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Abstract In this paper, we present a distributed control strategy, enabling agents to converge
onto and travel along a consensually selected curve among a class of closed planar curves.
Individual agents identify the number of neighbors within a finite circular sensing range
and obtain information from their neighbors through local communication. The information
is then processed to update the control parameters and force the swarm to converge onto
and circulate along the aforementioned planar curve. The proposed mathematical frame-
work is based on stochastic differential equations driven by white Gaussian noise (diffusion
processes). Using this framework, there is maximum probability that the swarm dynamics
will be driven toward the consensual closed planar curve. In the simplest configuration where
a circular consensual curve is obtained, we are able to derive an analytical expression that
relates the radius of the circular formation to the agent’s interaction range. Such an intimate
relation is also illustrated numerically for more general curves. The agent-based control
strategy is then translated into a distributed Braitenberg-inspired one. The proposed robotic
control strategy is then validated by numerical simulations and by implementation on an
actual robotic swarm. It can be used in applications that involve large numbers of locally
interacting agents, such as traffic control, deployment of communication networks in hostile
environments, or environmental monitoring.
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1 Introduction

How can one trigger the self-emergence of desired spatio-temporal patterns via a collection
of interacting autonomous agents? Can we analytically unveil such collective behavior for
scalable collections of agents? Is it possible to explicitly demonstrate how such collective
behavior can possibly remain stable in the face of environmental noise? Progress in the engi-
neering of swarm robotics relies on explicit and detailed answers to these questions, and that
is the central goal of the present contribution. As no generic guidelines yet exist, engineering
such collective behavior remains, in many respects, an open challenge. Bonabeau, Dorigo
and Theraulaz illustrate how elementary, fully decentralized biological systems can achieve
highly elaborate collective tasks Bonabeau et al. (1999). This pioneering work remains a rich
and challenging source of inspiration for many further developments both in ethology [see
the recent overview by Leonard (2013)] and in swarm robotics. Presently, serious effort is
being made to import some basic features of these complex living systems into the engi-
neering world of robotics. Obviously, animals remain intrinsically highly complex machines
compared to actual robots and, therefore, direct applications remain rather limited. Neverthe-
less, recent attempts to combine artificial and natural collective systems by implementing the
models observed in animal societies into that of robots shows promise (Halloy et al. 2007;
Mondada et al. 2011). Because of the complexity of the interactions taking place in such
mixed societies, the models often remain partial and the link between them has not been
fully established.

Several up-to-date reviews (Kernbach 2013; Brambilla et al. 2013) summarize ongoing
research in this area and the various engineering applications. Often the design of such robotic
systems consists of a bottom-up trial-and-error exercise with no analytical link between the
microscopic model (describing the single agent behavior) and the macroscopic one (describ-
ing the global result achieved). Microscopic and macroscopic models are then seen as separate
approaches Brambilla et al. (2013), rather than steps in the engineering process. To bridge the
gap between the micro- and macroscopic descriptions, Martinoli et al. (1999) constructed the
first link between individual behavior and the statistical macroscopic model, which was suc-
cessfully implemented on real robots. Along the same lines, Lerman et al. (2005) exhibited
the emergence of collective behavior from individual robot controllers using a class of sto-
chastic Markovian mathematical models. The authors validated their approach by performing
experiments using real robots. More recently, Hamann and Wörn (2008) used an explicit rep-
resentation of space together with methods of statistical physics to establish the link between
microscopic and macroscopic models. Space heterogeneities are also considered by Prorok
et al. (2011), who derived, from diffusion-type evolutions, a collective inspection scenario
implemented on real robots. Brambilla et al. (2012) proposed a top-down design process built
on iterative model construction and based on Probabilistic Computation Tree Logic (Deter-
ministic Time Markov Chains). Their design methods were further validated on a group of
physical e-puck robots; their iterative construction potentially enables other types of swarm-
ing behavior, depending on the skills of the acting programmer. Berman et al. (2009) likewise
proposed a top-down design methodology, but at a higher level (i.e., at the sub-swarm level).
Their decentralized strategy allows dynamical allocation of a swarm of robots to multiple
predefined tasks. The approach by Berman et al. (2009) is based on population fractions,
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which enable the design of stochastic control policies for each robot, and does not assume
communication among robots. This strategy is analytically proven to achieve the desired
allocation, and validation is made on a surveillance scenario involving 250 simulated robots
distributed across four sites. More recently, Berman et al. (2011) have extended their work to
spatially heterogeneous swarms. This control, however, can only generate static patterns of
robot sub-swarms. In the present work, we aim to generate self-organized dynamic patterns
(i.e, circulation of robots along closed planar curves).

Closely related to the present paper, Hsieh et al. (2007) synthesized controllers that allowed
individual robots, when assembled in a swarm, to self-organize and circulate along a pre-
defined closed curve. The system is fully distributed and relies only on local information,
thus ensuring scalability. The controller can be analytically described, and does not require
communication between the robots, thus simplifying its implementation. Hsieh et al. (2007)
demonstrated convergence of the system for a certain class of curves and validated their the-
ory with simulations. While the final behavior looks similar to what we are targeting here, we
aim at directly deriving our controller from a stochastic dynamical model that can be analyt-
ically discussed. Our goal here is to allow the swarm to converge to a consensually selected
curve among a given family (and not to a predefined curve as done in Hsieh et al.’s study).
Conceptually, Hsieh et al.’s study belongs to the important family of gradient-based controls.
Within this family, Pimenta et al. (2013) proposed a decentralized hydrodynamics-inspired
controller that drives the swarm into a preassigned arrangement using a static and/or dynamic
obstacle avoidance mechanism. They also tested their approach on swarms of actual robots,
including e-puck robots. More closely related to our paper, Sabattini et al. (2012) developed a
control strategy using decentralized time-dependent potential construction. Specifically, this
mechanism allows a robotics swarm to track a closed curve (given by an implicit function,
as in this paper), while keeping a minimal safety distance between the robots. In Sabattini
et al.’s study Sabattini et al. (2012), the robots are given a predefined curve, whereas in our
approach, the swarm consensually selects the closed curve that will be tracked.

Among non-gradient-based approaches, Schwager et al. (2011) demonstrated the stability
and quantified the convergence rate of the control of a swarm of quad-rotors. Their approach
is based on a combination of decentralized controllers and mesh networking protocols. More-
over, the authors only used local information and validated their control on a group of three
real robots. Schwager et al.’s controller needs to know the relative position of its neighbors
with high precision, while our goal is to be noise-resistant. Sepulchre et al. (2007) developed
a methodology for the generation of stable circular motion patterns based on stabilizing feed-
backs derived from Lyapunov functions. This theoretical work was then used to design the
control of mobile sensor networks for optimal data collection in environmental monitoring
Leonard et al. (2007). The global patterns generated in Sepulchre et al’s study exhibit sim-
ilarities with those presented in the present paper, but their control is “less” decentralized.
Namely, Sepulchre et al. assume an all-to-all communication network between the robots,
whereas in our work, we aim at using only local communication between neighbors within
a given range. Given Sepulchre et al.’s assumption, the controller is also more sensitive to
losses of communication between robots in the swarm. Finally, within non-gradient-based
controls, it is worthwhile to mention Tsiotras and Castro (2011), who devised a decentralized
mechanism, leading to Spirograph-like planar swarm trajectories. Their approach only relies
on individually gathered information on distance and angle to neighbors.

With respect to the state of the art, whereas most research in control theory aims at finding
strong theoretical guarantees, the present work follows a very different approach. We aim at
bridging the gap between the purely mathematical considerations and the implementation on
actual robots, and approach the problem from a mathematical angle. The mathematical models
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are then implemented using a swarm of mobile robots. To some extent, our work is closer
to that of biologists who use robotics as a validation tool for their theoretical models. Using
this approach, we are able to achieve a decentralized consensual swarm control mechanism
using only simple local information, such as the number of neighbors in a given range and
their relative positions. In order to better link the model and the implementation, this article
also includes a dictionary to help translation of the main concepts between the theoretical
and the robotic control mechanisms. The developed controllers are not designed to achieve
a fixed shape or trajectory, as often found in the state of the art, but to collectively choose
one consensual shape. By tuning the control parameters, one can enable a given swarm to
converge on different orbits without changing the behavior of each agent. Another important
feature is the fact that the consensual orbit is not known by the agents, but is only determined
by mutual interactions in a fixed range.

Although perfectly predictable analytically, this collective choice can be described as a
collective weakly emergent behavior. Weak emergence is here understood in the S. and O.
Kernbach’s interpretation (Kernbach 2013; Kernbach et al. 2013) (i.e., macroscopic swarm
behavior due to interactions between agents but having its origin in the model that describes
the system’s behavior). Our model has a tractable complexity, enabling us to explicitly
describe the resulting emergent collective behavior, which is controllable. Specifically, our
class of models presents a distributed mechanism, enabling agents to select a parameter while
fixing one consensual traveling orbit among the given family in a distributed manner, and
this feature holds even if noise corrupts their movements.

The paper is organized as follows: Sect. 2 exposes the basic mathematical formulation of
agents’ dynamics. Section 3 reports simulation experiments that fully match our theoretical
finding even for finite N agents’ populations (i.e., when the mean-field limit is not reached).
Section 4 describes, in detail, how the actual implementation of our mathematical model was
realized with a collection of e-puck autonomous robots.

2 Mathematical modeling

Our mathematical model consists of a set of N coupled stochastic differential equations
(SDE) where the driving stochastic processes are White Gaussian Noise (WGN) represent-
ing a swarm of homogeneous Brownian agents Schweitzer (2003). The use of WGN in the
dynamics implies that the resulting stochastic processes are Markovian. Accordingly, all
probabilistic features of the model are known by solving the associated Fokker-Planck (FP)
equation. A similar approach has already been used in several studies (Berman et al. 2011;
Hamann and Wörn 2008; Prorok et al. 2011). Agents’ interactions are ruled by specifying
the radius of an observation disk (i.e., metric interactions) and the strength of the attrac-
tion/repulsion control parameter. The specific form of agents’ individual dynamics and their
mutual interactions are constructed from a Hamiltonian function, from which one derives
both a canonical and a dissipative drift force (i.e., mixed canonical-dissipative vector fields
Hongler and Ryter (1978)). By imposing the orthogonality between the canonical and dissi-
pative vector fields, we are able, in the N → ∞ mean-field limit, to explicitly calculate the
stationary probability (i.e., invariant probability measure) characterizing the global agents’
populations. For our class of models, we can analytically observe how a decentralized algo-
rithm is able to generate a milling-type spatio-temporal pattern. In this pattern, all agents will
circulate with constant angular velocity in the vicinity of a self-selected level curve from the
input Hamiltonian function.
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2.1 Single agent dynamics

Let us first consider the single agent Mixed Canonical-Dissipative (MCD) stochastic planar
dynamics (a tutorial devoted to MCD can be found in Appendix section “MCD dynamics”):

⎛
⎝

d X (t)

dY (t)

⎞
⎠ = V

⎛
⎝

∂X H(X, Y )

∂Y H(X, Y )

⎞
⎠ dt + σ

⎛
⎝

dWX (t)

dWY (t)

⎞
⎠ ,

(
X (0) = X0

Y (0) = Y0

)
(1)

where V stands for an antisymmetric (2 × 2) dynamical matrix defined by:

V =
⎛
⎝

U ′[H(x, y)] +ω

−ω U ′[H(x, y)]

⎞
⎠ (2)

where (X, Y ) ∈ R
2 are the positions of the planar agent, H(X, Y ) : R

2 �→ R
+ and U [H ] :

R
+ �→ R (U ′[H ] stands for the derivative of U [H ] with respect to H ) are differentiable

functions, σ > 0 and ω ∈ R are constant parameters. The inhomogeneous terms dWX (t)
and dWY (t) are two independent WGN sources. We shall assume that H(X, Y ) = E , ∀ E > 0
defines closed concentric curves and H(0, 0) = 0. In addition, we require that U [0] > 0
and limE→∞ U [H(E)] = −∞. When σ = 0, the (deterministic) dynamics Eq. (1) admits
closed trajectories C ’s, which are defined by the solutions of the equation U [H(X, Y )] = 0.
Depending on the sign of the curvature (i.e., second derivative ) U ′′ taken at C , one can either
have attracting (U ′′ < 0) or repulsive (U ′′ > 0) limit orbits. An attracting C drives any initial
conditions (X0, Y0) to C in asymptotic time. In Eq. (1), the antisymmetric part of V produces
a rotation in R

2 with angular velocity ω. This defines a canonical (conservative) part of the
vector field (i.e., the Hamiltonian part of the dynamics). Concurrently, the diagonal elements
of V model the non-conservative components of the dynamics (i.e., dissipation or supply
of energy). From its structure, the non-conservative (deterministic) vector field of Eq. (1)
is systematically perpendicular to the conservative one. This geometrical constraint reduces
the dimensionality of the dynamics and allows the derivation of explicit and fully analytical
results.

In the presence of WGN (σ > 0 in Eq. (1)), the resulting SDE describe a Markovian
diffusion process, fully characterized by a bivariate transition probability density (TPD)
measure

P(x, y, t | x0, y0, 0)dxdy =

Prob {x ≤ X (t) ≤ x + dx, y ≤ Y (t) ≤ y + dy | X (0) = x0, Y (0) = y0}

The TPD P(x, y, t | x0, y0, 0) is the solution of a FP equation:

⎧⎨
⎩

∂t P(x, y, t | x0, y0, 0) = F {P(x, y, t | x0, y0, 0)} ,

P(x, y, 0 | x0, y0, 0) = δ(x − x0)δ(y − y0)

(3)

where δ(·) stands here for the Dirac probability mass and the FP operator reads:

F {·} := −∂y [ fx (x, y) {·}] − ∂x
[

fy(x, y) {·}]+ 1

2
σ 2 [∂xx + ∂yy

] {·} (4)
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Fig. 1 “Ring”-shaped probability density on the plane, for σ = 0.07 and σ = 0.35. These simulations were
run with N = 5000 agents, up to time T = 10[s], with γ = 1

with ⎧⎨
⎩

fx (x, y) := +∂y [H(x, y)] + U [H(x, y)]∂x [H(x, y)]

fy(x, y) := −∂x [H(x, y)] + U [H(x, y)]∂y [H(x, y)]

For asymptotic time, the diffusion processes reach a stationary regime: limt→∞ P(x, y, t |
x0, y0, 0) = Ps(x, y), solving the stationary FP Eq. (3), for which we obtain:

Ps(x, y) = N e(2/σ 2) U [H(x,y)] (5)

and N is the probability normalization factor yielding
∫

R2 Ps(x, y)dxdy = 1.

Example Consider the Hamiltonian function H(x, y) = x2+y2,U [H ] = γ
{
L 2 H − 1

2 H2
}

and U ′[H ] = γ
{
L 2 − H

}
. In this case, the deterministic dynamics coincides with the Hopf

oscillator with a unique attracting C that is a circle with radius L . In this situation, the mea-
sure Eq. (5) exhibits the shape of a circular “ring” with its maximum located on the circle C
(see Fig. 1).

2.2 Multi-agent dynamics

Let us now build on the dynamics presented in Sect. 2.1 and consider a homogeneous swarm
of N interacting agents exhibiting individual dynamics similar to the one described in Eq.
(1). Specifically, for k = 1, 2, .., N , we now write:

⎛
⎝

d Xk(t)

dYk(t)

⎞
⎠ = Vk,ρ,M (t)

⎛
⎝

∂Xk H(Xk, Yk)

∂Yk H(Xk, Yk)

⎞
⎠ dt + σ

⎛
⎝

dWXk (t)

dWYk (t)

⎞
⎠ ,

(
Xk (0) = X0,k

Yk (0) = Y0.k

)
(6)

where Vk,ρ,M stands for an antisymmetric (2 × 2) dynamical matrix defined by:

Vk,ρ,M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[
Nk,ρ (t)

N − 1
M

]
+

U ′[H,t]︷ ︸︸ ︷
γ

[
Lk,ρ (t) − 1

2
H(Xk , Yk )

]
+ Nk,ρ (t)

N

− Nk,ρ (t)
N

[
Nk,ρ

N (t) − 1
M

]
+ γ

[
Lk,ρ (t) − 1

2
H(Xk , Yk )

]

︸ ︷︷ ︸
U ′[H,t]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

· M · ω,

(7)

where M > 1 and ω > 0 are (time-independent) control parameters, M ·ω is a normalization
factor and dW(·)(t) are all independent standard WGN sources (homogeneity follows as we
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have Hk(Xk, Yk) ≡ H(Xk, Yk) ∀ k). The mutual interactions enter via the term Nk,ρ(t)
present in the dynamic matrix Vk,ρ,M (t). To define Nk,ρ(t), we assume that each agent Ak

(k = 1, 2, · · · , N ) is located at the center of an (individual) observation disk Dk,ρ(t) with
common constant radius ρ. We further assume that Ak is, in real time, able to count the
number of neighboring fellows Nk,ρ(t) that are contained in Dk,ρ(t). Finally, we introduce
the instantaneous (geometric) inertial moment of the agents located in Dk,ρ(t), namely:

Lk,ρ(t) := 1

Nk,ρ(t)

∑
j∈Dk,ρ (t)

H
(
X j (t), Y j (t)

) ≥ 0. (8)

To heuristically understand the collective behavior emerging from the set of SDE’s given in
Eq. (6), let us comment on the following features:

(a) Large population of indiscernible agents. As we consider homogeneous populations,
we may randomly tag one agent, say T , and consider the actions of the others as an
effective external field (often referred to as the mean-field point approach). This pro-
cedure reduces the nominal multi-agent dynamics to a single effective agent system,
thus making the analytical discussion much easier while still taking into account inter-
actions of the neighbors. The individual T -diffusive dynamics on R

2 are then assumed
to be representative of the global swarm and follow from dropping the index k in Eqs.
(6) and (7). The effective interactions terms Nρ,M and Lρ,M are to be determined by
auto-consistency from the TPD measure of T . In the stationary regime, thanks to the
orthogonal property between the canonical and the dissipative components of the vector
fields, we obtain:

Ps(x, y) = [Ps(x, y)]N =
[
N e

2γ

σ2 U [H(x,y)]
]N

x := (x1, x2, · · · , xN ) (9)

For H(X, Y ) = X2+Y 2

2 , the harmonic oscillator Hamiltonian, and for large signal-to-
noise ratio S = 2γ /σ 2 � 1, we can analytically express the value of the limit cycle’s
orbit:

Lρ,M = ρ√
2 − 2 cos(π/M)

. (10)

(b) Roles of the control parameters M and ρ. The origin O := (0, 0) is a singular point of
the deterministic dynamics and its stability follows from linearizing the dynamics near
O. In the stationary regime, the linearization reads:

Vρ,M (0) =

⎛
⎜⎜⎝

[
Nρ,M

N − 1
M

]
+ γ Lρ,M + Nρ,M

N

− Nρ,M
N

[
Nρ,M

N − 1
M

]
+ γ Lρ,M

⎞
⎟⎟⎠

with eigenvalues:

λ± = [
Nρ,M/N − 1/M

]
︸ ︷︷ ︸

RE

±√−1
[√

Nρ,M/N
]
. (11)

When RE < 0, (resp. > 0), O is attractive (resp. repulsive). The very existence of
a stationary regime implies that Ps(x, y) vanishes for large values of |x | and |y|. For
agents far from O, both Nk,ρ,M and Lk,ρ,M will vanish (with high probability, except
the agent at the center, no agents will be found inside Dk,ρ), implying O to be attractive
as RE < 0; conversely, agents close to O will be repelled. Ultimately, an equilibrium
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Fig. 2 Numerical simulation for N = 200 agents, ρ = 1, σ = 0.07 and M = 4. The black dots show
the final position of the agent at time T = 50[s], while the blue line gives the trajectory of one arbitrary
agent (with its observation range in red). The black circle (hidden below the swarm of agents) gives the
theoretically computed limit cycle. This shows the exactitude of Eq. (10), even for finite swarms. Left Harmonic

oscillator Hamiltonian function H(X, Y ) = X2+Y 2

2 . Center Cassini ovals Hamiltonian function H(X, Y ) =
((X − 1)2 + Y 2) · ((X + 1)2 + Y 2), with ρ = 0.4, showing closed ovals without connections (see Yates
(1947)). Right Same Hamiltonian function as the center figure, with ρ = 0.8, presenting one connected orbit
around both attractors

consensus will be reached when the diagonal part of Vρ,M vanishes which is achieved
when Eq. (10) is attained.

(c) Role of the dissipative terms U ′[H, t] and the parameter Lρ,M . Observe that the regu-
lating term U ′[H, t] is itself not necessary to reach a consensual behavior. However, for
large γ ’s, it enhances the convergence rate toward equilibrium and reduces the variance
around the mode of Ps(x, y). This enables us to easily estimate the radius Lρ,M given
by Eq. (10).

According to Eqs. (9) and (10), we observe that, in the stationary regime, the swarm self-
selects a consensual circular orbit with radius Lρ,M that depends on both the observation
range ρ and the effective attracting range M .

Numerical simulation results, obtained by applying the Euler method over discrete
timesteps with dt = 5 · 10−3[s], are shown in Figs. 2 and 3. The employed discretiza-
tion works perfectly, as the numerical results coincide very closely with our theoretical ones
(especially in the case of the theoretical limit cycle in Fig. 2, left).

Note that a Hamiltonian function can be constructed from a set of points along any desired
closed curve on the plane (without self-intersection). A simple fit can be made on this set
of points (e.g., least squares method), returning a high-degree polynomial form representing
the Hamiltonian function. This function will be differentiable (by construction), and we can
ensure H(X, Y ) > 0(∀X, Y ) by adding a constant; the Hamiltonian can then be directly used
in our model.

3 Robotic implementation

3.1 Braitenberg control mechanism

The actual adaptation of our MCD dynamics is implemented on the model of a Braitenberg
control mechanism (BCM) Braitenberg (1984). In the BCM, the speed of the robot’s motor(s)
is reactuated at discrete timesteps, solely based on the output value(s) of a series of sensors.

In our case, we use cylindrical robots, equipped with eight light sensors (s0,s1,...,s7) evenly
distributed along their circular perimeter and two driving motors (left and right), as pictured
in Fig. 4. The robot’s movement evolves on the plane, with a light source located at the origin.
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Fig. 3 Numerical simulation for N = 200 agents, ρ = 1, σ = 0.07 and M = 4, until time T = 25[s]
(left) or T = 50[s] (center and right). Left Hamiltonian function with three attracting poles H(X, Y ) =
((X − 1)2 + Y 2) · ((X + 1

2 )2 + (Y −
√

3
2 )2) · ((X + 1

2 )2 + (Y +
√

3
2 )2). Center Asymmetric Hamiltonian

function H(X, Y ) = (((X − 1
2 )2 + Y 2) · ((X + 1

2 )2 + (Y −
√

3
2 )2) · ((X + 3

4 )2 + (Y +
√

27
4 )2))

1
3 . Right

Hamiltonian function H(X, Y ) = (((X − 1)2 + Y 2) · ((X + 1)2 + Y 2) · (X2 + (Y − 4)2))
1
3 , resulting in two

disconnected orbits

Fig. 4 Left Theoretical robot, seen from above. Note the eight sensors evenly distributed on the perimeter of
the robot’s body and the two motors L and R. The point S (resp. U ) shows the stable (resp. unstable) facing
direction of the light source in the BCM. Right Actual e-puck robot in the same position; the eight proximity
sensors (ps0,ps1,...,ps7) are nearly evenly distributed on the perimeter

The light source serves as the origin O in the mathematical model, acting as an attractor for
the robots, while also being the center of the limit cycle the robots will ultimately arrange and
circulate on. Our goal is to let a swarm of robots arrange and circulate in a circle around the
light source, following a similar control mechanism to Eq. (1), with the Hamiltonian function
of the Hopf oscillator. This choice of circular trajectories allows us to compare the behavior
of an agent swarm (with analytical results) and a robotic swarm.

The light sensors gather the following information:

1. Nρ(t): the number of instantaneous neighbors in a fixed circular range around each robot
(Nρ(t) ≥ 1 ∀t as every robot always detects itself),

2. {S0(t), S1(t), ...S7(t)}: the normalized light intensity (∈ [0; 1], 1 for the sensor(s) receiv-
ing the most light) measured on each sensor.
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The gathered information enables us to update the velocities at discrete timesteps according
to the rule:

VR(t + 1) = α · Nρ(t) + β ·
(

=:SL (t)︷ ︸︸ ︷
S0(t) +

7∑
i=5

Si (t) −

=:SR(t)︷ ︸︸ ︷
4∑

i=1

Si (t)

)

VL(t + 1) = α · Nρ(t) + β ·
(

SR(t) − SL(t)

)
,

(12)

where α and β are two positive parameters, controlling the translation/rotation velocities.
This pair of controls in Eq. (12) effectively adapts Eq. (1) (in Cartesian coordinates) to a
robotics paradigm, in terms of left/right motor speeds (speed and heading). In Eq. (12), we
reduce the number of sensors to two by grouping them into the left group (SL ) and the right
group (SR).

The first term α · Nρ(t) accounts for the forward speed of the robot, and the other term
regulates the heading. Indeed, when α = 0, the speeds have the same norm but opposite signs,
implying that the robot can only turn around its main axis. In this case, the robot stabilizes
with the light source facing S, i.e., with the light source at the same distance from sensors 0
and 1, with SL(t) ≡ SR(t) ⇒ VL(t) = VR(t) = 0. This ending position is the only stable
steady state; when the light source is facing the point U , at the same distance from sensors
4 and 5, it is unstable.

When the light initially stands on the left of the robot (i.e., facing sensors 5, 6, 7, or 0),
VL(t) will exceed VR(t) (as SL(t) > SR(t)). In this configuration, the robot will turn on its
axis until the light faces the point S. The same argument holds when the light initially stands
on the right of the robot.

When the first term in Eq. (12) (the forward speed) is constant and positive, this control
mechanism drives the robot to the light source to turn around it. The robot constantly moves
forward, keeping the light source facing S, thereby creating a rotating trajectory around the
light source.

The radius of the resulting orbit will be directly proportional to α, and inversely propor-
tional to β: an increase in α results in a larger distance covered before the next heading update
(and hence, a larger orbit). Conversely, an increase in β induces a sharper heading adaptation
(and hence, a smaller orbit). For a fixed β, the radius of the limit cycle depends only on α.

In our case, we fix α and β, thus letting the forward speed be proportional to the number of
instantaneous neighbors. This forces the orbit to shrink when few neighbors are detected, and
increase in the other configuration, mimicking the MCD dynamics. While in the mathematical
model of Sect. 2, the parameters ρ and M selected the limit cycle’s radius, here ρ, α, and β

contribute to the orbit selection. Accordingly, the parameter M will be adjusted by an ad-hoc
combination of α and β.

Assuming the swarm of robots is large enough to ensure local communications, the pro-
posed BCM will let the swarm converge to a consensual orbit and circulate on it at a constant
speed. This convergence does not depend on the initial position and heading of the robots.
As the central light is a global attractor, robots will also never drive away from it.

3.2 Physical implementation on e-puck robots

The formerly exposed BCM has been implemented on the open-hardware e-puck robot
specifically designed for experimental swarm robotics Mondada et al. (2006). The e-puck
is a cylindrical robot, of approximately 70 millimeters in diameter, with 8 infrared (IR)
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proximity sensors (emitter and receptor) located nearly evenly on its perimeter (see Fig. 4).
Each sensor is composed of an IR emitter and a receptor, and can be used passively (only
the receptor, to sample ambient light), or actively (emitter/receptor, for proximity search or
message exchanges).

Our implementation uses only IR sensors (passively and actively, alternately), and the two
motors. Each timestep is separated into five phases:

1. Message broadcasting: Each robot first broadcasts a message to all neighboring robots
via IR (20-40 cm of range, depending on the angles of the emitter/receptor sensors). The
message contains its ID, and the number of agents that have been counted at the previous
timestep Nρ(t − 1).

2. Message reading: The received messages are read to measure Nρ(t), the number of
detected neighbors. A filtering step also allows detection of robots that were in range
in the previous steps, but whose messages were not received (to correct possible mis-
communication between robots). A memory of the detection of the other robots in the
last 5 steps is maintained, and a majority window algorithm (MWA) is applied to correct
for robots not being correctly detected. The filtered value N ′

ρ(t) is thereby constructed.
The MWA counts as a neighbor any robot that has been in range at least 3 times in the
last 5 timesteps, or that has just been detected during the present timestep. The number
of neighbors can only be underestimated, as we use an unmodulated light source (on a
continuous current), and the IR communication between the e-pucks are modulated. This
means that no false positives can occur in the communication among the robots, and only
false negatives (undetected neighbors) can happen. To try and reduce the influence of
non-detection of neighbors, we artificially force the number of neighbors at time t to be
bounded below by (Nρ(t − 1) − 1). This mechanism ensures a smooth behavior of the
speeds of the motors, by avoiding large jumps in the number of neighbors over time. We
define Vρ(t) to be the set of the values Nρ(t − 1) received from the neighbors at time t .
Then the final value Nρ(t) is defined as:

Nρ(t) := max

(
Nρ(t − 1) − 1,

N ′
ρ(t) +∑

i Vρ(t)i

N ′
ρ(t) + 1

)
. (13)

3. Light source sampling: The intensity of the light source is passively sampled on each
of the eight IR sensors to obtain

{
S̄0(t), S̄1(t), ...S̄7(t)

}
. The normalized values are then

computed as Si (t) = S̄i (t) / maxi
{

S̄i (t)
}

for i = 0, 1, .., 7.
4. Velocity re-actuation: With the data gathered, the velocity of each motor is computed

and updated following Eq. (12), with α = 100 and β = 20, and a base speed of 100:
⎧⎨
⎩

VR(t + 1) = 100 + 100 · Nρ(t) + 20 · (SL(t) − SR(t))

VL(t + 1) = 100 + 100 · Nρ(t) + 20 · (SR(t) − SL(t)) .

(14)

The speeds here are given in steps/second. 1000 steps correspond to one full rotation of
a wheel, whose diameter is approximately 41mm. A speed of 500 steps/s corresponds to
500
1000 · π · 41 ≈ 64.4 [mm/s].

5. Avoidance mechanism: A proximity search is performed on each sensor to detect obsta-
cles; avoidance is implemented by adapting the motors’ velocities. The avoidance mecha-
nism used is a standard Braitenberg-inspired avoidance mechanism. It has been designed
to avoid collisions between e-puck robots, but cannot guarantee collision avoidance with
the light source. Its pseudo-code is given in Algorithm 1.
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Data: α = 100;

// Something ahead, stop for this timestep
if obstacle_front() then

VR(t+1) = 0;
VL(t+1) = 0;

end
// Something ahead slightly left/right, turn the other direction
if obstacle_front_right() then

VL(t+1) = VL(t+1) - α;
end
if obstacle_front_left() then

VR(t+1) = VR(t+1) - α;
end
// Something left/right, turn slightly the other direction
if obstacle_right() then

VL(t+1) = VL(t+1) - α/2;
end
if obstacle_left() then

VR(t+1) = VR(t+1) - α/2;
end

right_motor(VR(t+1));
left_motor(VL(t+1));

Algorithm 1: Avoidance mechanism

Figure 5 summarizes the robot’s main loop.
Different noise sources are inherent to this robotic implementation. First, the motors’

noise: each robot can have a slightly different speed from its programming (the e-puck
motors sometimes miss some motor steps, thus changing their forward speed and heading).
Second, the sensors’ noise in sampling the light source can also slightly change the robot’s
heading in the BCM. Finally, we must account for the noise in the number of neighbors, as
they change its forward speed in the BCM. This final source is the biggest source of noise in
the BCM. All of these noise sources add up, letting the robots follow noisy trajectories, as
expected from the mathematical model of Eq. (1). We follow the assumption that these three
noise sources are similar, in terms of behavior to the two independent WGN sources from the
mathematical model. Indeed, the superposition of multiple independent noise sources can be
simplified to a WGN source, by the central limit theorem (see Gillespie (1992), Sect. 1.6).

With the IR sensors acting as the neighbors’ detection mechanism, we can express the
following expected theoretical results. On the limit cycle, each robot has three neighbors in
average (himself and the two nearest neighbors). This is due to the small range, and the fact
that the robots also block the IR rays; thus, only the closest neighbors can be detected. As
on the limit cycle, the robots always have the light at π

2 on their right, so the value of the
sensors can also be estimated. Indeed, sensors 1 and 2 are closest to the light source, and
approximately at the same distance. Their values will most likely be around 1. Sensors 0 and
3 will also have nearly the same values, and the other sensors will not receive any light, so
that:

�S := SR − SL ≈ S1 + S2 + S3 − S0 ≈ 2.
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Fig. 5 Organigram of the robot’s main programming loop

This allows us to consider the average speeds on the limit cycle as being constants, and
to rewrite the BCM on the limit cycle as:

⎧⎨
⎩

VR = 3α + 2β

VL = 3α − 2β.

(15)

A relation between these speeds and the interaxial distance of the robots, leads to the
radius of the limit cycle

Lα,β = e

2

VL + VR

VL − VR
= 3α · e

4β
(16)

The angular speed can also be expressed as

ωα,β = VL − VR

e
= 4β

e
.

3.3 Dictionary theoretical model-robotic implementation

A formal proof of the convergence of our BCM would be very difficult to provide; this is
why we chose to illustrate that our BCM exhibits the same characteristic behavior as the
mathematical model of Sect. 2, whose convergence we have formally proven. To better link
the model and the robotic implementation, Table 1 illustrates the translation of these main
characteristics between the theoretical and robotic control mechanisms.
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Table 1 Theoretical and robotics implementations of the main control mechanisms in our model, and their
respective control parameter (s)

Characteristic of the MCD
dynamics

Theoretical control mechanism Robotic control mechanism

Attraction/repulsion with respect
to the origin

Symmetric part of the dynamical
matrix V

Forward speed in the Braitenberg
control mechanism

Control parameter: M , ρ Control parameter: α, ρ

Rotation around the origin Anti-symmetric part of the
dynamical matrix V

Heading correction in the
Braitenberg control mechanism

Control parameter: ω, ρ Control parameter: β, ρ

Attraction to the limit cycle U ′[H, t] term in the symmetric
part of the dynamical matrix V

Control parameter: ρ

Transmission of Nρ(t − 1)

to/from neighbors, and filtering
step of Nρ(t)
Control parameter: ρ, majority
window size

Repartition on the limit cycle Noise sources dW (t).
Control parameter: σ

Robotics noise sources (motors
imprecisions, communications
errors, environmental noise,
etc.). Avoidance mechanism.

The explicit expression of the limit cycle in both cases is also summarized, to show how
both depend on their control parameters

Lρ,M = ρ√
2 − 2 cos(π/M)

Lα,β = 3α · e

4β
.

In the BCM, we see that our initial choice of setting α and β fixes the radius of the limit
cycle (and the angular speed on it). If we choose a larger swarm of robots, we should not
see a difference in the radius as long as we do not change these two control parameters.
Theoretically, we could see the swarm trying to arrange on a circle whose perimeter is too
small for all the robots to fit. This means that we should see α and β as functions of N , to
be sure that all robots can fit on the consensual limit cycle. We should have the perimeter of
the limit cycle at least larger than N times the diameter d of one robot:

2π · Lα,β = 2π · 3α · e

4β
≥ N · d.

This result from the BCM matches the mathematical model, where the radius of the limit
cycle depends only on the fraction of neighbors M and the radius of observation ρ. In the
mathematical model, changing the swarm number does not change the limit cycle’s radius
either.

3.4 Experimental validation

To demonstrate the convergence of our BCM regardless of the initial conditions, tests were
carried out with a swarm of eight robots, from 25 different (random) initial situations (posi-
tions and headings of the robots). The choice of these initial conditions was made to experi-
mentally validate the inter- and intra-convergence variability. The headings changes in sim-
ilarly located robots in different initial conditions (e.g., experiments 3 and 17) show how
the control mechanism can achieve convergence to a consensual orbit with initial conditions
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1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Fig. 6 Initial positions and headings of the eight robots in each of the 25 experiments. Each circle corresponds
to a robot, and the corresponding line denotes the heading. The center cross represents the position of the light
source

close or far from the final orbit. The agents were placed systematically in a 200 × 200 cm2

rectangular horizontal arena. The initial positions and headings of the robots are shown in
Fig. 6, along with the position of the IR source, which remains unchanged during the exper-
iments. Each experiment lasted from 1 to 4 minutes; long enough to let the robots rearrange
from their initial positions to the limit cycle, and then maintain the limit cycle.

The tracking step allowed us to obtain the position of each robot through all of the 25
experiments. Figure 7 shows the tracking step applied to the videos, while Fig. 8 shows the
resulting tracked trajectories. Details on the multi-agent tracking tool developed can be found
in Appendix section “Multi-agent tracking tool”.

3.5 Experiment results

Data extracted from tracking have been used to quantitatively assess convergence, based on
the following measures:

1. Mean and standard deviation of each robot’s radius in the last 15% of each experiment
(empirically found to be in the limit cycle regime for every initial situation).

2. Mean and standard deviation of each robot’s angular speed in the same time window.
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Fig. 7 Left A randomly selected initial condition assuming eight aligned equally spaced agents in the inferior
working space region. The IR radiation source is located at the center of the rectangular arena. Right Respective
agents’ control mechanism and their mutual interactions. It is important to observe that the proposed Kalman
filter is capable of determining the position of an agent with high precision independently of lighting conditions
and other agents’ positions

Fig. 8 Full extracted trajectories of the eight robots through the duration of experiments, for initial conditions
1 (left) and 10 (right)

The extracted data are shown in Fig. 9 for each experiment, where these averages and
standard deviations are pictured for each robot on the left side, and as one average for the
whole swarm on the right. It is worthwhile to note the very low fluctuations on the average
radius and angular speeds for the swarm, through the whole set of initial conditions.

As a measure of the uniformity of the robots’ dispersion on the limit cycle, we now recall
the order parameter (see Acebrón et al. (2005)) for a group of N oscillators on R

2 in polar
coordinates:

R(t) =
∣∣∣∣∣

1

N

N∑
i=1

ri (t) · eiθi (t)

∣∣∣∣∣ , (17)

which takes a real positive value. Note that if all the oscillators share the same phase θi (t) at
a given time, the value for R(t) will be high. Conversely, if all the phases of the oscillators
are uniformly distributed over [0 : 2π ], R will vanish.

In this paper, we used information on the position in the last 15% of each run to determine
the phase of each robot through time, and compute R(t) for the swarm. Figure 10 reports
the average in this time window (along with the standard deviation) for each experiment.
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Fig. 9 Average radius/angular speed in the last 15 % of each experiment. Left For each robot. Right Averaged
for the whole swarm

Fig. 10 Order parameter R of the swarm for each initial situation, averaged over the last 15 % of each
experiment

Remark: The positions of robots that got stuck against the IR source during an experiment
are shown in the initial configurations plot in Fig. 6, even though their data were not used in
the analysis. Over the 25 experiments, 15 robots got stuck, with a maximum of 2 stuck robots
for one initial condition (7.5% of unusable data). As the IR source is an attractive point, and
because of the avoidance mechanism used, the robots sometimes change their course and end
up hitting the light source. A robot in this situation cannot get back to the limit cycle, and
stays at the same spot with 0 velocity until the end of the experiment. In the mathematical
model of Sect. 2, agents can leave the attractor only because of the noise source. Our robots
cannot do the same, due to the physical presence of the IR source blocking their path.

This issue could not be solved by using a different avoidance mechanism, as avoiding
a light source, solely with the use of the IR sensors is impossible (at short range, the IR
sensors are saturated by the light source). This result conforms to our expectations, as it fits
the theoretical predictions as well as the underlying Eq. (1).
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3.6 Comparison with the theoretical results

Theoretical results derived in Sect. 3.2 lead to the following limit cycle radius and angular
speed (with the e-puck robot’s interaxial distance e = 52[mm]):

Lα,β = 3α · e

4β
= (100 + 3 · 100) · 52

4 · 20
= 260 [mm] ωα,β = 4β

e
= 4 · 20

1000 · 41π

52
≈ 0.198.

(18)

These results very closely match our experimental results, where the average radius of the
limit cycle over the 25 experiments is Lα,β := 252.7 [mm], and the average angular speed
is ωα,β := 0.197.

3.7 Generalization to other Hamiltonian functions

The choice of a BCM limits the characteristics of the Hamiltonian functions that can be
adapted to a hardware implementation. The scope of this paper was not to study the limit of
validity of our model; other types of control mechanism may adapt to general Hamiltonian
functions. Nevertheless, the BCM described here for the case of the harmonic oscillator
(H(x, y) = 1

2 (x2 + y2)) can be extended to more complex Hamiltonian functions. For
example, one can obtain Cassini oval-like curves by placing the robots in an environment
with two light sources. Using exactly the same control mechanism of Eq. (12), we obtain a
swarm behavior similar to the mathematical case with the Cassini ovals Hamiltonian function.
Depending on the observation range ρ of the robots, cases with one connected consensual
orbit or two separated orbits can arise. This time, robots sample the ambient light coming
from both light sources, acting as the two focal points from the Cassini Ovals Hamiltonian
function.

Tests have not yet been carried out on an actual swarm of robots, but numerical results
are shown in Fig. 11. These results are obtained by simulating Eq. (12) with dt = 0.1s, on
a swarm of 100 robots starting with random positions and headings on the plane. The two
light sources are positioned at (±100, 0), and WGN sources are added to the (exact) gathered
information to simulate the noise actual robots would experience:

Fig. 11 Numerical simulation of the BCM on a swarm of 100 robots, with two light sources located at
(±100, 0). With an observation range of ρ = 100, the swarm consensually rotates around both light sources
(left), whereas a smaller range of ρ = 10 lets the swarm split into two sub-swarms rotating around each light
source (right). The trajectory of 10 randomly selected robots are shown, along with the final position of all
robots as black dots
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{
VR(t + 1) = α · Nρ(t) + β · (SL(t) − SR(t) + σldWR(t))

VL(t + 1) = α · Nρ(t) + β · (SR(t) − SL(t) + σldWL(t))
(19)

Empirically chosen values for the WGN sources are σl = 0.05 for the light source
sampling, and σN = 0.5 for the number of instantaneous neighbors (ÑV (t) := NV (t) +
σN dWN (t)).

4 Conclusion

For a whole class of interacting autonomous agents evolving in an environment subject to
noise or external perturbations, we have been able to perform an analytical characterization
corroborated by an extensive set of simulation experiments and ultimately to implement the
control mechanism on a swarm composed of eight e-puck robots. The possibility to simulta-
neously complete these complementary approaches on the same class of control mechanisms
is exceptional, and originates from the simplicity of the underlying dynamics (i.e., MCD
dynamics). However, despite its simplicity, our modeling framework incorporates a number
of basic features rendering it generic, namely: non-linearities in the control mechanism; finite
range interactions between agents; self-organization mechanisms leading to dynamic consen-
sual spatio-temporal patterns; and environment noise, which corrupts ideal trajectories and
sensor measurements. Beyond the pure pedagogic insights offered by this class of models,
the results provide strong evidence that built-in stability of the control mechanism and the
resilient behavior observed during the actual implementation open the door for more elabo-
rate implementations. The modeling framework exposed here is more than a mere class of
models; it offers a constructive method to deduce generalized classes of fully solvable agent
dynamics. In particular, extension of the MCD dynamics via the introduction of Hamiltonian
functions, involving more degrees of freedom, will allow analysis of the robots’ evolution in
higher dimension (from planar to 3-D spaces).
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Appendix: MCD Dynamics

Consider the dynamics of a harmonic oscillator with Hamiltonian function H(X, Y ) =
1
2

[
X2 + Y 2

]
. The resulting dynamics reads:

⎧⎨
⎩

Ẋ = +Y = + ∂
∂Y H(X, Y )

Ẏ = −X = − ∂
∂ X H(X, Y )

=
(

0 1
−1 0

)

︸ ︷︷ ︸
V0

×
(

∂
∂ X H(X, Y )
∂

∂Y H(X, Y )

)
. (20)
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Clearly, the trajectories solving Eq. (20) are circles on the plane R
2 with radius given by

the initial conditions (X0, Y0). We shall now introduce energy dissipation into the nominally
(energy-conserving) Hamiltonian system Eq. (20). This will be achieved by adding diagonal
terms to the matrix V0:

⎧⎪⎪⎨
⎪⎪⎩

Ẋ = +Y − γ X = + ∂
∂Y H(X, Y ) +

dissipative term︷ ︸︸ ︷
U ′(H)

∂

∂ X
H(X, Y )

Ẏ = −X − γ Y = − ∂
∂ X H(X, Y ) + U ′(H)

∂

∂Y
H(X, Y )

︸ ︷︷ ︸
dissipative term

=
(

U ′(H) +1
−1 U ′(H)

)

︸ ︷︷ ︸
V

×
(

∂
∂ X H(X, Y )
∂

∂Y H(X, Y )

)
. (21)

where U (H) is a function of the Hamiltonian and we denote U ′(H) := d
d H U (H). For

instance, the choice U (H) = −H ⇒ U ′(H) = −1 simply yields a linearly damped dynam-
ics. In this case, the trajectories will simply be spirals on R

2, approaching the origin as time t
increases. Observe from Eqs. (20) and (21) that the conservative part of the dynamical vector
field (VF) is orthogonal to the dissipative part: we have the vanishing scalar product
(

+ ∂

∂Y
H(X, Y ),− ∂

∂ X
H(X, Y )

)

︸ ︷︷ ︸
conservative VF

·
(

U ′(H)
∂

∂ X
H(X, Y ), U ′(H)

∂

∂Y
H(X, Y )

)

︸ ︷︷ ︸
dissipative VF

= 0.

(22)
The dynamics of Eq. (21) will finally be driven by a couple of external noise sources

dWX (t), dWY (t) that will be taken as standard independent WGN processes:
⎧⎨
⎩

Ẋ = +Y − γ X = + ∂
∂Y H(X, Y ) + U ′(H) ∂

∂ X H(X, Y ) + σdWX (t)

Ẏ = −X − γ Y = − ∂
∂ X H(X, Y ) + U ′(H) ∂

∂Y H(X, Y ) + σdWY (t)
(23)

Accordingly, the planar dynamics in Eq. (23) simultaneously model: (i) a canonical
driving, (ii) an energy dissipation mechanism, and (iii) an energy source delivered by the
noise sources. The use of WGN implies that X (t) and Y (t) are Markovian processes, for
which all probabilistic characteristics of the realizations are entirely given by transition proba-
bility densities P(x, y, t | x0, y0, t0) := P for t > t0. Moreover, P(x, y, t | x0, y0, t0) obeys
the FP equation:

∂
∂t P = − ∂

∂x

{[
+ ∂

∂y H(x, y) + U ′(H) ∂
∂x H(x, y)

]
P
}

− ∂
∂y

{[
− ∂

∂x H(x, y) + U ′(H) ∂
∂y H(x, y)

]
P
}

+ σ 2

2

[
∂2

∂x2 P
]

+ σ 2

2

[
∂2

∂y2 P
]
.

(24)

Asymptotically in time in Eq. (23), a balance between dissipation and supply of energy
is reached and this leads to a stationary regime, in which all probabilistic features of the
dynamics become time invariant. This stationary regime is described by the stationary prob-
ability measure Ps(x, y) solving the stationary (FP) that results when the left-hand side in
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Eq. (24) equals zero. The cylindrical symmetry of Eq. (23) implies that, in the stationary
regime, all probabilistic features of the model must themselves be cylindrically invariant;
hence, Ps(x, y) = Ps [H(x, y)] = Ps(H). By direct calculation, we can indeed verify that

Ps(H) = N e
2

σ2 U (H)
, (with N the normalization factor). (25)

Now, provided that Eq. (25) is integrable, meaning that N < ∞ (i.e., implying an overall
dissipative dynamics), the stationary probability characteristics of the dynamics are given
by Eq. (25). In particular, for the linearly dissipative case obtained when U (H) = −H , we
consistently obtain a bivariate Gaussian density with cylindrical symmetry:

Ps(H) = N e
2

σ2 U (H) = 2

πσ 2 e− 1
σ2

[
x2+y2]

.

Multi-agent tracking tool

To determine the states of every single agent in our experiments, we developed a multi-
agent tracking tool based on computer vision techniques and the Kalman filter. This task was
particularly challenging due to the very inhomogeneous lighting conditions in the acquired
videos (mainly because of the central light source). This acquisition setup is composed of
an overhead digital camera equipped with a wide angle lens (Canon EF-S 10-22mm f/3.5-
4.5 USM, mounted on a Canon EOS 7D body). Our multi-agent tracking tool has been
developed in C++ using the GNU compiler collection (GCC 4.6.3) and standard computer
vision algorithms included in the open source computer vision library (OpenCV, v. 2.3.1-7,
http://opencv.org/).

The employed technique follows three steps:

1. The image foreground is extracted for further processing using a precomputed mean
background.

2. The Gaussian scale-space representation of the extracted foreground IF (x, y) containing
the agents was convolved with a Gaussian kernel, as L(x, y, σ ) = G(x, y, σ ) ∗ IF (x, y),
where, in a two-dimensional space, the Gaussian function is given by

G(x, y; σ) = 1

2πσ 2 e−(x2+y2)/2σ 2
(26)

and σ is the standard deviation. The outcome of this convolution at a specific scale is
strongly dependent on the relationship between the sizes of the blob structures in the
image domain. Since our background is characterized by high pixel values and the blobs
dimensions are known, every agent can be characterized by a local extrema of the resulting
Gaussian scale-space representation L(x, y, σ ).

3. Assuming that the initial frame does not present any false positives, every single detected
blob in the initial frame represents an agent (see Fig. 7, left). The detected spatial locations
of the agents are used as inputs for the Kalman filter Kalman (1960), where the initial
speeds of the agents are assumed to be zero. The estimates of the system states are based
on the initial conditions and the sequence of the detected blobs along the experiments.
Since the radius of the cylindrical robots are known, as well as their directions and linear
speeds, a new measurement is easily casted as a good candidate input for the Kalman
filter or as a new input for the designed regressive filter.
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In this work, the agents are assumed to follow non-uniform translational motions, with
a constant acceleration between consecutive frames. The uncertainties associated with the
measurements of the positions induced by different lighting conditions are treated as white
noise. The states xi

k of the i-th agent at time k as well as the measurement zi
k are described

by linear SDE in the image domain:
⎧⎨
⎩

xi
k = �xi

k−1 + wk−1

zi
k = H xi

k + vk

(27)

where xi
k ∈ �4, zi

k ∈ �2.
wk−1 and vk are WGN sources, respectively, representing the process and measurement

noises. They are assumed to be mutually statistically independent, and to be drawn from
zero-mean multivariate Gaussian distributions with covariances Q and R. The covariances’
matrices can be described as a function of the experimental parameters, such as the lighting
variability across the experiments, the number of agents, etc. However, in our experiments,
they were assumed to be constant. The evolution of the current state vector xi

k over time
is described by the transition matrix � derived from the non-uniform translational motion
equations

� =

⎡
⎢⎢⎣

1 0 �t 0
0 1 0 �t
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , (28)

where �t is equal to 0.1 s, as the videos were acquired at a constant frequency equal to 10
Hz, the time elapsed between consecutive frames was assumed to be constant.

H is a 2 × 4 transformation matrix that related the predicted state vectors xi
k into the

measurement domain:

H =
[

1 0 0 0
0 1 0 0

]
. (29)

Remark: The videos of all the experiments can be found online, at http://www.youtube.
com/channel/UCCgwiDNHoyG9RJ2_pdyewmg.
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