone amounts on the construction graph. The pheromone amounts are increased on all
the components D¢ of the solution constructed by the iteration-best ant during its trail, where
D¢ represents the decision to include (a = true) or not to include (a = false) connection ¢
in the NN structure. This influences the probability for the subsequent ants to include, or not
to include connection ¢. The amount of pheromone deposited is based on Q;pes:, the quality
of the iteration-best solution N Nypes;, as follows:

T(DY) = ©(DY) + [1(DF) x QrpestI¥e € C, DI € N Nipes: (22)

To simulate pheromone evaporation, normalization is then applied on each pair of solution
components associated with each connection c in the construction graph. This keeps the total

pheromone amount on each pair 7(D!"*¢) and 7 (D"5%) equal to 1, as follows:
(D%
T(Dlr) +o(D{")

(DY) = VeeC (23)
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6 Variations of the ANN-miner algorithm
6.1 Accumulated wisdom

We present two variations of the ANN-Miner algorithm: the first variation is the standard
ANN-Miner algorithm described in Sect. 5, and the second is a variation called w ANN-Miner
that makes use of the optimized weights of the best-so-far network. In both variations, after
each ant; constructs a candidate network structure N N;, the neural network is trained using
the BP procedure to learn the weights of its connections.

In the standard ANN-Miner algorithm, after ant; constructs a candidate network structure
N N; (where N N; consists of a set of inter-neuronal connections without associated weights),
the weights of N N; are randomly initialized. This means that the algorithm does not make
use of the optimized weights of previously constructed neural networks. Such an approach
performs a fair comparison between different candidate NN structures, since they all start
weight optimization from the same point: random initialization of the weights. In ANN-
Miner, we perform BP for each candidate N N;, for 20 epochs and with a learning rate of
0.1. Moreover, the weight-learning procedure in the post-processing step (described in the
following subsection) also starts with randomly initialized weights.

In contrast, the second variation, called w ANN-Miner, makes use of the optimized weights
of the best-so-far neural network N Nj ¢ constructed in previous iterations. In other words, in
wANN-Miner, the colony retains the weight optimization “wisdom,” and accumulates on it
throughout the algorithm’s execution. Specifically, in this variation, N Np consists of a set
of inter-neuronal connections along with their associated weights. After each ant constructs a
candidate network structure N N;, the weights of its connections are not randomly initialized
but rather are initialized with the weights present in N Njr. However, some connections in
N N; may not be present in N Ny, in which case their weights will be randomly initialized.
Furthermore, there may be some connections in N Nj; that are not present at all in N N;.
Such differences in the NN structures maintain the exploration aspect of the weight-learning
process, in addition to the exploitation aspect that is realized by building on the best weights
learned in previous iterations.

The back propagation procedure is then applied to N N;; if N N; produces a better clas-
sification quality than N Njsr, NN; will replace N Njy, and its connection weights will be
used as initial values in constructing subsequent candidate neural networks.

In wANN-Miner, we perform BP, for each candidate N N;, for only 10 epochs and with
a lower learning rate of 0.05, making use of the accumulated weight optimization wisdom.
Moreover, the BP weight-learning procedure in the post-processing step also starts with the
weights of N Njy.

6.2 Post-processing procedure

The ANN-Miner algorithm performs a final step to learn the connection weights of the N Np; ¢
optimized structure produced by the ACO procedure. We use the two NN weight-learning
algorithms discussed in Sect. 4:

1. the standard gradient-descent-based back propagation algorithm,
2. the ant-based ACOp algorithm for continuous optimization.

Furthermore, we also evaluate baseline variations in which no post-processing is applied,
and the network N Ny, is returned without any further weight optimization. The idea behind
that is to test the hypothesis that wANN-Miner may not benefit from the weight-learning
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post-processing step to the same extent that the first variation, ANN-Miner, may benefit. This
is demonstrated in the results in Sect. 9.

7 Review of related neuroevolutionary methods

Evolving neural network topologies and weights has been of substantial interest to the evolu-
tionary computation community since the 1990s. There are several useful surveys of this area:
(Floreano et al. 2008) is a broad survey; (Schliebs and Kasabov 2013) focuses on evolving
spiking neural networks; and (Risi and Togelius 2014) focuses on neuroevolution in games.

Some neuroevolutionary methods, including our own ANN-Miner, use a direct topology
representation, in which the candidate solution representation includes decision variables
to control the existence of every potential connection, and possibly every potential node.
Other approaches use an indirect representation, for example an evolvable set of rules or
a grammar, to indirectly specify the network topology. Numerous works have employed
indirect encodings (Stanley et al. 2009; Hornby and Pollack 2002; Cangelosi et al. 1994;
Kodjabachian and Meyer 1998; Stanley 2007; Clune et al. 2009; Valsalam and Miikkulainen
2011; Valsalam et al. 2012). We focus on direct encoding-based methods in this review, since
they are more similar to our work.

We suggest a four-category classification of neuroevolutionary methods. The first two
categories (which we will call Type I and II) are methods that evolve both the network
topology and the weights, without the use of gradient descent. Type I methods are ones that
employ some type of crossover operator, and Type II methods are ones that do not. Type
IIT methods evolve the network topology, but use some type of gradient-descent approach
to optimize the weights, in order to evaluate the fitness of each constructed topology. Type
IV methods evolve the weights for a fixed-topology network. We will consider each of these
four types in turn in the following subsections.

7.1 Type I methods

Because Type I methods employ some type of crossover operator, they face challenges
not faced by Type II methods. One such challenge is what has been called the “competing
conventions” problem (Whitley et al. 1993; Stanley and Miikkulainen 2002). This problem
refers to there being multiple ways to express what is intuitively the same network. For
example, the two networks in Fig. 1 are logically equivalent, but appear to be different.
Although both have the same fitness, crossover between them could result in a very poor
fitness solution.

Another problem that is shared by Type I and Il methods is that when the network structure
is changed through crossover or mutation, by adding or removing an edge or a node, the new
network often has initially low fitness. After the weights have had some time to adapt to the
new structure, the “true” fitness of the new structure can reveal itself. However, evolutionary
pressure will often force the newly created structure to be removed from the population before
its weights have had a chance to “catch-up.”

This problem is not faced by Type III methods, because they use gradient descent to quickly
adapt the weights while computing the fitness of a structure. For Type I and II methods, there
is a need to protect a newly created or newly modified structure until its weights have had a
chance to adapt.

Prominent in the Type I family of methods is Stanley et al.’s NeuroEvolution through
Augmenting Topologies (NEAT) algorithm (Stanley and Miikkulainen 2002; Stanley et al.
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Fig. 1 A practical illustration of
the competing conventions
problems. The two networks
shown are logically the same, but
appear to be different

(b)

2005b), and its variations (Stanley 2007; Stanley et al. 2009; Whiteson et al. 2005). NEAT
protects newly created structures through an elaborate mechanism for speciation or niching
(Potter and De Jong 1995). NEAT also includes an interesting approach to the competing
conventions problem (see below).

NEAT’s solution representation, or genome, includes two types of genes: node genes and
connection genes. Each node or potential node in the network has a corresponding node
gene. NEAT starts off with a small network consisting only of the input neurons and output
neurons, with no hidden neurons. Hidden neurons are then added gradually over the course
of the computation. A connection gene specifies a single connection; the gene representation
includes: the source node, the destination node, the weight, an “enable bit” that indicates
whether or not that connection exists in the network, and an innovation number that we
describe further below. NEAT’s genome includes a list of node genes, and a list of connection
genes.

Connection weights are adapted by mutation as in most evolutionary algorithms, with each
connection being perturbed with some probability in each generation. Structural mutations,
which affect the network topology, expand the genome by adding genes. There are two types
of structural mutation. In one type, a single new connection gene with a random weight is
added connecting two previously unconnected nodes. In another type, an existing connection
between two nodes a and b is split into two connections, with a new node ¢ being inserted
in between. More specifically, the single connection from a to b with weight w is replaced
with a connection from a to the new node ¢ with weight 1, and a second connection from ¢
to b with weight w.

Whenever a new gene is created through structural mutation, it is assigned a unique serial
ID called the innovation number, which provides a mechanism for tracking the historical
origin of a gene. The innovation number is immutable: it is not changed by mutation, and in
the case of crossover, a gene crosses over with its innovation number intact.
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The historical information captured by the innovation numbers provides a way to imple-
ment crossover in a way that minimizes the impact of the competing conventions problem.
When crossover is to be performed on two parent genomes P and Q, the genes in both
genomes with the same innovation numbers are identified and are called matching genes. In
constructing the offspring, genes are randomly chosen from either parent at matching genes,
while nonmatching genes are always taken from the more fit parent.

The percentage of matching genes between two genomes P and Q in the population can
be used to produce a distance measure § that measures the degree of similarity between P
and Q. Genomes whose distance from one another is less than some compatibility threshold
d; are taken to be members of the same species. To prevent overlap between species, in each
generation, a genome is placed in the first species that it is found to be compatible with. In
this way, the population can be partitioned in each generation into species, with crossover
taking place almost exclusively within a species, although interspecies crossover is allowed
with a very low probability.

To prevent a high-fitness species from dominating the entire population, a fitness sharing
(Goldberg and Richardson 1987) mechanism is applied: If a genome P has an actual fitness
of x, then its adjusted fitness is set to x /n where n is the number of members of P’s species
in the current generation. The number of offspring each species S is allocated in generation
(t + 1) is determined in proportion to the sum of the adjusted fitness of the members of
S in generation ¢. Each species S then first eliminates the least-fit members of S, then the
surviving members reproduce to create S’s assigned-share of the population of generation
+1).

NEAT has been applied primarily to reinforcement learning problems, including its use
in games (Stanley and Miikkulainen 2004; Stanley et al. 2005, b)—although recent work
(Sohangir et al. 2014) has applied it to classification. Extensions to NEAT include a real-time
version (Stanley et al. 2005b), a variant called HyperNEAT which uses an indirect hypercube
representation to specify the topology (Stanley et al. 2009), and a variation for evolving gene
regulatory networks (Cussat-Blanc et al. 2015).

Also within the Type I Family is a hybrid approach (Yu et al. 2007) which used a PSO
variation that includes crossover to optimize the weights and topology of single-hidden-layer
feed-forward networks, and the work of others who used conventional genetic algorithms
(Castillo et al. 2000; Whitley et al. 1993).

7.2 Type II methods

Type II methods avoid the competing conventions problem entirely by not employing
crossover altogether, relying instead on mutation/perturbation operators. Evolutionary com-
putation approaches within this family include evolutionary programming approaches (which
use mutation alone without crossover) (Palmes et al. 2005; McDonnel and Waagen 1993;
Gutiérrez et al. 2011; Fogel 1993; Ang et al. 2008; Fang and Xi 1997). Some used evolution-
ary programming approaches where the mutation parameters are controlled by an annealing
temperature (Angeline et al. 1994; Leung et al. 2003), or by other heuristic measures (Oong
and Isa 2011).

Several researchers (Chan et al. 2013; Yu et al. 2008) have used PSO approaches, with-
out crossover, to optimize the weights and structure of single-hidden-layer feed-forward
networks.
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7.3 Type III methods

Type III methods use evolutionary computation (broadly defined) to evolve the network
topology, but use some type of gradient descent to optimize the weights. This is the approach
that we follow in the ANN-Miner algorithm. In such methods, fitness evaluation requires
running a gradient-descent algorithm (such as back propagation) within the fitness function,
typically starting from randomly initialized weights. Examples of this approach include
several works (Yao and Liu 1997; Whitley et al. 1990; Martinez-Estudillo et al. 2005). Note
that we include in this category methods which optimize weights using a combination of
a gradient-based method and another method. For example, one approach (Yao and Liu
1997) used a combination of gradient descent and simulated annealing. Another approach
(Martinez-Estudillo et al. 2005) used an elaborate scheme where evolutionary computation
operators are employed to obtain an initial set of weights, which are then clustered, and the
Levenberg—Marquardt (LM) gradient-based method is applied to the best of each cluster.

7.4 Type IV methods

Type IV methods evolve the weights of a fixed-topology neural network. The ACOg (Socha
and Dorigo 2008) algorithm can be considered to fall in this category. Other examples include
numerous PSO-based approaches (Yeh 2013; Cai et al. 2010; Salerno 1997; Lu et al. 2003;
Juang 2004; Settles et al. 2003; Dutta et al. 2013; Dehuri et al. 2012; Okada 2014; Song et al.
2007; Yeh et al. 2011; Han et al. 2011b; Lin et al. 2009), as well as methods that combine
PSO with simulated annealing (Da and Xiurun 2005), in addition to approaches based on
differential evolution (Ilonen et al. 2003; Garro et al. 2011) and cuckoo search (Valian et al.
2011; Nawi et al. 2013). Numerous conventional genetic algorithm approaches for evolving
the weights of a fixed-topology network have also been explored (Gomez and Miikkulainen
1999; Saravanan and Fogel 1995; Yang and Kao 2001; Coshall 2009; Kang et al. 2010).

8 Experimental methodology
8.1 Comparative evaluation

In our experiments, we compare the predictive performance of several NN learning algo-
rithms. First, as a baseline, we use the standard three-layer topology with back propagation
(BP) for weight learning. This is referred to as 3L-BP. In addition, we also use the standard
three-layer structure, but with ACOR for weight optimization, and refer to it as 3L-ACOp.
Furthermore, we use five variations of our proposed ant-based algorithm for optimizing
NN structure (ANN-Miner, ANN-Miner-BP, wANN-Miner, wANN-Miner-BP, and wANN-
Miner-ACOg). Each of our ANN-Miner variations is defined by: 1) whether it initializes the
connection weights after each iteration or it memorizes the optimized weights throughout
the algorithm, and 2) whether it uses a post-processing step of weight learning (and the algo-
rithm utilized in this step) or not. Table 1 summarizes the NN learning algorithms used in
the experiments.

Moreover, we implemented a Greedy Hill-Climbing (GHC) approach to learn NN struc-
tures, using back propagation (BP) as a subroutine to learn NN weights. This is referred to as
GHC-BP. The algorithm starts with a maximally connected multilayer NN structure contain-
ing all the possible connections between the network neurons. Then the algorithm attempts to
prune the NN structure using the first-improvement approach, as follows. Iteratively, GHC-
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Table 1 Neural network learning algorithms used in the experiments

Algorithm Abbreviation Description

3L-BP 3L-BP The standard three-layer structure
Uses BP for learning weights

3L-ACOR 3L-ACOR The standard three-layer structure
Uses ACOp for learning weights

ANN-Miner ANN No post-processing step

Randomly initializes weights each iteration
ANN-Miner-BP ANN-BP Uses BP as a post-processing step

Randomly initializes weights each iteration
wANN-Miner wANN No post-processing step

Uses the weights of the best-so-far NN as the initial
weights

wANN-Miner-BP wANN-BP Uses BP as a post-processing step

Uses the weights of the best-so-far NN as the initial
weights

wANN-Miner-ACOp wANN-ACOR Uses ACOp as a post-processing step

Uses the weights of the best-so-far NN as the initial
weights

Greedy search GHC-BP Uses BP for learning weights

Prunes on the multilayer fully connected NN structure

Algorithm 3 Pseudo-code of GHC-BP.
1: Begin

2: NNpesy = input;

3: size = GetConnectionCount (N Npeg);
4: Qpest = EvaluateQuality(N Npest);

S:fori =1 — sizedo

6 if i > max_evaluations then

7: break;

8 end if

9: N Ncurrent = Remove(N Npeg, Connection;);
10: Ocurrent = EvaluateQuality(N Ncyrrent);
I1: if Qcurrent >= Qpesr then

12: NNpest = NNcurrent;

13: Opest = Qcurrent;

14: end if

15: end for

16: NN finqi = Post Processing(N Npegt);
17: return NN fpqr;
18: End

BP temporarily removes one connection from the NN structure, learns the weights of the
new NN using BP, and evaluates its quality. If the quality improves (or does not change),
this connection is removed permanently from the NN structure; otherwise the connection is
returned back to the structure. Such an algorithm allows us to examine the effect of using the
ACO meta-heuristic as a global search for optimizing the NN structures in comparison with
using a greedy local search. The pseudo-code of GHC-BP is presented in Algorithm 3.
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Table 2 Parameter settings used in experiments

Algorithm Parameter Role Value
ACO max_iterations Max # of iterations 500
colony_size # of solutions created 10
per iteration
conv_iterations Max # of 10
nonimproving
iterations
Back propagation Learning rate n Post-processing 0.01
ANN candidate NN 0.1
training
wANN candidate NN 0.05
training
Epochs Post-processing 1000
ANN candidate NN 20
training
wANN candidate NN 10
training
ACOpr m # of ants per iteration 1
3 Controls speed of 0.85
convergence
q Controls locality of 10~
search
L # of solutions in the 50
archive
Greedy hill-climbing max_evaluations Max # of solution (max_iterations
evaluations X colony_size)

8.2 Experimental setup

The experiments were carried out using the stratified 10-times 10-fold cross-validation
procedure. In essence, a dataset is divided into 10 mutually exclusive partitions (folds),
with approximately the same number of patterns in each partition. Then each classification
algorithm is run 10 times, where each time a different partition is used as the test set and the
other nine partitions are used as the training set. The results are then averaged and reported as
the accuracy rate of the NN classifier. Since we are evaluating stochastic algorithms, we run
each 10 times—using a different random seed to initialize the search each time—for each of
the 10 iterations of the cross-validation procedure.

The parameter configuration used in our experiments is shown in Table 2. For the sake
of fairness of comparison, we limit each algorithm to the same fixed number of solution
evaluations to construct a final NN classifier. In GHC-BP (Algorithm 3, line 6), the external
parameter max_evaluations represents the maximum number of solution evaluations
that the algorithm performs during the hill-climbing search. As can be seen in Table 2, it is set
equal tomax_1iterations multiplied by colony_size, which is the maximum number
of evaluations for ANN-Miner. However, note that the maximum number of evaluations
might not be utilized completely. The ACO-based algorithms might use a smaller number of
iterations if they converge earlier and the greedy algorithm might also stop earlier if the total
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number of connections in the fully connected NN structure (with all the connections) is less
than max_evaluations.

The performance of ANN-Miner was evaluated using 40 public-domain datasets from
the well-known UCI (University of California at Irvine) dataset repository (Asuncion and
Newman 2007). The main characteristics of the datasets are shown in Table 3.

In follow-up experiments, described in Sects. 9.4 and 9.5, we compare our approach to
a number of well-known state-of-the-art and baseline classifiers, and to NEAT, a prominent
neuroevolutionary technique.

9 Computational results

9.1 Predictive accuracy

Predictive accuracy results are reported in Table 4 for each of the algorithms under evaluation.
These results represent the average predictive accuracy over 100 runs of the 10-times 10-fold
cross-validation procedure described in Sect. 8, for each of the 40 datasets. For each dataset,
the highest accuracy is shown in boldface. In addition, the last row of the table reports the
average rank of each algorithm. For each algorithm g, the rank of g is first obtained for each
dataset individually, and then the individual dataset ranks are averaged across the 40 datasets
for each algorithm. In case two or more algorithms are tied for a given dataset, then the tied
algorithms are given the average of the ranks that they span.

From the table, we note that the best-ranking algorithm is wANN-ACOpg with a rank of
1.88, followed closely by wANN-BP with a rank of 2.28. These are followed by ANN-BP
in third place with a rank of 3.54, then by wANN in fourth place with a rank of 4.15. In fifth
place is 3L-BP with a rank of 5.63. Finally, in the last three places, respectively, are ANN
with a rank of 6.06, 3L-BP with a rank of 6.23, and the greedy GHC-BP with a rank of 6.25.

wANN-ACOR had the highest predictive accuracy in 22 of the 40 datasets, and wANN-BP
had the highest accuracy in 20 datasets. wANN and ANN-BP had the highest accuracy in 6
and 5 datasets, respectively. 3L-BP and 3L-ACOp each had the highest accuracy in a single
dataset, while ANN and GHC-GP did not have the highest accuracy in any datasets.

Table 5 reports the results of applying a nonparametric Friedman test with the Holm post-
hoc test (Derrac et al. 2011), at the conventional 0.05 threshold, to compare all pairings of
the eight algorithms under evaluation. The Friedman statistic X% is found to be 150.9 with
seven degrees of freedom, corresponding to a p value of 9E—11. Thus, we can reject the null
hypothesis and proceed with the post-hoc tests. For each pairing, we report the computed p
value, and the corresponding Holm critical value. The difference between the two algorithms
is statistically significant if the p value is less than or equal to the corresponding Holm
threshold. Statistically significant p values are shown in boldface. We observe the following:

— wANN-ACOg is significantly better than all the other algorithms, except for wANN-
BP—which differs from it only in the type of post-processing that is employed.

— The use of post-processing always results in a statistically significant improvement:
wANN-ACORr and wANN-BP are both significantly better than wANN; ANN-BP is
significantly better than ANN.

— The use of “wisdom” results in a statistically significant improvement in accuracy when
combined with ACOR post-processing, but not when combined with BP post-processing:
wANN-ACOg is significantly better than ANN-ACOg, but no statistically significant
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Table 3 Characteristics of the datasets used in the experiments

Dataset Instances Classes Attributes
Total Numeric Categorical

annealing 896 6 38 9 29
automobile 205 7 25 15 10
balance 625 3 0 4
breast-1 283 2 0 9
breast-p 198 2 32 32 0
breast tissue 106 6 9 9 0
breast-w 569 2 30 30 0
car 1728 4 6 0 6
chess 3196 2 36 0 36
credit-a 690 2 14 6 8
credit-g 1000 2 20 7 13
cylinder 540 2 35 19 16
dermatology 366 6 34 1 33
ecoli 336 8 7 0
glass 214 7 9 0
hay 132 3 0 4
heart-c 303 5 13 7 6
heart-h 293 5 13 7 6
hepatitis 155 2 19 6 13
horse 366 2 22 7 15
ionosphere 351 2 34 34 0
iris 150 3 4 0
liver disorders 345 2 6 0
lymphography 148 4 18 3 15
monks 556 2 6 0 6
nursery 12,960 5 8 0 8
parkinsons 195 2 22 22 0
pima 768 2 8 8 0
s-heart 270 2 13 6 7
segmentation 2273 7 19 19 0
soybean 307 19 35 0 35
thyroid 215 3 5 5 0
transfusion 722 2 4 4 0
ttt 958 2 9 0 9
vehicle 846 4 18 18 0
vertebral-column-2c 310 2 6 6 0
vertebral-column-3c 310 3 6 6 0
voting 425 2 16 0 16
wine 178 3 13 13 0
Z0O 101 7 16 0 16
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Table 5 Results of the Friedman
test with the Holm post-hoc test,
at the 0.05 significance threshold,
for the predictive accuracy results
reported in Table 4

Comparison P Holm
1. wANN-ACOp versus GHC-BP 1E-15 0.00179
2. wANN-ACOpR versus 3L-BP 2E-15 0.00185
3. wANN-ACOpR versus ANN 2E—-14 0.00192
4. wANN-BP versus GHC-BP 4E—-13 0.002
5. wANN-BP versus 3L-BP 6E—13 0.00208
6. wANN-BP versus ANN SE—12 0.00217
7. wANN-ACOpR versus 3L-ACOp SE—12 0.00227
8. wANN-BP versus 3L-ACOR 1E-09 0.00238
9. ANN-BP versus GHC-BP 7TE—-07 0.0025
10. ANN-BP versus 3L-BP 9E—-07 0.00263
11. ANN-BP versus ANN 4E—-06 0.00278
12. wANN-ACOpR versus wANN 3E-05 0.00294
13. wANN versus GHC-BP 1E—-04 0.00313
14. ANN-BP versus 3L-ACOp 1E-04 0.00333
15. wANN versus 3L-BP 2E-04 0.00357
16. wANN versus ANN SE—-04 0.00385
17. wANN-BP versus wANN 6E—04 0.00417
18. wANN-ACOpR versus ANN-BP 0.002 0.00455
19. wANN versus 3L-ACOR 0.007 0.005
20. wANN-BP versus ANN-BP 0.021 0.00556
21. 3L-ACOpR versus GHC-BP 0.254 0.00625
22. ANN-BP versus wANN 0.263 0.00714
23. 3L-ACOgp versus 3L-BP 0.273 0.00833
24. 3L-ACOg versus ANN 0.424 0.01
25. wANN-ACOpR versus wANN-BP 0.465 0.0125
26. ANN versus GHC-BP 0.732 0.01667
217. ANN versus 3L-BP 0.767 0.025
28. 3L-BP versus GHC-BP 0.964 0.05

improvement was detected for wANN-BP over ANN-BP. Without post-processing:
wANN is significantly better than ANN.

9.2 Model size

It is also interesting to consider the model size, expressed as the number of connections in
the neural network, produced by each of the algorithms under evaluation. The model size
of the baseline 3L-BP and 3L-ACOg algorithms is of course fixed, and is shown in the
second column of Table 6 (under the heading 3L). For each of the other algorithms, the table
reports the ratio of the average number of connections (averaged over the 100 runs of the
10-times 10-fold cross-validation procedure) to the number of connections reported for 3L.
The final row reports the average ratio for each algorithm. The network size, of course, does
not depend on the type of post-processing that is employed, if any. Therefore, we report the
network size results for ANN-Miner, which will be the same for ANN-Miner-BP. Similarly,
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Table 6 Model size (expressed as number of inter-neuronal connections) results for the algorithms under
evaluation

Dataset 3L ANN wANN GHC-BP
annealing 10,404 1.12 1.13 1.32
automobile 6724 1.17 1.19 1.34
balance 529 1.15 1.17 1.34
breast-1 2809 1.12 1.13 1.30
breast-p 1156 1.10 1.12 1.30
breast tissue 225 1.23 1.24 1.42
breast-w 1024 1.15 1.18 1.30
car 625 1.17 1.17 1.36
chess 5625 1.14 1.13 1.29
credit-a 2025 1.06 1.12 1.30
credit-g 4225 1.13 1.13 1.29
cylinder 6561 1.12 1.12 1.29
dermatology 18,769 1.01 1.12 1.31
ecoli 225 1.22 1.23 1.41
glass 256 1.23 1.23 1.42
hay 324 1.14 1.19 1.33
heart-c 784 1.19 1.19 1.37
heart-h 784 1.14 1.19 1.37
hepatitis 1156 1.02 1.12 1.30
horse 3969 1.02 1.10 1.29
ionosphere 1296 1.12 1.12 1.30
iris 49 1.12 1.15 1.31
liver disorders 64 1.18 1.22 1.28
lymphography 2601 1.11 1.14 1.33
monks 361 1.14 1.18 1.31
nursery 1024 1.21 1.22 1.36
parkinsons 576 1.13 1.13 1.30
pima 100 1.16 1.16 1.27
s-heart 729 1.12 1.14 1.30
segmentation 676 1.20 1.20 1.42
soybean 13,689 1.20 1.21 1.39
thyroid 64 1.17 1.21 1.32
transfusion 36 1.20 1.24 1.22
ttt 841 1.19 1.19 1.30
vehicle 484 1.13 1.20 1.36
vertebral-column-2c 64 1.22 1.19 1.26
vertebral-column-3c 81 1.23 1.23 1.33
voting 1156 0.94 1.08 1.30
wine 256 1.05 1.08 1.33
Z00 1849 1.09 1.14 1.38
avg - 1.14 1.17 1.33
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we report the size results for w ANN-Miner, which will be the same for w ANN-Miner-BP
and wANN-Miner-ACOg.

From the table, we note that the average size ratio for wANN and ANN is only slightly
larger than the baseline 3L—a ratio of 1.17 for wANN and 1.14 for ANN. The largest ratio
(1.34) is obtained with the greedy GHC-BP.

9.3 Discussion

In this subsection, we perform a more detailed analysis of the results by comparing the
effectiveness of different aspects of the proposed algorithm in improving the predictive quality
of the produced NN classification models, as follows:

— The “wisdom”-based variation: We note that the “wisdom”-based versions of ANN-
Miner produce better accuracy over the corresponding standard versions. w ANN-BP
has better accuracy than ANN-BP in 28 out of the 40 datasets, and wANN has better
accuracy than ANN in 31 out of the 40 datasets. The two versions of wANN-Miner
with post-processing (either with BP or ACOp) have better predictive accuracy average
ranks than the other algorithms under comparison. wANN-ACOR is significantly better,
in predictive accuracy, than each of the other algorithms, except for wANN-BP.

— Weight-learning post-processing: Itis interesting to consider whether w ANN-Miner ben-
efits from weight-learning post-processing to the same extent as ANN-Miner. wANN-BP
has better accuracy than wANN in 32 datasets, worse in zero datasets, and the same in
eight datasets. On the other hand, ANN-BP has better accuracy than ANN in all 40
datasets, without any ties. Thus, both variations benefit from post-processing (which is
hardly surprising), but the accumulative wisdom variation benefits slightly less. Regard-
ing the weight-learning algorithm used in the post-processing step: wWANN-ACOpR has
better accuracy than w ANN-BP in 20 datasets, worse in 13 datasets, and the same in 7
datasets.

— ACO versus greedy search: Comparing wANN-BP to the greedy GHC-BP, we find that
wANN-BP has better accuracy in 39 datasets, and worse in a single dataset. All the
variations of ANN-Miner that include post-processing (i.e., wANN-ACOr, wANN-BP,
and ANN-BP) had better accuracy than GHC-BP to a statistically significant extent.
Even without post-processing, wANN had significantly better accuracy than GHC-BP.
The only variation for which a statistically significant improvement over GHC-BP was
not detected was ANN. This is in spite of GHC-BP producing larger networks than all
of the ANN-Miner variations in 39 out of the 40 datasets.

Of course, all versions of ANN-Miner require much more time in the training phase
than a simple fixed-topology neural network. However, this affects only the training phase,
which usually takes place off-line before an application is deployed, and does not affect
the operating phase. In many applications, the time consumed by the training phase is not
important compared to the predictive accuracy of the operating phase.

The time consumed by a neural network in the operating phase is a function of the number
of connections in the network. Table 6 indicates that the difference in network size between,
for example, wANN and the fixed three-layer topology is somewhat modest—ranging from
8 % larger to 24 % larger, with an average of 17 % larger.

9.4 Comparison to state-of-the-art classifiers

As a follow-up experiment, we compare the best two approaches in Table 4, namely w ANN-
BP and wANN-ACORg, to several well-established strong classifiers:
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— the Ripper classification rule induction algorithm using its Weka (Witten et al. 2010)
implementation JRip;

— the C4.5 decision tree induction algorithm using its Weka implementation J48;

— two versions of the support vector machine (SVM) classifier: the quadratic-kernel-based
Weka SVM implementation SMO, and the Gaussian kernel-based C-language LibSVM
(Chang and Lin 2011) implementation;

as well as to two well-known baseline classifiers:

— the one-nearest-neighbor algorithm using its Weka implementation IB1;
— the Naive-Bayes classifier using its Weka implementation NB.

A recent large-scale empirical study (Ferndndez-Delgado et al. 2014) used 121 datasets
to compare 179 classifiers, representing 17 classifier families and concluded that one of the
most effective families was support vector machines, and that the LibSVM implementation
with Gaussian kernels in particular was one of the most effective classifiers in general.

We applied each of these six algorithms (LibSVM, SMO, JRip, J48, IB1, NB) to the 40
datasets used in our experiments, with stratified 10-fold cross-validation, as described in
Sect. 8, using the same fold partitioning used in the other experiments in this paper. We used
Weka’s default parameters for the five Weka implementations and used LibSVM’s default
parameters for LibSVM.

The results are shown in Table 7; note that the results for w ANN-BP and wANN-ACOgr
are repeated for convenience from Table 4. The last row of the table indicates the average
rank of each algorithm. We observe that the best average rank was obtained, not surprisingly,
by LibSVM (the SVM implementation with Gaussian kernels), followed in second place by
SMO (the SVM implementation with quadratic kernels). These were followed by wANN-
ACORg in third place, J48 in fourth place, and wANN-BP in fifth place.

Table 8 reports the results of applying a nonparametric Freidman test with the Holm post-
hoc test, at the conventional 0.05 threshold, to compare w ANN-ACOg (which is treated as the
control algorithm) to each of the other algorithms. The Freidman statistic X% is determined
to be 43.6 with seven degrees of freedom, corresponding to a p value of 2E—7. Thus, we can
reject the null hypothesis and proceed with the post-hoc tests. For each comparison, we report
the computed p value and the corresponding Holm critical value. Statistical significance is
detected if the p value is less than or equal to the corresponding Holm threshold. Statistically
significant p values are shown in boldface. We observe that:

— LibSVM is significantly better than ANN-ACOg;
— No statistically significant difference is detected between ANN-ACOR and any of the
other algorithms.

The reader should note that the motivation behind the experiment described in this sub-
section is only to show that the arbitrary-topology feed-forward neural networks evolved by
ANN-Miner have strong predictive accuracy performance (i.e., performance that is similar to
that of widely used classifiers). We recognize that what we are comparing is a feed-forward
neural network whose topology has been specifically optimized for each dataset, to clas-
sifiers such as J48 and SMO with default parameter values that have not been specifically
optimized for each dataset. (However, of course, note that the parameters of the ANN-Miner
algorithm itself (and its variations) are also general default parameters, and have not been
specifically optimized for each dataset.) Each run of ANN-Miner (or its variations) constructs
and evaluates up to 5000 neural networks (see Table 2). In the case of the better-performing
wANN-Miner variation, each constructed network is trained for 10 epochs, for a total of up to
50,000 epochs. Run-time will therefore generally be much greater than any of the classifiers
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Table 8 Results of a Friedman

test with the Holm post-hoc test Comparison P Holm

2‘3’{2;3};’;‘5_%‘3; ?:ﬁ?le 7> LibSVM versus wANN-ACOR 2E—4 0.0071

control method wANN-ACOp versus IB1 0.0714 0.0083
SMO versus wANN-ACOp 0.2635 0.01
wANN-ACOgR versus JRip 0.4652 0.0125
wANN-ACOpR versus wANN-BP 0.7321 0.0167
wANN-ACOp versus NB 0.8847 0.25
wANN-ACOpR versus J48 0.9454 0.05

that we consider in this experiment. Again, the purpose of this experiment is only to show
that ANN-Miner is an effective method for evolving neural networks—i.e., that it is capa-
ble of evolving neural networks whose predictive accuracy is competitive with established
techniques.

9.5 Comparison with NEAT

As a second follow-up experiment, we compare the results of our approach to the NEAT
(Stanley and Miikkulainen 2002) neuroevolutionary algorithm. As described in Sect. 7, NEAT
is a sophisticated algorithm that includes the idea of dividing the population into species, with
most recombination (or “breeding”’) occurring among members of the same species. NEAT
is also one of the few neuroevolutionary methods whose source code is publicly available.
In fact, NEAT has several publicly available implementations (which can be found at K.
Stanley’s NEAT website (Stanley 2015)), including at least four in C++, at least two in Java,
in addition to implementations in Matlab, Ct, and Python. We used Ugo Vierucci’s Java
implementation, which was based on K. Stanley’s original C++ implementation.

With the exception of population size and number of generations (discussed further below),
we used the default parameter settings that were included in NEAT’s source code distribution,
which are consistent with the parameter settings used by Stanley and Miikkulainen (2002).
In order for the comparison between NEAT and ANN-Miner to be fair, we wanted both
techniques to have the same computational budget. In other words, we wanted the total
number of constructed networks to be the same for each method. For ANN-Miner and its
variations, the total number of constructed networks is the colony size multiplied by the
maximum number of iterations. As Table 2 indicates, we used a colony size of 10 and a
maximum number of iterations of 500, which means that the total number of constructed
networks is limited to no more than 5000. Stanley and Miikkulainen (2002) used a population
size of 150 and a number of generations of 24, for a total of 3600 fitness evaluations. To
equalize the computational budget of the two methods, we kept NEAT’s population size at
150 and increased the number of generations to 34, for a total of 5100 fitness evaluations.
For each dataset, we also set NEAT’s maximum allowable number of hidden neurons to be
the same as the maximum number of hidden neurons for ANN-Miner.

Further, for the sake of fairness of comparison, we added a BP post-processing step to
NEAT. This means that the final network produced by NEAT underwent 1000 epochs of BP
using the BP post-processing parameter settings shown in Table 2. The BP post-processing
step in NEAT-BP is identical to the post-processing that is applied in ANN-BP and wANN-
BP.

NEAT-BP was applied to the 40 datasets used in our experiments, with stratified 10-times
10-fold cross-validation, as described in Sect. 8, using the same fold partitioning used in the
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other experiments in this paper. This means that NEAT-BP was run a total of 100 times for
each dataset.

Table 9 reports the predictive accuracy results for NEAT-BP; for convenience, we also
repeat the predictive accuracy results for two ANN variations (ANN-BP and ANN), and for
two baseline classifiers (INN, and NB). For NEAT-BP and ANN-BP, the table also reports
for each dataset the number of inter-neuronal connections, expressed as a multiple of the
number of connections in the baseline BP fixed-topology three-layer network (reported in
Table 6 in the column labeled 3L). For example, for the anneal ing dataset, NEAT had an
average size (number of inter-neuronal connections) that was 0.43 of the size (i.e., slightly
less than half the size) of the baseline fixed-topology three-layer network, while ANN-BP had
an average size that was 1.12 of the size of (i.e., slightly larger than) the baseline three-layer
topology. The size for ANN is of course always the same as for ANN-BP, and is therefore
not shown. The last row reports the average rank for the predictive accuracy columns, and
the average size ratio for the model size columns.

We can make several observations regarding Table 9. We observe that the average number
of connections is generally much smaller for NEAT than for ANN-Miner. For example, the
number of connections for NEAT is less than a quarter of the connections for ANN for the
cylinder dataset, but is almost equal for the car dataset; on average, over all datasets,
the ratio of the number of connections for ANN to NEAT is 1.70.

However, NEAT’s smaller model size came at the expense of predictive accuracy. ANN-
BP had better accuracy than NEAT-BP on 37 datasets, and worse on three datasets. It is
interesting to also compare ANN to NEAT-BP, although this is not a fair comparison since
ANN does not employ BP post-processing while NEAT-BP does. We find that ANN had
better accuracy than NEAT-BP on 31 datasets, and worse on nine datasets.

Comparing NEAT-BP to the two baseline classifiers, we find the following: compared to
one-nearest-neighbor, NEAT-BP had better accuracy on 14 datasets and worse on 26 datasets;
compared to NB, NEAT-BP had better accuracy on 13 datasets and worse on 27 datasets.

As Table 9 indicates, there are five datasets for which NEAT-BP’s performance is partic-
ularly poor: annealing, chess, ecoli,nursery, and soybean. Several intersecting
factors may explain this performance. For four of those datasets (the exception being chess),
the number of class labels is large, ranging from five classes for nursery to six classes
for annealing to eight for ecoli to a very large 19 classes for soybean. Those five
datasets also stand out for their large number of attributes (particularly categorical attributes):
38 attributes (including 29 categorical) for annealing, 36 attributes (all categorical) for
chess, seven attributes for ecoli, eight attributes (all categorical) for nursery, and 35
attributes (all categorical) for soybean. Two of those five datasets stand out for their large
number of instances: 3,192 instances for chess and 12,960 instances for nursery. The
soybean dataset stands out for its small number of instances (307 instances) relative to
its large number of attributes (35 attributes) and large number of classes (19 classes). For
three of those datasets, specifically annealing, chess and soybean, it is noteworthy
that the average model size evolved by NEAT is particularly small (less than half the number
of connections in the baseline 3L topology in all three cases).

10 Conclusions and future work directions

The results reported in this paper, using 40 UCI benchmark datasets, indicate that ANN-
Miner is an effective algorithm for optimizing the structure of a feed-forward neural network
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Table 9 Predictive accuracy (%) results for NEAT-BP, along with two ANN-Miner variations (repeated from
Table 4) and two baseline classifiers (repeated from Table 7), as well as model size results for NEAT-BP and
for ANN-BP (repeated from Table 6)

Dataset Accuracy Model size
INN NB NEAT-BP ANN ANN-BP NEAT-BP ANN-BP

annealing 9440 76.93 36.40 60.97 79.14 0.43 1.12
automobile 73.64 58.53 49.29 45.07 48.95 0.55 1.17
balance 74.50 92.83 83.45 90.50 94.50 0.65 1.15
breast-1 65.99 7125 61.69 54.25 69.89 0.49 1.12
breast-p 67.18 64.58 68.06 65.76  72.68 0.28 1.10
breast tissue 70.09 67.18 59.37 41.63 56.46 0.85 1.23
breast-w 95.61 9350 87.97 94.38 94.73 0.57 1.15
car 61.81 8591 77.70 89.47 93.94 1.13 1.17
chess 84.53 88.05 56.00 81.82 88.64 0.42 1.14
credit-a 81.02 77.10 84.25 83.48 84.35 0.42 1.06
credit-g 71.50 7520 67.73 71.90 72.00 0.53 1.13
cylinder 68.75 66.70 63.82 69.45 69.78 0.27 1.12
dermatology 94.53 97.54 70.25 86.80 93.16 0.31 1.01
ecoli 81.31 8547 63.77 81.25 84.86 0.95 1.22
glass 68.90 49.52 45.80 48.87 57.88 0.88 1.23
hay 63.08 73.08 78.15 63.02 69.31 0.67 1.14
heart-c 52.52 5642 48.15 51.44  60.04 0.88 1.19
heart-h 46.55 6537 51.53 62.63  62.66 0.99 1.14
hepatitis 83.12 83.17 76.85 79.46  80.75 0.75 1.02
horse 79.05 77.96 73.75 7771  80.50 0.52 1.02
ionosphere 87.38 83.04 88.15 89.67 92.52 0.72 1.12
iris 95.33 9533 86.93 92.52  92.81 0.80 1.12
liver disorders 60.87 55.89 64.38 64.64 65.26 0.62 1.18
lymphography 79.10 8247 73.27 74.28 77.81 0.90 1.11
monks 56.73  62.73 40.80 41.56  46.75 0.44 1.14
nursery 86.75 90.37 39.21 87.72 91.76 0.97 1.21
parkinsons 9342 70.13 80.35 80.55 82.05 0.46 1.13
pima 70.31 75.64 75.65 74.86  76.04 0.72 1.16
s-heart 73.33 84.82 79.41 84.45 85.56 0.64 1.12
segmentation 95.60 79.94 86.25 88.81 92.77 0.85 1.20
soybean 88.62 8897 37.21 54.48 58.79 0.33 1.20
thyroid 96.23  96.71 75.03 79.63  90.28 0.90 1.17
transfusion 61.55 70.07 73.04 73.19 7323 0.72 1.20
ttt 67.37 70.63 77.25 50.32  90.94 0.61 1.19
vehicle 69.26 4539 55.66 59.69  60.06 0.48 1.13
vertebral-column-2c 80.97 78.39 82.52 80.00 83.55 0.80 1.22
vertebral-column-3c 78.71 83.55 64.10 69.32  74.84 0.73 1.23
voting 88.73 8594 91.18 93.24 94.65 0.68 0.94
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Table 9 continued

Dataset Accuracy Model Size
INN NB NEAT-BP ANN ANN-BP NEAT-BP ANN-BP
wine 94.94 97.19 90.59 94.93 96.04 0.73 1.05
Z00 98.75 93.75 77.00 89.11 90.54 0.92 1.09
avg rank/ratio 2.81 2.67 4.03 3.58 1.92 0.67 1.14

to a specific dataset, producing improved predictive accuracy compared to the standard three-
layer topology and compared to a greedy algorithm for neural network structure optimization.

We have investigated several versions of ANN-Miner, and found the best performing
version, in terms of predictive accuracy, to be wANN-Miner-ACOg. In this version, each
newly created neural network is initialized with the weights of the best-encountered-so-far
network, thus accumulating “wisdom” as the algorithm execution progresses. Furthermore,
wANN-Miner-ACOg uses BP to train each created neural network during the algorithm’s
execution, and then uses ACOpr as a post-processor to optimize the weights of the final
topology. In terms of model size, w ANN-Miner produced model sizes that were only slightly
larger (specifically 17 % larger on average) than the baseline three-layer topology.

The wANN-Miner-ACOpr model was then compared to several state-of-the-art classifiers
(SVM with Gaussian kernels and with quadratic kernels, Ripper, and C4.5) and to two widely-
used baseline classifiers (Nearest Neighbor, and Naive Bayes). In this comparison w ANN-
Miner-ACOg ranked behind the two SVM variations, in terms of test set predictive accuracy,
and ahead of the other four classifiers. Only the Gaussian-kernel SVM was significantly
better than w ANN-Miner-ACOgp; no statistically significant difference was detected between
wANN-Miner-ACOr and any of the other five classifiers. In addition, wANN-Miner-BP was
compared to the NEAT neuroevolutionary algorithm and found to have significantly better
test set predictive accuracy, when both algorithms were given comparable CPU resources.

In future work, we would like to extend our ACO approach to optimize the structure of
adaptive neurofuzzy inference systems (ANFIS) (Jang et al. 1997). Specifically, we would
like to optimize the number of fuzzy rules, the number of fuzzy membership functions for
each input, and the type of membership functions deployed in the fuzzification layer. This
can later be further extended to optimizing the structure of Type-2 Fuzzy Systems (Karnik
et al. 1999), for which manual tuning can be more challenging than in conventional fuzzy
systems.

There are also several variations to the ANN-Miner algorithm that we would like to
explore:

— We would like to apply the greedy network pruning approach of the GHC algorithm
(Algorithm 4) as an additional post-processing step in ANN-Miner. This could potentially
result in a reduction in network size without affecting accuracy.

— Other variations of BP can be used, in place of BP, inside the ANN-Miner algorithm. For
example, resilient propagation (RP) often performs better than BP without consuming
more CPU time.

— Itis possible to adjust the number of epochs for which BP is allowed to run, inside ANN-
Miner, based on the number of connections in the constructed network. The product of
the number of epochs by the number of connections can be required to be constant. This
means that constructed networks with a larger number of connections would be allowed
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a smaller number of epochs, while networks with a smaller number of connections would
be allowed a larger number of epochs.

— In the ACOgr algorithm, we would like to explore using the Cauchy probability distribu-
tion in place of the Gaussian probability distribution. The Cauchy has a much wider “tail”
and has the potential to promote greater search diversity and help avoid local minima
traps.
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