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Abstract This paper presents an objective function specially designed for the convergence
analysis of a number of particle swarm optimization (PSO) variants. It was found that using
a specially designed objective function for convergence analysis is both a simple and valid
method for performing assumption free convergence analysis. It was also found that the
canonical particle swarm’s topology did not have an impact on the parameter region needed
to ensure convergence. The parameter region needed to ensure convergent particle behavior
was empirically obtained for the fully informed PSO, the bare bones PSO, and the standard
PSO 2011 algorithm. In the case of the bare bones PSO and the standard PSO 2011, the
region needed to ensure convergent particle behavior differs from previous theoretical work.
The difference in the obtained regions in the bare bones PSO is a direct result of the previous
theoretical work relying on simplifying assumptions, specifically the stagnation assumption.
A number of possible causes for the discrepancy in the obtained convergent region for the
standard PSO 2011 are given.

Keywords Particle swarm optimization · Theoretical analysis · Particle convergence

1 Introduction

Particle swarm optimization (PSO) is a stochastic population-based search algorithm that has
been effectively utilized to solve numerous real-world optimization problems (Poli 2008).
PSO and its variants have also undergone numerous theoretical investigations (Ozcan and
Mohan 1998, 1999; Clerc and Kennedy 2002; Zheng et al. 2003; Van den Bergh and Engel-
brecht 2006; Trelea 2003; Cleghorn and Engelbrecht 2014a; Kadirkamanathan et al. 2006;
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Gazi 2012; Poli 2009; Campana et al. 2010; Bonyadi andMichalewicz 2014; Blackwell 2012;
Montes de Oca and Stützle 2008; Liu 2014). Despite the numerous theoretical investigations,
there still exist important aspects of PSO’s behavior that are not completely understood. For
example, the conditions necessary for PSO to enter a state of stagnation are still unknown.

As with most theoretical studies, where the problem being analyzed is intractable, a
number of simplifying assumptions are needed in order to be able to reasonably derive a
result. The last assumption that remains in all theoretical work on all stochastic PSO variants
is the stagnation assumption. The stagnation assumption in its strongest form assumes that
the personal and neighborhood best positions remain constant for each particle. The weakest
stagnation assumption used in a recent study done by Liu (2014) assumed that only the
particle with the best objective function evaluation is constant. With the presence of the
stagnation assumption in theoretical investigations, it is not clear that the derived criteria for
convergent particleswill ensure convergent particle behavior in practice.While the stagnation
assumption appears reasonable, particularly theweak variant (Liu 2014), there is no guarantee
that PSOwill in fact ever enter a state of stagnation, it is for this reason that theoretical analysis
performed under any form of stagnation should be verified empirically in an assumption free
context.

In the paper, we define convergence to be order-2 stability, as defined by Poli (2009).
Specifically, a sequence of random variables zn is order-2 stable if

lim
n→∞ E[zn] = μ and lim

n→∞ Std Dev[zn] = σ (1)

This definition of stability, as apposed to one where the standard deviation approaches zero,
is based on the derivation by Poli (2009) for the canonical PSO, that shows that the standard
deviation only approaches 0 if the personal best and the neighborhood best positions become
equal. However, in practice, there is no guarantee of this equality occurring for multiple
particles, let alone the swarm as a whole.

There are two primary aims in this study. The first aim is to empirically verify the use of
a specially designed objective function for particle swarm optimization (PSO) convergence
analysis. The second aim is to analyze the parameter region needed to ensure convergent
particle behavior of PSO variants utilizing the specially designed objective function. The
empirical analysis presented in this paper imposes no simplifying assumption on the analyzed
PSO variants, resulting in a true reflection of the PSO variants’ convergence behavior.

A brief description of the PSO algorithm is given in Sect. 2. A description of the fully
informed PSO (FIPS), bare bones PSO (BPSO), and the standard PSO 2011 (SPSO2011)
is given in Sect. 3. A summary of the theoretical convergence results obtained for PSO and
PSO’s variants is presented in Sect. 4. The experimental setup and results for each experiment
are presented in Sect. 5. Section 6 presents a summary of the findings of this paper, as well
as a discussion of topics for future research.

2 Particle swarm optimization

Particle swarmoptimization (PSO)was originally developed byKennedy andEberhart (1995)
to simulate the complexmovement of birds in a flock. The standard variant of PSO this section
focuses on includes the inertia coefficient proposed by Shi and Eberhart (1998).

The PSOalgorithm is defined as follows: Let f : Rk → R be the objective function that the
PSO algorithm aims to find an optimum for, where k is the dimensionality of the objective
function. For the sake of simplicity, a minimization problem is assumed from this point
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onwards. Specifically, an optimum o ∈ R
k is defined such that, for all x ∈ R

k , f (o) ≤ f (x).
In this paper, the analysis focus is on objective functions where the optima exist. Let Ω (t)
be a set of N particles in R

k at a discrete time step t . Then Ω (t) is said to be the particle
swarm at time t . The position xi of particle i is updated using

xi (t + 1) = xi (t) + vi (t + 1) , (2)

where the velocity update, vi (t + 1), is defined as

vi (t + 1) = wvi (t) + c1r1(t) ⊗ ( yi (t) − xi (t)) + c2r2(t) ⊗ ( ŷi (t) − xi (t)), (3)

where r1, j (t), r2, j (t) ∼ U (0, 1) for all t and 1 ≤ j ≤ k. The operator ⊗ is used to
indicate component-wise multiplication of two vectors. The position yi (t) represents the
“best” position that particle i has visited, where “best” means the location where the particle
had obtained the lowest objective function evaluation. The position ŷi (t) represents the “best”
position that the particles in the neighborhood of the i-th particle have visited. The coefficients
c1, c2, and w are the cognitive, social, and inertia weights, respectively.

A primary feature of the PSO algorithm is social interaction, specifically the way in which
knowledge about the search space is shared amongst the particles in the swarm. In general,
the social topology of a swarm can be viewed as a graph, where nodes represent particles,
and the edges are the allowable direct communication routes. The social topology chosen
has a direct impact on the behavior of the swarm as a whole (Kennedy 1999; Kennedy and
Mendes 2002; Engelbrecht 2013a). Some of the most frequently used social topologies are
discussed below:

• Star The star topology is one where all the particles in the swarm are interconnected as
illustrated in Fig. 1a. The original implementation of the PSO algorithm utilized the star
topology (Kennedy and Eberhart 1995). A PSO utilizing the star topology is commonly
referred to as the Gbest PSO.

• Ring The ring topology is one where each particle is in a neighborhood with only two
other particles, with the resulting structure forming a ring as illustrated in Fig. 1b. The
ring topology can be generalized to a network structure where larger neighborhoods are
used. The resulting algorithm is referred to as the Lbest PSO.

• Von Neumann The Von Neumann topology is one where the particles are arranged in
a grid-like structure. The 2-D variant is illustrated in Fig. 1c, and the 3-D variant is
illustrated in Fig. 1d.

The PSO algorithm is summarized in algorithm 1. The PSO, as defined in this section, is
referred to as canonical PSO (CPSO) within the remainder of this paper.

(a) (b) (c) (d)

Fig. 1 Common social topologies. a Star topology. b Ring topology. c 2-D Von Neumann topology. d 3-D
Von Neumann topology
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Algorithm 1 PSO algorithm
Create and initialize a swarm,Ω (0), of N particles uniformly within a predefined hypercube of dimension k.
Let f be the objective function.
Let yi represent the personal best position of particle i , initialized to xi (0).
Let ŷi represent the neighborhood best position of particle i , initialized to xi (0).
Initialize vi (0) to 0.
repeat

for all particles i = 1, · · · , N do
if f (xi ) < f ( yi ) then

yi = xi
end if
for all particles î with particle i in their neighborhood do

if f ( yi ) < f ( ŷî ) then
ŷî = yi

end if
end for

end for
for all particles i = 1, · · · , N do

update the velocity of particle i using equation (3)
update the position of particle i using equation (2)

end for
until stopping condition is met

3 Particle swarm optimization variants

There exists a large number of PSO variants (Engelbrecht 2007). The simplest variants
alter one or more of the PSO velocity update equation’s coefficients to be a function of
time, in an attempt to control the exploration–exploitation behavior of the swarm over
the course of the search. There are also more sophisticated PSO variants that substantially
alter the PSO’s behavior. This section focuses on three of these variants that are commonly
used: the fully informed PSO (FIPS), bare bones PSO (BPSO), and the standard PSO 2011
(SPSO2011).

3.1 Fully informed PSO

The FIPS algorithm was inspired by the observation made by Kennedy and Mendes
(2003) that human individuals are not influenced by only a single individual, but rather
by a statistical summary of the state of their neighborhood. Based on this observation,
the velocity equation is altered such that each particle is influenced by the successes
of all its neighbors, and not by the performance of only one other individual in the
neighborhood.

The velocity update equation of FIPS is defined as follows:

vi (t + 1) = wvi (t) +
|Ni |∑

m=1

γ m(t) ⊗ ( ym(t) − xi (t))

|Ni | , (4)

where Ni is set of particles in particle i’s neighborhood, |Ni | is the cardinality of Ni , and
γm, j (t) ∼ U (0, c1 + c2) for 1 ≤ j ≤ k.

The FIPS algorithmwas originally proposed using constriction. For a detailed explanation
of constriction, the reader is refereed to Clerc and Kennedy (2002). However, the velocity
update equation (4) can be rewritten to utilize constriction instead of an inertia weight by
setting the constriction factorX equal tow, and (c1 + c2) /X = ĉ1 + ĉ2, where ĉ1 and ĉ2 are
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coefficients chosen for a PSO using constriction. From a theoretical perspective, the models
are equivalent.

3.2 Bare bones PSO

Kennedy (2003) proposed the BPSO algorithm based on the empirical observation that the
distribution of particle positions are centered around the weighted average between the per-
sonal best and neighborhood best positions, specifically

ζ i = c1 yi (t) + c2 ŷi (t)

c1 + c2
. (5)

This observation was later supported by the theoretical work of Van den Bergh and Engel-
brecht (2006) and Trelea (2003), where it was shown for the deterministic PSO model under
the stagnation assumption that each particle converges to the point defined in Eq. (5) (assum-
ing a star neighborhood topology).

For BPSO, the velocity update equation changes to

vi, j (t + 1) ∈ N
(
ζi, j , φi, j (t)

)
, (6)

where φi, j (t) = |yi, j (t) − ŷi, j (t)|. The position update equation is changed to

xi (t + 1) = vi (t + 1) . (7)

In the standard implementation of BPSO (Kennedy 2003), c1 and c2 are assumed to be
equal resulting in the point of convergence being

yi (t) + ŷi (t)

2
. (8)

For the purposes of this paper, the case where c1 and c2 are equal is treated as a special case
of the BPSO in the convergence analysis.

3.3 Standard PSO 2011

Clerc (2011) developed SPSO2011 in an attempt to define a new baseline for future
PSO improvements. The two primary benefits of the SPSO2011 are stated to be rota-
tional invariance and an adaptive topology. The first published work on SPSO2011 was
by Zambrano-Bigiarini and Clerc (2013). The particle velocity update equation is defined as
follows:

vi (t + 1) = wvi (t) + Hi
(
gi (t) , ||gi − xi ||2

) − xi (t) , (9)

where gi is defined as

gi (t) = xi (t) + αi (t) + β i (t)

3
, (10)

where αi (t) and β i (t) are defined as

αi (t) = xi (t) + c1r1 ⊗ (
yi (t) − xi (t)

)
, (11)

β i (t) = xi (t) + c2r2 ⊗ (
ŷi (t) − xi (t)

)
. (12)

123



182 Swarm Intell (2015) 9:177–203

The functionHi
(
gi (t) , ||gi − xi ||2

)
returns a uniformly sampled random position from

a hypersphere centered at gi (t) with a radius of ||gi − xi ||2.
The samples from Hi are obtained using the following approach: Construct a random k

dimensional vector, rv, whose scalar components are sampled from the normal distribution
N (0, 1). The random vector must then be normalized and multiplied by a random scalar
sampled uniformly from 0 to the hypersphere’s radius. The random vector rv must then be
translated to the specified center point.

In the work of Zambrano-Bigiarini and Clerc (2013), no special consideration was made
for the case where yi (t) = ŷi (t); however, in the original work, Clerc (2011) replaced
equation (10) with

gi (t) = xi (t) + (
xi (t) + c

(
yi (t) − xi (t)

))

2
. (13)

This paper uses the following equation for the center of gravity, which applies the same
principle used by Zambrano-Bigiarini and Clerc (2013) for the case where yi (t) �= ŷi (t):

gi (t) = xi (t) + αi (t)

2
. (14)

The topology used by SPSO2011 is a particular case of the stochastic star topology pro-
posed by Mirinda et al. (2008). On initialization, each particle’s neighborhood is constructed
by selecting three particles randomly from the swarm and the particle itself (the same particle
is allowed to be chosen several times). If an unsuccessful iteration occurs, the neighborhoods
are reconstructed. An unsuccessful iteration is defined as an iteration where no new posi-
tion was found that improved the previous best objective evaluation obtained by the whole
swarm.

In the work of Zambrano-Bigiarini and Clerc (2013), the SPSO2011 algorithm prevents
particles from leaving the search space by setting the component of the particle that breached
the search space boundary to the boundary value and the particle’s whole velocity to zero.
This addition is not present in the original work of Clerc (2011).

4 Theoretical particle swarm optimization background

This section briefly presents the relevant theoretical findings for the CPSO, FIPS, BPSO,
and the SPSO2011 algorithms in Sects. 4.1, 4.2, 4.3, and 4.4, respectively. Each subsection
focuses specifically on the theoretical convergence results of each PSO variant.

The primary assumptions that occur in the theoretical PSO research are as follows:
Deterministic assumption It is assumed that θ1 = θ1(t) = c1r1(t), and θ2 = θ2(t) =

c2r2(t), for all t .
Stagnation assumption It is assumed that yi (t) = yi , and ŷi (t) = ŷi , for all t sufficiently

large.
Weak chaotic assumption It is assumed that both yi (t) and ŷi (t)will occupy an arbitrarily

large finite number of unique positions (distinct positions), ψi and ψ̂i , respectively.
Weak stagnation assumption It is assumed that yî (t) = yî , for all t sufficiently large,

where î is the index of the particle that has obtained the best objective function elevation.
For a more detailed discussion of when and why each assumption was made in the theo-

retical literature, the reader is referred to the article by Cleghorn and Engelbrecht (2014a).
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4.1 Theoretical results for canonical PSO

This subsection presents each theoretically derived region that is sufficient for particle con-
vergence in the CPSO algorithm, along with the corresponding assumptions utilized in the
region’s derivation.

Under the deterministic andweak chaotic assumptions, Cleghorn and Engelbrecht (2014a)
derived the following region for particle convergence:

c1 + c2 < 2 (1 + w) , c1 > 0, c2 > 0, −1 < w < 1, (15)

which generalized thework of Van denBergh and Engelbrecht (2006); Van denBergh (2002),
and that of Trelea (2003). Equation (15) is illustrated in Fig. 2, as the triangle AFB.

Under the stagnation assumption only, Kadirkamanathan et al. (2006) derived the follow-
ing region for particle convergence:

{
c1 + c2 < 2 (1 + w) for w ∈ (−1, 0]

c1 + c2 <
2(1−w)2

1+w
for w ∈ (0, 1) .

(16)

Still under the stagnation assumption,Gazi (2012) expanded the derived region of Eq. (16),
resulting in the region

{
c1 + c2 <

24(1+w)
7 for w ∈ (−1, 0]

c1 + c2 <
24(1−w)2

7(1+w)
for w ∈ (0, 1) .

(17)

The regions corresponding to Eqs. (16) and (17) are illustrated in Fig. 2 as triangle like regions
ADB and AEB, respectively. Unfortunately, both Eqs. (16) and (17) are very conservative
regions, as they were derived utilizing the Lyapunov condition (Kisacanin and Agarwal
(2001)).

Lastly, without the use of the Lyapunov condition, Poli (2009) and Poli and Broomhead
(2007) derived under stagnation the following region:

c1 + c2 <
24

(
1 − w2

)

7 − 5w
for w ∈ [−1, 1] . (18)

The region defined by Eq. (18) is illustrated in Fig. 2 as the curved line segment AB. The
region defined by Eq. (18) was also independently derived by Jiang et al. (2007) under the
stagnation assumption. More recently, Liu (2014) was able to obtain the region defined by
Eq. (18) using only the weak stagnation assumption. The work of Liu (2014) also implies that
the convergence region of Eq. (18) is the same irrespective of the social network topology
utilized by CPSO.

The choice of which region to use in practice is difficult, as each region’s derivation
relies on at least one simplifying assumption. As a result, a study was done by Cleghorn and
Engelbrecht (2014b), which showed with the support of empirical evidence that the region of
Eq. (18) derived by Poli matched almost perfectly with the convergence behavior of a non-
simplified Gbest CPSO, making the region defined by Eq. (18) the best choice in practice
when utilizing the star topology.

It should be made clear that selecting parameters from a convergent parameter region
does not necessarily guarantee higher-quality solutions. That said, it is unlikely to experience
fruitful searches with divergent parameters, as the rate of particle velocity increases under a
divergent parameter configuration is near exponential,with particles traveling at each iteration
distances orders of magnitude greater than the initial search space (Cleghorn and Engelbrecht
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Fig. 2 Theoretically derived regions sufficient for particle convergence

2014b). Even if a technique is utilized to prevent particles from leaving a predetermined
search space, particles will forever be colliding with the search space boundaries instead of
exploring the search space.

4.2 Theoretical results for fully informed PSO

The FIPS algorithm has undergone far less theoretical investigation than CPSO. The two
primary contributions with regard to convergence analysis are discussed in this subsection.

Poli (2007) was the first to analyze the FIPS algorithm from a theoretical perspective. The
analyses were performed under the stagnation assumption and focused on the case where the
neighborhood size was three (i.e., FIPS3). The analysis compared the order 1, 2, 3, and 4
(mean, deviation, skewness, kurtosis) stability of the social-only and canonical PSOwith that
of FIPS3. It was found that FIPS3 was surprisingly the most stable of the three, despite the
FIPS3 algorithm containing more sources of randomness. No general region of convergence
was provided for an arbitrary choice of neighborhood size.

In the study performed by Montes de Oca and Stützle (2008), it was shown that particles
are attracted to the centroid of its neighborhood best found positions, given that coefficients
where selected that satisfy the constriction conditions as defined in (Clerc andKennedy 2002).
The centroid is defined as the average over all the neighborhood best positions. The study
was performed under the stagnation and deterministic assumptions, where γm in Eq. (4) was
replaced with the expected value (c1 + c2) /2. A general region for particle convergence was
not presented. The study did, however, empirically determine that a more connected swarm
topology resulted in a smaller region of the search space being explored. It was also found
that the FIPS algorithm has a very strong bias to the centroid of each particle’s previously
found neighborhood best positions.

4.3 Theoretical results for bare bones PSO

Despite the BPSO algorithm being well supported by theoretical convergence results of
CPSO, the algorithm itself has not undergone much theoretical study. The primary contri-
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bution is that of Blackwell (2012). The study focused on a generalized class of PSO update
equations. The class of PSOs considered were those with update equations that could be
applied component wise and that can be rearranged to the form

xi j (t + 1) + a(t)xi j (t) + b(t)xi j (t − 1) = c(t,Ni ), (19)

where a(t) and b(t) are random variables, and c(t,Ni ) is a random variable that also depends
on constant neighborhood positions. Blackwell (2012) was able to show that under the stag-
nation assumption, the sequence of particle positions is weakly stationary for BPSO. If a
series is weakly stationary, it is by implication order-2 stable as shown by Kendall and Ord
(1990). Alterations of the BPSO algorithmwith theoretically derived non-collapse conditions
were also presented.

Blackwell (2012) used the same approach to derive the convergence criteria for CPSO,
whichmatched the earlier derived convergence criteria of Poli (2009).However, the technique
used by Blackwell (2012) is computationally simpler than that used by Poli.

4.4 Theoretical results for standard PSO2011

The only theoretical work to date on SPSO2011 is by Bonyadi and Michalewicz (2014). The
analysis was completed under the stagnation assumption and without the special treatment of
gi (t)when yi (t) = ŷi (t) as defined byEq. (14). It was shown that SPSO2011was not locally
convergent to an optimum. However, SPSO2011 was shown to be rotationally invariant. The
convergent (stable) region of SPSO2011 was plotted using an empirical technique under
forced stagnation, with each particle’s personal best and neighborhood best positions set
to be equal. Forced stagnation is a situation when either the personal and neighborhood
best positions are not allowed to update or the objective function is a constant. The former
was used in the study by Bonyadi and Michalewicz (2014). It was shown that the size of
the convergent region appeared to decrease as the dimensionality of the problem increased.
However, no explicit conditions for convergence were presented.

5 Experiments

This section provides an empirical analysis of the proposed objective function for use in
empirical convergence analysis, in addition to the empirical analysis of PSO variants.

The first experiment, presented in Sect. 5.1, aims to empirically justify the effectiveness
of the proposed objective function (for use in empirical convergence analysis). The second
experiment (Sect. 5.2) analyzes the impact that the social topology has on the convergence
criteria of CPSO. The three remaining experiments focus on empirically analyzing the criteria
necessary for particle convergence in PSO variants using the objective function defined in
Sect. 5.1. The FIPS, BPSO, and SPSO2011 algorithms are analyzed in Sects. 5.3, 5.4, and 5.5,
respectively. It should be noted that for all the PSOvariants considered, no boundary checking
or particle correction is performed, so as to prevent adding unnecessary noise to the behavior
of the algorithms.

5.1 Objective function proposed for convergence analysis

There is an inherent difficulty in empirically analyzing the convergence behavior of PSO
particles, specifically with regards to understanding the influence of the underlying objective
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function’s landscape on thePSOalgorithm. It is proposed that the following objective function
can be used as the reference function for convergent region analysis:

CF(x) ∼ U (−1000, 1000), (20)

as originally presented in (Cleghorn and Engelbrecht 2014a).
The value of CF, for each x in the domain of CF, is calculated and stored the first time it is

required in the execution of the PSO algorithm. The calculated value for each x in the domain
ofCF remains static after its initial computation.Objective function values are generated anew
for each independent run of the PSO algorithm. In other words, for each evaluated x in the
domain of CF a unique random value from the uniform distribution U (−1000, 1000) is
assigned. What the objective function in Eq. (20) provides is an environment that is rife with
discontinuities and completely unstructured, resulting in a search space in which the PSO
algorithm will be highly unlikely to enter a state of full stagnation.

The aim of most theoretical convergence research performed on PSO and PSO variants
(Blackwell 2012; Poli and Broomhead 2007; Poli 2009; Jiang et al. 2007) is to prove a
simplified version of the following theorem for a specific set of parameter configurations,
with the hope that the derived results are applicable to the unsimplified version:

Theorem 5.1 There exists a set C of PSO parameter values such that if parameters are
selected from C then for all objective functions f : Rn → R there exists an iteration T such
that for all iterations t > T each particle’s position is order-2 stable.

The objective function in Eq. (20) is designed to be an ideal counter example to Theo-
rem 5.1. The premise is that if a PSO variant can converge for a given parameter configuration
using Eq. (20) as an objective function, then the parameter configuration is very likely to be
a truly convergent parameter configuration for all objective functions.

The experiment conducted in this subsection aims to justify the use of a specifically
designed objective function for the convergent parameter region analysis. The experimental
setup and results are presented in Sects. 5.1.1 and 5.1.2, respectively.

5.1.1 Experimental setup

The measure of convergence used in this paper is:

�(t + 1) = 1

N

N∑

i=1

‖xi (t + 1) − xi (t) ‖2. (21)

Equation (21) is chosen as the measure of convergence because if any particle is divergent,
the convergence measure value will reflect this divergence within the swarm. A swarm can
only be classified as convergent if every particle in the swarm exhibits convergent behavior.

The experiment utilizes the following static parameters: Swarm size of 64 particles, 5000
iterations, and a 50-dimensional search space. A swarm size of 64 particles is utilized to allow
for all the social topologies tested to be complete structures. Particle positions are initialized
within (−100, 100)k , and velocities are initialized to 0.

The experiment is conducted over the following parameter region:

w ∈ [−1.1, 1.1] and c1 + c2 ∈ (0, 4.3] , (22)

where c1 = c2, with a sample point every 0.1 along w and c1 + c2. The experiment is
performed for each of the following neighborhood topologies: star, ring, 2-D, and 3-D von
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Neumann. The experiment is conducted using CF and 11 base objective functions from the
CEC 2014 problem set (Liang et al. 2013). The functions are as follows: Ackley, High Con-
ditioned Elliptic, Bent Cigar, Discus, Rosenbrock, Griewank, Rastrigin, HappyCat, HGBat,
Katsuura, and Expanded Griewank plus Rosenbrock. The region of Eq. (22) contains exactly
504 points that satisfy equation (18). A total of 989 sample points from the region defined in
Eq. (22) are used per objective function and topology pair. The results reported in Sect. 5.1.2
are the averages over 35 independent runs for each sample point. It should be noted that,
for all PSO variants used in this paper, no form of search space bounding is performed. Any
attempt to force particles to remain within a given bounded area would seriously hinder the
ability to perform an empirical analysis, and implicitly impose a form of order-2 stability on
the swarm.

In order to allow for a sensible comparison of convergence properties, the convergence
measure values are bounded as follows: If [l, u]k is the initial domain of the objective function,
then

�max =
√

k (l − u)2, (23)

where l and u are the lower and upper bound of the domain per dimension, respectively.�max

is the maximum distance of two points in the initialized search space. For this subsection,
�max = 1414.214. Utilizing�max to bound the presented results is reasonable as any swarm
that has the average particle movement exceeding the maximum initial distance possible
between two particles in the search space after 5000 iterations cannot be thought of as
convergent in a practical context. The convergence measure values are bounded instead of
log scaled as multiple parameter configurations resulted in particle movement so extreme
that a 64-bit floating point number was experiencing overflow. The value of �max also has a
secondary purpose as the classification boundary between convergent and divergent particle
movement. While �max appears to be a large allowance for convergence, it will aid in the
correct classification of particles that are converging at a very slow rate. Utilizing �max will
in addition still correctly classify particles that are slowly diverging, as it is easy for particles
to exceed �max after swarm initialization, due to the well-known phenomenon of particle
velocity explosion (Engelbrecht 2013b).

5.1.2 Experimental results and discussion

This subsection presents a table per PSO social topology containing the following measure-
ments per objective function:

• Measurement A The number of CPSO parameter configurations that resulted in a final
convergence measure value less than or equal to the final convergence measure obtained
if the CF objective function was used instead.

• Measurement B The number of CPSO parameter configurations that resulted in a final
convergence measure value greater than the final convergence measure obtained if the
CF objective function was used instead.

• Measurement C The number of CPSO parameter configurations that resulted in a final
convergence measure greater than or equal to �max.

• Measurement D The number of CPSO parameter configurations that resulted in a final
convergence measure less than �max.

• Measurement E The number of CPSO parameter configurations that satisfied equation
(18) and resulted in a final convergence measure less than �max.

• Measurement F The number of CPSO parameter configurations that satisfied equation
(18) and did not result in a final convergence measure less than �max.
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• Measurement G The average convergence measure value across all parameter configu-
rations, with all elements bounded at �max. It should be noted that reported averages for
thismeasurement are calculated after bounding of the convergencemeasure has occurred,
so as to prevent divergent configurations from radically affecting the results.

Measurements A and B provide a concise way of seeing, per objective function, how much
better or worse the CF objective function performs as a reference convergence analysis
function. An ideal convergence analysis function is one that, in general, will yield the highest
resulting convergence measure for all possible parameter configurations. The higher the
resulting convergencemeasure value is, the harder it was for the PSO to have converged under
a given objective function. Measurements C and D give a clear picture of how effectively
the underlying objective function highlights possible divergent particle behavior. Given the
tested region of Eq. (22), there are a total of 504 parameter configurations that satisfy equation
(18), leaving 485 parameter configurations that should produce divergent behavior. Ideally, an
objective function utilized for convergence analysis should result in a value for measurement
C as close as possible to 485, and a value for measurement D as close as possible to 504.
Measurements E and F are an extension of measurements C and D, in that an objective
function should have at most 504 parameter configurations that both satisfy equation (18)
and have a convergence measure value not exceeding �max. An objective function with
a measurement E value smaller than 504 is more conservative in assigning the label of a
convergent particle. A slightly conservative assignment is a positive feature of an objective
function being used for convergence analysis, as falsely classifying a parameter configuration
as convergent could lead to a PSO user obtaining radically unexpected results when utilizing
the parameter configuration in practice. Measurement G provides an overall view of how
difficult the used objective function has made it for the CPSO algorithm to converge.

A snapshot of the convergence measure values is presented for three cases:

• Case A For each parameter configuration, the maximum convergence measure value
across all 11 objective functions and topologies is reported.

• Case B For each parameter configuration, the maximum convergence measure value
across all topologies using only the CF objective function is reported.

In order to deduce the convergence region from the empirical data of all 11 base functions
and all topologies, the largest recorded convergence measure value of each parameter con-
figuration is reported in case A. Case B is presented to illustrate the similarity between the
mapped out convergence region of the CPSO algorithm using the CF objective function to
the mapped out convergence region of the CPSO algorithm in case A, which is constructed
using the complete pool of gathered data of the 11 objective functions.

• Cases C and D For each parameter configuration, the maximum convergence measure
value across all topologies using the two objective functions which have the most similar
resulting measurements to case B is reported.

Cases C and D are presented to illustrate that the mapped out convergence region of cases
A and B is not identical to the convergence regions of any arbitrary objective function. In
particular, cases A and B should result in a subset of the region produced by an arbitrary
objective function.

Measurements A and B in Table 1 show that the Gbest CPSO applied to the CF objective
function resulted in a higher convergence measure evaluation than 9 of the 11 other objective
functions for nearly all parameter configurations. For the two remaining objective functions,
Katsuura is the only objective function close to the CF objective function in terms of mea-
surement A. However, Katsuura has an average convergence measure of 49.672 less than
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Table 1 Convergence properties per objective function under the Star topology

Function Measurement

A B C D E F G

CF – – 467 522 504 0 683.437

Ackley 879 110 464 525 502 2 676.293

High conditioned elliptic 989 0 400 589 504 0 573.601

Bent cigar 989 0 412 577 504 0 598.593

Discus 989 0 409 580 504 0 592.545

Rosenbrock 988 1 424 565 504 0 622.009

Griewank 989 0 412 577 504 0 596.772

Rastrigin 989 0 411 578 504 0 596.909

HappyCat 989 0 411 578 504 0 595.375

HGBat 989 0 412 577 504 0 595.366

Katsuura 507 482 416 573 504 0 623.765

Expanded Griewank plus Rosenbrock 989 0 416 573 504 0 603.981

Table 2 Convergence properties per objective function under the Ring topology

Function Measurement

A B C D E F G

CF – – 473 516 503 1 690.797

Ackley 912 77 469 520 504 0 682.570

High conditioned elliptic 989 0 400 589 504 0 574.659

Bent cigar 989 0 415 574 504 0 602.194

Discus 989 0 414 575 504 0 597.668

Rosenbrock 989 0 417 572 504 0 613.094

Griewank 989 0 412 577 504 0 603.304

Rastrigin 989 0 412 577 504 0 601.111

HappyCat 989 0 415 574 504 0 603.536

HGBat 989 0 414 575 504 0 601.403

Katsuura 509 480 413 576 504 0 623.710

Expanded Griewank plus Rosenbrock 989 0 416 573 504 0 609.277

CF has, making CF the better objective function for convergence analysis. The CF objec-
tive function also obtained the largest number of parameter configurations that resulted in a
convergence measure that exceeded the bound of �max and the highest average convergence
measure evaluations. These measurements indicate the effectiveness of CF as an objective
function for convergence analysis. The CF objective function under the star topology pro-
vides an environment that is much harder for CPSO particles to converge in than using any
of the other objective functions.

Measurements A and B in Table 2 show that the Lbest CPSO applied to the CF
objective function resulted in a higher convergence measure evaluation than 9 of the
11 other objective functions for nearly all parameter configurations. Once again, Kat-
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Table 3 Convergence properties per objective function under the 2-D von Neumann topology

Function Measurement

A B C D E F G

CF – – 480 509 500 4 704.946

Ackley 915 74 475 514 501 3 692.301

High conditioned elliptic 989 0 402 587 504 0 577.036

Bent cigar 989 0 413 576 504 0 600.998

Discus 989 0 414 575 504 0 598.234

Rosenbrock 988 1 415 574 504 0 616.365

Griewank 989 0 414 575 504 0 600.839

Rastrigin 989 0 412 577 504 0 597.999

HappyCat 989 0 414 575 504 0 600.869

HGBat 989 0 413 576 504 0 599.576

Katsuura 525 464 415 574 504 0 622.108

Expanded Griewank plus Rosenbrock 988 1 416 573 504 0 608.545

Table 4 Convergence properties per objective function under the 3-D von Neumann topology

Function Measurement

A B C D E F G

CF – – 479 510 500 4 704.173

Ackley 925 64 473 516 503 1 691.705

High conditioned elliptic 989 0 401 588 504 0 576.575

Bent cigar 989 0 415 574 504 0 601.344

Discus 989 0 416 573 504 0 600.027

Rosenbrock 989 0 416 573 504 0 615.662

Griewank 989 0 417 572 504 0 602.236

Rastrigin 989 0 413 576 504 0 601.200

HappyCat 988 1 415 574 504 0 603.712

HGBat 988 1 415 574 504 0 600.504

Katsuura 532 457 417 572 504 0 624.483

Expanded Griewank plus Rosenbrock 988 1 418 571 504 0 610.503

suura provided the second lowest value for measurement A, while CF provided the best
results for all other measurements, applying the same analysis logic used for the star
topology. Though inferior, Ackley resulted in values for C, D and G very close to that
obtained by the CF objective function. However, CF provided far better results in terms
of measurement A, making CF the best choice as an objective function for convergence
analysis.

Measurements A throughG in Tables 3 and 4 show for both the 2-D and 3-D vonNeumann
topologies that the results remain almost identical to those of the ring and star topologies.
This provides evidence that the topology has a negligible impact on the effectiveness of CF
as an objective function for convergence analysis.
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Fig. 3 Convergence measure values at the 5000th iteration. a Case A: Optimal region. b Case B: CF region.
c Case C: Katsuura region. d Case D: Ackley region

For case A, the convergent region as illustrated in Fig. 3a matches the derived region
of Eq. (18) almost perfectly, as does the region seen in Fig. 3b for case B. While there
exists a slight difference between Fig. 3a and b in terms of convergence measure values,
the overall convergent regions are nearly identical. The similarity observed between Fig. 3a
and b indicate that the utilization of the CF function is sufficient for the purpose of empirical
convergence analysis. The similarity between Fig. 3a and b is not observed for the other
objective functions. For example, in case C, the Katsuura function, when used with CPSO,
resulted in properties similar to the CPSO using CF in Tables 1, 2, 3 and 4. However, Katsuura
has a substantially different convergent region to both Fig. 3a and b, with an apex extending
past c1 +c2 = 4.5, as illustrated in Fig. 3c. For Case D, the convergent region obtained when
using the Ackley objective function is illustrated in Fig. 3d. The obtained convergent region
is substantially closer to the convergent region obtained in case A and B; however, that apex
of the convergent region obtained when using the Ackley objective function is quite jagged
in comparison with case A and B.

A very promising feature of the convergence analysis approach presented in this paper
is the high level of accuracy that can be obtained when using CF as an objective func-
tion and �max as a classification boundary. Specifically, with the CPSO algorithm, if
every parameter configuration with a convergence measure value below �max is classi-
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fied as convergent and every parameter configuration with a convergence measure value
above or equal to �max is classified as divergent, a total accuracy of 98.79% is obtained
when compared to the region derived by Poli (2009), with only 12 of the 989 parame-
ter settings misclassified (10 falsely classified as divergent and two falsely classified as
convergent).

5.2 Canonical PSO, convergence analysis of topological influence

This subsection aims to verify that the theoretically derived region of Poli (2009) remains
valid under multiple social topologies. Considering the results of Sect. 5.1, it is clear that the
topology does not have a very meaningful impact on the convergence results. This is seen in
the similarity between Tables 1, 2, 3 and 4where, under all measurements, there is minimal to
no change, implying that the topology has no real influence on the parameter region needed
for particle convergence.

A snapshot of all parameter configurations’ resulting convergence measure values is pre-
sented for the following situation:

Topology influence The optimal convergence region is constructed for each investigated
topology, using the samemethod as explained in caseA of Sect. 5.1. The resulting optimal
region that has the greatest distance in terms of convergence measure values from case
A is reported.

The snapshot is presented to illustrate the maximum deviation between the convergent para-
meter region under multiple topologies. If the convergent parameter regions between the
presented snapshot and that of case A from Sect. 5.1 are identical, then the topological
choice has no influence on the convergent parameter regions.

For the case investigating the topological influence, the ring topology had the greatest
Euclidean distance from the optimal region of case A from Sect. 5.1. The convergent region
is illustrated in Fig. 4. Despite the ring topology having the greatest Euclidean distance
from the optimal region of case A, Fig. 4 appears identical to the region of Fig. 3a, as
the difference in convergence measure values is very small. The close similarity between
Figs. 3a and 4 is a clear indication that the topology used within the CPSO algorithm has no
meaningful impact on the convergent region of a CPSO. The conclusion that CPSO’s conver-
gent region is independent of the social topology used is supported by the analysis done by
Liu (2014).

Fig. 4 Topology influence: ring
topology region. Convergence
measure values at the 5000th
iteration
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5.3 Fully informed PSO convergence analysis

This subsection aims to empirically obtain the convergence criteria for FIPS utilizing the
proposed objective function of Sect. 5.1.

The FIPS algorithm is implemented using the CPSO description in algorithm 1 with
the velocity update equation 3 replaced with Eq. 4. The experimental setup and results are
presented in Sects. 5.3.1 and 5.3.2, respectively.

5.3.1 Experimental setup

Upon inspection of the FIPS update equation defined in Eq. (4), it is clear that the neighbor-
hood size might be a contributing factor in the convergence criteria of FIPS. As a result, the
convergence criteria are investigated for neighborhood sizes 2, 4, 8, 16, 32, and 64.

The experiment utilizes the same static parameters as Sect. 5.1, except that the LBest
topology is used. The analysis is done in one dimension as the update equations operate
on the particles position and velocity components independently, resulting in �max = 200
for this subsection. The experiment of this subsection utilizes the convergence measure of
Eq. (21) and the objective function defined in Eq. (20). The use of only the objective of
Eq. (20) is validated by the experimental results of Sect. 5.1, which proved the effectiveness
of the objective function for convergence analysis.

The experiment is conducted over the following parameter region:

w ∈ [−1.1, 1.1] and c1 + c2 ∈ (0, 7] , (24)

where c1 = c2, with a sample point every 0.1 along w and c1 + c2. The parameter region
was empirically determined by increasing the values of c1 + c2 and w until the complete
convergent subregion was contained. A total of 1610 sample points from the region defined
in Eq. (24) are used. The results reported in Sect. 5.3.2 are the averages over 35 independent
runs for each sample point.

5.3.2 Experimental results and discussion

A snapshot of the resulting convergence measure values across the region defined in Eq. (24)
under varying neighborhood sizes is presented in Fig. 5, for 2, 4, 8, 16, 32, and 64 dimensions.

The convergence region obtained in Fig. 5a is very similar to the convergent region found
for the CPSO algorithm in Sect. 5.1.

The similarity of the convergent regions is to be expected given that if the neighborhood
size of 2 is used and c1 = c2, FIPS can be shown to be the CPSO algorithm assuming that
each particle is within its own neighborhood.

The convergent region found for FIPS with a neighborhood size of 4, as seen in Fig. 5b,
is larger than that of FIPS with a neighborhood size of 2. The general form of the convergent
region is close to that of FIPS with a neighborhood size of 2.

Upon inspection of FIPS with the neighborhood sizes of 8 and 16 in Fig. 5c, d, it is clear
that the neighborhood size has a meaningful effect on the convergent region. The convergent
region continues to allow for greater values of c1 + c2 as the neighborhood size increases.
There is also a clear favoring of positive inertia coefficients the larger c1 + c2 gets.

The increase in the size of the convergent region continues with neighborhood sizes 32
and 64, as is seen in Fig. 5e, f. The convergent region’s shape is substantially different from
the convergent region obtained when a small neighborhood size is utilized. The convergent
region in Fig. 5f is almost triangular in shape.
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Fig. 5 Fully Informed PSO convergence results. a FIPS with neighborhood of size 2. b FIPS with neigh-
borhood of size 4. c FIPS with neighborhood of size 8. d FIPS with neighborhood of size 16. e FIPS with
neighborhood of size 32. f FIPS with neighborhood of size 64

It is clear that the larger the neighborhood size, the larger the convergent region becomes.
The region also appears to extend indefinitely while simultaneously becoming more trian-
gular in shape. This finding is inline with the observation made by Poli (2007) that the FIPS
algorithm appears to be more stable with the larger neighborhood size of 3 than if a neigh-
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borhood size of 2 was used. The idea of increased stability of FIPS is empirically supported
in this subsection for larger neighborhood sizes.

From a practical perspective, it is informative to note that the convergent region for FIPS
with neighborhood size n is a subset of the convergent region for FIPS with neighborhood
size n + 1. Given this knowledge, if the neighborhood size changes over time, convergent
parameters should be selected from the region matching the lowest possible neighborhood
size, if the PSO user wished to guarantee convergent particle behavior.

5.4 Bare bones PSO convergence analysis

This subsection focuses on the convergence criteria for theBPSOalgorithm.The experimental
setup and results are presented in Sects. 5.4.1 and 5.4.2, respectively.

5.4.1 Experimental setup

The experiment utilizes the same static parameters as Sect. 5.3, except that the star topology
is utilized.

The experiment is conducted over the following parameter region:

c1 ∈ (0, 7] and c2 ∈ (0, 7] , (25)

with a sample point every 0.1 along c1 and c2. The parameter region was selected as it allows
for values of c1 and c2 twice as large as the region needed to contain all of FIPS’s convergent
regions, as determined in Sect. 5.3. The theoretical work of Blackwell (2012) predicts that
at least the line where c1 = c2 should exhibit convergent particle behavior. A meaningful
segment of this line is therefore included in the investigated parameter region. A total of 4900
sample points from the region defined in Eq. (25) are used.

The results reported in Sect. 5.4.2 are obtained from averaging over either 35, 70, or 1000
independent runs for each sample point. A differing number of independent runs are used to
illustrate the amount of noise present in the BPSO experimentation.

5.4.2 Experimental results and discussion

A snapshot of the resulting convergence measure values across the region defined in Eq. (25)
using a convergence measure bound of �max and 5 ∗ �max , and varying sample runs, are
presented in Figs. 6, 7, and 8, respectively, for 35, 70 and 1000 sample runs.

Figure 6a reports the convergence measure values bounded at �max based on 35 indepen-
dent runs. The convergence results of BPSO are somewhat surprising, as there are very few
parameter choices that potentially indicate some level of convergent behavior. Furthermore,
there are no parameter configurations that are clearly convergent, with the smallest reported
convergencemeasure being 52.32.BPSO is actually divergent regardless of parameter choice.
If one considers parameter settings where c1 is larger than c2, then more divergent behavior
is indicated. When the bound on the reported convergence measure is increased to 5 ∗ �max

(see Fig. 6b), it is more clearly seen that greater divergence occurs when c1 is larger than c2.
The results of both Fig. 6a, b have a large degree of noise present despite being the result of
35 independent runs on each sample point.

In an attempt to reduce the level of noise, the same experiment was run 70 independent
times as illustrated in Fig. 7a, b. In Fig. 7a, the number of parameter choices that do not result
in the bound of�max to be exceeded has been reduced slightly. Despite the increased number
of independent runs, the results clearly still contain a large amount of noise, indicating a large
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Fig. 6 BPSO convergence results for 35 samples. aBPSO: 35 samples, bounded at 200. bBPSO: 35 samples,
bounded at 1000
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Fig. 7 BPSO convergence results for 70 samples. aBPSO: 70 samples, bounded at 200. bBPSO: 70 samples,
bounded at 1000
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Fig. 8 BPSO convergence results for 1000 samples. a BPSO: 1000 samples, bounded at 200. b BPSO: 1000
samples, bounded at 1000
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Fig. 9 BPSO average change in particle position (1000 samples)

level of unpredictability in BPSO’s behavior between runs. This unpredictability is attributed
to the heavy reliance of BPSO on the normal distribution as defined in Sect. 3.2.

The results presented in Fig. 8a, b are the result of 1000 independent runs. In Fig. 8a,
there are only three parameter settings that did not exceed the convergence measure bound,
�max. There is substantially less noise present in Fig. 8b, making the early mentioned trend
that the divergent behavior is more severe if c1 is greater than c2 clearer. It is also seen in
Fig. 8b that, while the divergent behavior is more severe if c1 is greater then c2, the amount
by which this affects the divergent behavior decreases as c1 and c2 increase.

The convergence measure values are also not remaining constant over the latter part of
the search. In fact, the convergence measure values increase with respect to the increase in
t , as illustrated in Fig. 9 where the convergence measure is reported over the course of 5000
iterations of a BPSO algorithm with c1 = c2.

From the presented results, it is clear that BPSO is in fact not guaranteed to converge. Even
for the standard BPSOmodel, where it is assumed that c1 and c2 are equal, convergence does
not occur. If convergence were to occur when c1 is equal to c2, a straight line (c1 = c2) of
low convergence measures values would have been present in Fig. 8b. It is also worth noting
that BPSO’s particle movement is fairly unpredictable given howmuch noise is present in the
results even with 1000 independent runs, which implies a large amount of unpredictability
in the behavior of BPSO.

The theoretical finding of Blackwell (2012) that BPSO is order-2 stable is clearly not an
accurate representation of the algorithm as the increase in the convergence measure over
time in Fig. 9 implies that convergence in standard deviation to a fixed value is not occurring
in practice. The nature of the normal distribution may well imply that very high, though
statistically unlikely, particle movement will be seen periodically. However, if this was the
sole reason for high convergence measure values, the continued increase in the convergence
measure as seen in Fig. 9 would not have occurred. Even if particles’ personal and neighbor-
hood positions stagnated at a great distance form each other, the convergence measure would
only be high and not increasing.

Given the simple structure of the BPSO’s update equation (6), it is easy to see that at least
one of the following two particle interactions occurs if the convergencemeasure is increasing:
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Fig. 10 BPSO average change in particle position (1000 samples) with forced stagnation from iteration 20

– The midpoint between the personal best and the neighborhood best positions is moving
through the search space at an increasing velocity. This implies that at least one of the
personal best or the neighborhood best is moving at an increasing velocity.

– The component-wise distance between the personal best and the neighborhood best posi-
tions is increasing. This implies that at least one of the personal best or the neighborhood
best is moving.

From this analysis, it is clear that the swarm is not entering a state of stagnation.
The only possible justification for the discrepancy between the theoretical findings and the

empirical results of this subsection is due to the theoretical work being performed under the
stagnation assumption. In order to verify that the discrepancy is in fact caused by the stagna-
tion assumption, the BPSO was rerun, but with stagnation forced from iteration 20 onwards,
by not updating any personal or neighborhood best positions. The results are illustrated in
Fig. 10. When stagnation is forced, the results match the theoretical derivations of Kennedy
(2003) perfectly. The difference between Figs. 9 and 10 shows that the stagnation assump-
tion resulted in an inaccurate theoretical model for the BPSO algorithm. The reason why
stagnation is not occurring is not immediately apparent and warrants further investigation.

5.5 Standard PSO 2011 convergence analysis

This subsection focuses on the convergence criteria for the SPSO2011 algorithm. The exper-
imental setup and results are presented in Sects. 5.5.1 and 5.5.2, respectively.

5.5.1 Experimental setup

The SPSO2011 algorithm’s velocity update equation (9) cannot be analyzed in one dimension
and then generalized to an arbitrary dimension as in the CPSO, FIPS, and BPSO algorithms,
since the function that generates a random point in a hypersphere cannot be investigated
component wise (Bonyadi and Michalewicz 2014). As a result, the convergence criteria are
investigated for dimension sizes 1, 10, 20, and 50.
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The experiment utilizes the same static parameters as in Sect. 5.3 except that the SPSO2011
topology, as defined in Sect. 3.3, is utilized. The SPSO2011 algorithm is analyzed with and
without the special treatment of the center of gravity calculation.

• Case 1 uses only the center of gravity equation (10), as suggested by Zambrano-Bigiarini
and Clerc (2013).

• Case 2 uses the center of gravity equation (10) if the particle’s personal best and neigh-
borhood best positions are different. If the particle’s personal best and neighborhood best
positions are the same, the center of gravity equation (14) is used.

The experiment is conducted over the following parameter region:

w ∈ [−1.1, 1.1] and c1 + c2 ∈ (0, 13] , (26)

where c1 = c2, with a sample point every 0.1 along w and c1 + c2. The parameter region of
Eq. (26) was selected as it contains the convergent parameter regions reported by Bonyadi
and Michalewicz (2014). A total of 1610 sample points from the region defined in Eq. (26)
are used. The results reported in Sect. 5.5.2 are the averages over 35 independent runs for
each sample point. Analysis is done with convergence measure bounded at the corresponding
�max values, namely 200, 632.456, 894.427, and 1414.214, respectively.

5.5.2 Experimental results and discussion

Snapshots of the resulting convergence measure values across the region defined in Eq. (26)
for SPSO2011 are presented under varying dimensionality for cases 1 and 2 in Figs. 11, 12, 13,
and 14, respectively, for 1, 10, 20, and 50 dimensions.

The convergent region for SPSO2011 in 1 dimension is presented in Fig. 11a, b. SPSO2011
has a clear boundary between convergent parameter settings and divergent parameter settings,
unlike BPSO. In Fig. 11a, the convergent region is symmetrical around w = 0, which
is substantially different from the convergent regions of FIPS and CPSO where there is a
preference toward a positive inertia weight selection for particle convergence. The convergent
regions for both cases 1 and 2, as seen in Fig. 11a, b, are very similar. However, the convergent
region for case 2 is slightly larger. Note that, with or without the special treatment of the
center of gravity calculation, there is no substantial change in the convergent region. The
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Fig. 11 SPSO2011 convergence results for 1 dimension. a SPSO2011: 1 dimension, case 1. b SPSO2011: 1
dimension, case 2
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Fig. 12 SPSO2011 convergence results for 10 dimensions. a SPSO2011: 10 dimensions, case 1. b SPSO2011:
10 dimensions, case 2
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Fig. 13 SPSO2011 convergence results for 20 dimensions. a SPSO2011: 20 dimensions, case 1. b SPSO2011:
20 dimensions, case 2

found convergent regions in both Fig. 11a, b are substantially different in size from the found
region of Bonyadi and Michalewicz (2014). The convergence region found by Bonyadi and
Michalewicz (2014) has its apex at c1 + c2 = 12 as opposed to the apex in Fig. 11a at
around 8.5. At present, it is not completely clear what the exact source of the discrepancy
is. However, possible sources present in the work of Bonyadi and Michalewicz (2014) are as
follows:

– the study is performed under the presence of forced stagnation;
– the particles’ personal and neighborhood best positions are set to be equal;
– there is a linear increase in the number of iterations used based on the dimensionality of

the search space; however, the maximum distance between two points in a search space
only increases sublinearly; and

– it is not stated how the spherical distribution, H, is calculated.

The analysis done in this paper made use of neither of the two mentioned simplifications.
As a result, the regions presented in Fig. 11a, b should be a more accurate representation of
SPSO2011’s convergent behavior.
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Fig. 14 SPSO2011 convergence results for 50 dimensions. a SPSO2011: 50 dimensions, case 1. b SPSO2011:
50 dimensions, case 2

The convergent regions for SPSO2011 in 10 and20dimensions are presented inFigs. 12a, b
and 13a, b. In both 10 and 20 dimensions, the difference in the convergent regions for case
1 and case 2 is relatively minor. However, the convergent regions for case 2 are slightly
larger than those of case 1. The convergent regions appear to be stable under an increase in
dimension, as the regions plotted for 1, 10, and 20 dimensions appear unchanged for both
cases 1 and 2.

The finding that the convergent region of SPSO2011 does not depend upon the dimension-
ality of the search space is in opposition to the results of Bonyadi and Michalewicz (2014).
Even in 50 dimensions, as seen in Fig. 14a, b, the convergent region does not appear to change.
In the work of Bonyadi and Michalewicz (2014), the apex of the found convergent region
decreases by 33.3%with the increase from a 1-dimensional search space to a 50-dimensional
search space. This trend is clearly not present in the results of this subsection.

6 Conclusion

This study had two primary aims: The first was to show that the objective function, CF(x) ∼
U (−1000, 1000), is an effective objective function to utilize for convergent region analysis.
The secondwas to analyze the parameter region needed to ensure convergent particle behavior
of particle swarm variants utilizing the proposed objective function, CF.

It was found that the CF objective function was able to capture the convergent behavior
of the CPSO, as the found convergent regions matched both the theoretically derived region
of Poli (2009) and the “optimal” region, where the “optimal” region was constructed using
the maximum convergence measure value across all topologies and objective functions used
(excluding CF). It was also found that the social topology used by CPSO had no meaningful
impact on the convergent region.

Using the CF objective function, the convergent region was empirically obtained for FIPS,
BPSO, and SPSO2011. It was observed that FIPS’s convergent region grows with an increase
in neighborhood size. It was shown that BPSO does not converge for any choice of c1 and c2.
More specifically, in practice, it was shown that BPSO is not order-2 stable, despite theoretical
findings (Blackwell 2012). The discrepancy is linked to the theoretical work being performed
under the stagnation assumption. For SPSO2011, it was found that the convergent region does
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not depend on the dimensionality of the problem, as previously observed by Bonyadi and
Michalewicz (2014). The region needed to ensure convergent particle behavior in SPSO2011
is also different from those obtained by Bonyadi and Michalewicz (2014). The discrepancies
are attributed to the simplifications used by Bonyadi and Michalewicz (2014).

Potential future work will include utilizing the empirical techniques of this paper to obtain
the convergence regions for other PSO variants. Another direction for future work is the
automation of an approach to extract from empirical analysis the equations that describe the
approximate convergent regions.
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