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Abstract Novelty search is a recent artificial evolution technique that challenges traditional
evolutionary approaches. In novelty search, solutions are rewarded based on their novelty,
rather than their quality with respect to a predefined objective. The lack of a predefined
objective precludes premature convergence caused by a deceptive fitness function. In this
paper, we apply novelty search combined with NEAT to the evolution of neural controllers
for homogeneous swarms of robots. Our empirical study is conducted in simulation, and we
use a common swarm robotics task—aggregation, and a more challenging task—sharing of
an energy recharging station. Our results show that novelty search is unaffected by decep-
tion, is notably effective in bootstrapping evolution, can find solutions with lower complexity
than fitness-based evolution, and can find a broad diversity of solutions for the same task.
Even in non-deceptive setups, novelty search achieves solution qualities similar to those
obtained in traditional fitness-based evolution. Our study also encompasses variants of nov-
elty search that work in concert with fitness-based evolution to combine the exploratory
character of novelty search with the exploitatory character of objective-based evolution. We
show that these variants can further improve the performance of novelty search. Overall, our
study shows that novelty search is a promising alternative for the evolution of controllers for
robotic swarms.
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1 Introduction

Motivations for the use of evolutionary techniques to design control systems for robots
are numerous (Harvey et al. 1993; Nelson et al. 2009). In the swarm robotics domain in
particular, the complexity stemming from the intricate dynamics required to produce self-
organised behaviour complicates the hand-design of control systems. Artificial evolution,
on the contrary, has been shown capable of exploiting the intricate dynamics and synthe-
sise self-organised behaviours (see for example Trianni 2008; Sperati et al. 2008). How-
ever, evolutionary robotics techniques have only been proven effective in relatively simple
tasks (Sprong 2011; Doncieux et al. 2011; Brambilla et al. 2013). The lack of studies that re-
port successful evolution of behaviours for complex tasks can be ascribed to the difficulties
in configuring the evolutionary process such that adequate solutions are synthesised within
a reasonable amount of time (Doncieux et al. 2011).

The most common approach in artificial evolution, and evolutionary robotics in par-
ticular, is to guide the evolutionary process towards a fixed objective (Nelson et al.
2009) (henceforth referred to as fitness-based evolution). The experimenter defines a fit-
ness function that estimates the quality of candidate solutions with respect to a given
task, and this fitness function is used to score the individuals in the population. While
search based on the task objective may intuitively seem reasonable, it is associated with
a number of issues of which deception is one of the most prominent (Whitley 1991;
Jones and Forrest 1995). Deception is a challenging issue in evolutionary computation,
which occurs when the fitness function misguides the evolutionary process (Lehman and
Stanley 2011a), potentially causing evolution to converge to local optima. As the complex-
ity of a task or a system increases, it becomes more difficult to craft an appropriate fitness
function, and fitness-based evolution becomes more vulnerable to deception (Zaera et al.
1996).

Novelty search (Lehman and Stanley 2011a) is a distinctive evolutionary approach which
rewards solutions based solely on their behavioural novelty. In fitness-based evolution, the
objective is typically static, and the evaluations of individuals are independent of one an-
other. In novelty search, on the other hand, individuals are evaluated by a dynamic measure
that scores candidate solutions based on how different they are from solutions evaluated
so far, with respect to their behaviour. Due to the absence of a static objective, novelty
search is unaffected by premature convergence. Mouret and Doncieux (2009) showed that
the novelty-based paradigm can also be effective in bootstrapping evolution. Novelty search
has proven capable of finding a broad diversity of solutions to a given problem (Lehman and
Stanley 2011b) and solutions with lower neural network complexity than fitness-based evo-
lution (Lehman and Stanley 2011a). Novelty search has been successfully applied to many
domains, including non-collective evolutionary robotics (for examples, see Krcah 2010;
Lehman and Stanley 2011a; Mouret 2011).

In this paper, we propose and study the application of novelty search to the evolution of
neural controllers for swarm robotics systems. Our motivation is the high level of complex-
ity associated with swarm robotics, which stems from the intricate dynamics between many
interacting units. The high level of complexity has the tendency to generate deceptive fitness
landscapes (Whitley 1991), and novelty search has been shown to be unaffected by decep-
tion (Lehman and Stanley 2011a). To evaluate novelty search in the swarm robotics domain,



Swarm Intell (2013) 7:115–144 117

we conduct several experiments. We use two different tasks in our study: (i) an aggregation
task, and (ii) a resource sharing task. The former is a task commonly used in the field of
evolutionary swarm robotics. The latter is a more challenging task in which the swarm must
coordinate to ensure that each member has periodic and exclusive access to a charging sta-
tion. In all experiments, we establish comparisons between novelty search and traditional
fitness-based evolution. One of the key components in novelty search is the novelty mea-
sure that quantifies the novelty of each solution. It is based on a behaviour characterisation
(usually a real-valued vector) that corresponds to an approximate representation of the indi-
vidual’s actual behaviour. The behaviour characterisation is typically domain-dependent and
task-dependent. We study different approaches to the definition of behaviour characterisa-
tions for swarm robotics tasks. Our characterisations capture the macroscopic swarm-level
behaviour and thus are independent of the swarm size. In the aggregation task, we evaluate
characterisations composed of behavioural features sampled at regular intervals. In the re-
source sharing task, we go on to show that simple characterisations that summarise an entire
simulation are, in fact, sufficient for novelty search to find good solutions.

One issue that can arise in novelty search is that a significant part of the effort may be
spent exploring novel but unfruitful regions of the behaviour space (Lehman and Stanley
2010a; Cuccu and Gomez 2011). A number of methods that combine the exploratory nature
of novelty search with the exploitatory nature of fitness-based evolution have been proposed
to address this issue (Lehman and Stanley 2010a; Cuccu and Gomez 2011; Mouret 2011;
Gomes et al. 2012). We explore the potential of two such methods, namely progressive
minimal criteria novelty search (Gomes et al. 2012) and linear scalarisation of novelty and
fitness objectives (Cuccu and Gomez 2011).

The paper is organised as follows: in Sect. 2, we discuss related work, present the current
challenges in evolutionary robotics, and introduce the novelty search algorithm. In Sect. 3,
we use novelty search to evolve aggregation behaviours. We experiment with three be-
haviour characterisations, and study how each one affects the behavioural diversity and the
performance of novelty search. In Sect. 4, we experiment with a more challenging resource
sharing task. We find that some behaviour characterisations open the search space too much
and thereby reduce the effectiveness of novelty search. In Sect. 5, we show how the problem
of vast behaviour spaces can be mitigated by combining novelty search with fitness-based
evolution. We conclude in Sect. 6 with a summary of the contributions of the paper and with
a discussion of ongoing work.

2 Related work

In this section, we first discuss swarm robotics and evolutionary robotics, and the main chal-
lenges associated with these fields. We then present novelty search and how it can overcome
some of these challenges. We go on to review recently proposed variants of novelty search.
We conclude the section with a description of NEAT, the neuroevolution method used in our
experiments.

2.1 Swarm robotics

The field of swarm robotics, as well as the more general field of swarm intelligence
(Bonabeau et al. 1999), take inspiration from the observation of social insects. In a swarm
intelligence system, be it natural such as an ant colony, or artificial such as a large-scale
decentralised multirobot system, relatively simple units rely on self-organisation to display
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collectively intelligent behaviour. As such, swarm robotics is an auspicious approach to the
decentralised coordination of large numbers of robots (Şahin 2005). An extensive survey of
the modelling of swarm robotics systems and the problems that have been addressed can be
found in Brambilla et al. (2013), Bayindir and Şahin (2007). Self-organisation in multirobot
systems has, however, proven difficult to design by hand. Manually designing the control
for the individual units of a swarm requires the decomposition of the macroscopic swarm
behaviour into microscopic behavioural rules (Trianni 2008). Such decomposition includes
discovering the relevant interactions between the individual robots, and between the robots
and the environment, which will ultimately lead to the emergence of global self-organised
behaviour. Unfortunately, there is no general method for decomposing a desired global be-
haviour into the rules that govern each individual. System designers therefore typically take
inspiration from biological swarm systems or rely on manual trial and error.

2.2 Evolutionary robotics

Evolutionary robotics is a field concerned with the application of evolutionary computation
to the synthesis of robotic systems. Evolutionary robotics is an alternative for the design
of control for swarm robotics systems, because the application of evolutionary computa-
tion eliminates the need for manual decomposition of the desired macroscopic behaviour.
Artificial evolution essentially performs an iterative trial and error process in which can-
didate solutions are evaluated according to their swarm-level behaviour. Macroscopic per-
formance evaluation is thus used to guide the evolutionary process towards the objective.
Several swarm robotics tasks have been solved with evolutionary approaches, such as co-
ordinated motion (Baldassarre et al. 2007), foraging (Liu et al. 2007), aggregation (Trianni
et al. 2003), hole avoidance (Trianni et al. 2006), aerial vehicles communication (Hauert
et al. 2009), categorisation (Ampatzis et al. 2008), group transport (Gross and Dorigo 2008),
and social learning (Pini and Tuci 2008).

Traditional evolutionary approaches are, however, prone to suffer from a number of is-
sues (Doncieux et al. 2011). Deception (Whitley 1991; Jones and Forrest 1995) is a chal-
lenging issue in evolutionary computation, because it can cause the evolutionary process
to converge prematurely to local optima. Deception occurs when the fitness function cre-
ates a deceiving fitness gradient. This typically happens when the fitness function fails to
adequately reward the intermediated steps that are needed to achieve the global optimum.
A related issue that can arise when applying evolutionary computation to complex tasks is
the bootstrap problem (Gomez and Mikkulainen 1997; Mouret and Doncieux 2009). This
problem occurs when the task is too demanding to exert significant selective pressure on
the population during the early stages of evolution, as all of the individuals perform equally
poorly. As a consequence, there is no fitness gradient and the evolutionary process starts to
drift in an uninteresting region of the solution space.

One way to circumvent deception is through the use of techniques that maintain
genotypic diversity in the population, such as fitness sharing (Goldberg and Richardson
1987), promotion of diversity based on the fitness score of the solutions (Hu et al. 2005;
Hutter and Legg 2006), intermingling individuals of different genetic ages (Hornby 2006;
Castelli et al. 2011), and minimisation of the age of the genotypes (Schmidt and Lipson
2011). However, the problem may ultimately be in the fitness function itself, not in the
particular search algorithm. If the fitness function is actively misguiding the search, the evo-
lutionary process may still fail, regardless of the amount of genotypic diversity present in
the population.

A distinct approach to address the issue of deception is through the use of coevolu-
tion. In competitive coevolution, individual fitness is evaluated through competition with
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other individuals in the population, rather than through an absolute fitness measure. Ide-
ally, this creates an arms race that leads to increasingly better solutions. This approach has
been applied with success in some domains (e.g. Chellapilla and Fogel 1999), but it is also
associated with a number of issues that stem from the potentially counterproductive dy-
namics between the multiple co-evolving species, such as convergence to mediocre stable
states (Watson and Pollack 2001). Other techniques to overcome deception and to boot-
strap evolution rely on the decomposition of the objective into multiple sub-goals that each
are easier to attain. These techniques include incremental evolution (Gomez and Mikku-
lainen 1997), fitness shaping (Uchibe et al. 2002), and multiobjectivisation (Deb 2001;
Knowles et al. 2001). A common drawback of these approaches is that task decomposi-
tion may not always be possible, and when it is, a significant amount of a priori knowledge
about the task is required to devise appropriate sub-tasks.

2.3 Novelty search

While the methods discussed above for mitigating deception might help the evolutionary
process to avoid getting stuck in local optima, they leave the underlying problem untreated,
namely that the fitness function itself might be misdirecting the search. With this issue
in mind, a new evolutionary approach was recently proposed—novelty search. In novelty
search, the evolutionary process is based on the promotion of phenotypic (i.e., behavioural)
diversity and innovation, contrasting with more common techniques that strive to maintain
genotypic diversity. Lehman and Stanley (2011a) used two deceptive robotics tasks to show
how novelty search was able to find good solutions faster and more consistently than fitness-
based evolution. Even though the objective was not directly pursued in any of their exper-
iments, a solution was found more consistently through the exploration of the behaviour
space. Successful applications of novelty search include the evolution of adaptive neural
networks (Soltoggio and Jones 2009); genetic programming (Lehman and Stanley 2010b);
evolution strategies (Cuccu et al. 2011); body–brain coevolution (Krcah 2010); biped robot
control (Lehman and Stanley 2011a); and robot navigation in deceptive mazes (Lehman and
Stanley 2008; Mouret 2011).

Implementing novelty search requires little change to any evolutionary algorithm aside
from replacing the fitness function with a domain-dependent novelty metric. This metric
quantifies how different an individual is from the other, previously evaluated individuals
with respect to behaviour. Previously seen behaviours are stored in an archive. The archive
is initially empty, and new behaviours are added to it if they are significantly different from
the ones already there, i.e., if their novelty score is above some threshold.

A novelty metric characterises how far an individual is from other individuals in the be-
haviour space. This metric depends on the sparseness at a given point in the behaviour space.
A simple measure of sparseness at a point is the average distance to the k-nearest neighbours
of that point, where k is a fixed parameter empirically determined. The sparseness ρ at point
x is given by

ρ(x) = 1

k

k∑

i=1

bdist(x,μi), (1)

where μi is the ith-nearest neighbour of x with respect to the distance metric bdist. Note
that the computational cost of the nearest-neighbours calculation increases linearly with the
size of the population and the size of the archive. However, it is possible to limit the size
of the archive (Lehman and Stanley 2011a) and to use data structures such as KD-trees to
reduce this cost. The function bdist is a measure of behavioural difference between two
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individuals in the search space. Candidates from sparse regions of the behaviour space thus
tend to receive higher novelty scores, which results in an evolutionary process that strives to
uniformly explore the behaviour space. Note that the novelty metric promotes behavioural
diversity within the population at all times and therefore helps to avoid convergence to a
single solution, which is common in fitness-based evolution.

The behaviour of each individual is typically characterised by a vector of real numbers.
The behavioural distance bdist is then given by the distance between the corresponding char-
acterisation vectors (the Euclidean distance is commonly used). The experimenter should
design the behaviour characterisation so that it captures behaviour aspects that are consid-
ered relevant to the problem or task. For example, in a maze navigation task (Lehman and
Stanley 2011a) the behaviour characterisation was the trajectory of the robot through the
maze. The design of the characterisation has direct implications on the effectiveness of nov-
elty search. An excessively detailed characterisation can open the search space too much,
and might cause the evolution to focus on regions of the behaviour space that are irrelevant
for the task for which a solution is sought. On the other hand, an incomplete or inadequate
characterisation can originate counterproductive conflation. Conflation occurs because the
mapping between observable behaviours and behaviour characterisations is typically not in-
jective. As such, notably different behaviours can have similar behaviour characterisations,
which can potentially hinder the evolution of novel solutions (Kistemaker and Whiteson
2011).

Designing the behaviour characterisation often requires knowledge about which be-
haviour features are relevant for solving a task. However, unlike fitness shaping techniques,
it is not necessary to understand exactly how these behaviour features affect fitness, or in
which order the features must be evolved. Novelty search does not require a fitness gradi-
ent to guide evolution, which makes the approach applicable to some classes of problems
that are difficult to solve using traditional fitness-based evolution (Kistemaker and Whiteson
2011).

2.4 Novelty search variants

Several extensions have been proposed to overcome the limitation of novelty search with
respect to guiding evolution towards good solutions in vast behaviour spaces. These exten-
sions are based on the combination of the exploratory character of novelty search with the
exploitatory character of fitness-based evolution.

Lehman and Stanley (2010a) proposed minimal criteria novelty search (MCNS), an ex-
tension of novelty search where individuals must meet some domain-dependent minimal
criteria to be selected for reproduction. In Lehman and Stanley (2010a), the authors applied
MCNS in two maze navigation tasks and demonstrated that MCNS evolved solutions more
consistently than both novelty search and fitness-based evolution. Similar results were re-
ported in Kirkpatrick (2012), using competitive coevolution and a different task. However,
MCNS suffers from a number of drawbacks (Lehman and Stanley 2010a). First, the choice
of minimal criteria in a particular domain requires careful consideration and domain knowl-
edge, since it adds significant restrictions to the search space. Constraining the search space
too much can hinder the evolution of some types of solutions. Second, if no individuals are
found that meet the minimal criteria, search is effectively random. In situations where an ini-
tial randomly generated population is unlikely to contain such individuals, it may therefore
be necessary to seed MCNS with a genome specifically evolved to meet the criteria. Finally,
if the minimal criteria are too stringent, it might be difficult to mutate apt individuals without
violating the criteria, and thus many evaluations may be wasted.
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In recent work (Gomes et al. 2012), we proposed an extension named progressive mini-
mal criteria novelty search (PMCNS), which overcomes the drawbacks of MCNS. In PM-
CNS, the respective benefits of novelty search and fitness-based evolution are combined by
letting novelty search freely explore new regions of the behaviour space, as long as solutions
meet a progressively stricter fitness criterion. PMCNS was found to outperform several other
evolutionary algorithms, and to evolve higher scoring individuals while still maintaining be-
havioural diversity.

Cuccu and Gomez (2011) proposed an alternative approach for combining novelty and
fitness, where the score of each individual is based on a linear scalarisation of the novelty
score and the fitness score (henceforth referred to as linear scalarisation). They applied
the approach to a deceptive box-pushing task, and found that linear scalarisation outper-
formed both novelty search and fitness-based evolution. Mouret (2011) proposed novelty-
based multiobjectivisation, which is a Pareto-based multiobjective evolutionary algorithm.
A novelty objective is added to the task objective in a multiobjective optimisation. The
technique was applied to a deceptive maze navigation problem. Compared with pure nov-
elty search, the use of multiobjectivisation only led to marginally better results. Other tech-
niques for sustaining behavioural diversity in evolutionary robotics are reviewed in Mouret
and Doncieux (2012).

2.5 NEAT

In our experiments, the controllers of the robots are time recurrent neural networks evolved
by NEAT (short for NeuroEvolution of Augmenting Topologies) (Stanley and Miikkulainen
2002). NEAT is a widely used neuroevolution approach, and one of the most successful ap-
proaches developed to date. NEAT simultaneously optimises the weighting parameters and
the structure of artificial neural networks. It begins the evolution with a population of small,
simple networks and complexifies the network topology into diverse species over genera-
tions. This leads to the evolution of increasingly sophisticated behaviour. A key feature in
NEAT is its distinctive approach to maintain a diversity of growing structures simultane-
ously. Unique historical markings are assigned to each new structural component. During
crossover, genes with the same historical markings are aligned, producing valid offspring
efficiently, without the need of complex topological comparisons. NEAT uses speciation
and fitness sharing to protect new structural innovations. This reduces competition between
networks with distinct topologies, providing time for the weights of new structures to be op-
timised. Networks are assigned to species based on the extent to which they share historical
markings. Complexification is thus supported by both historical markings and speciation, al-
lowing NEAT to establish high-level features early in evolution and then elaborate on them
as the evolutionary process progresses. In effect, NEAT searches for a compact, appropriate
network topology by incrementally complexifying existing structures.

It is important to note that both novelty search and NEAT strive to maintain diversity,
but at different levels: whereas NEAT maintains genotypic diversity, novelty search main-
tains phenotypic diversity. Novelty search and NEAT thus complement one another and their
combined use has a number of advantages. In particular, the complexification mechanism
of NEAT can introduce order in the exploration done by novelty search, with less complex
behaviours being explored before progressing to more complex ones (Lehman and Stanley
2011a).



122 Swarm Intell (2013) 7:115–144

3 Evolution of aggregation behaviours with novelty search

In this section, we apply novelty search to the problem of swarm aggregation—a commonly
studied task in swarm robotics. In the aggregation task, a dispersed robot swarm must form
a single cluster. We conduct three sets of experiments with novelty search, each with a
distinct behaviour characterisation. We compare the performance of novelty search to the
performance of traditional fitness-based evolution. We also include results from evolution-
ary runs with NEAT in which random fitness scores are assigned to individuals. Random
evolution serves as a baseline for performance comparisons.

Aggregation is a task of fundamental importance in many biological systems. It is the
basis for the emergence of various forms of cooperation, and can be considered a prereq-
uisite for the accomplishment of many collective tasks (Trianni et al. 2003). Several works
describe the evolution of aggregation behaviours for swarms of robots. Commonly, the pa-
rameters of neural networks with fixed topologies are optimised by fitness-based evolution-
ary algorithms. Baldassarre et al. (2003) successfully evolved controllers for a swarm of
robots to aggregate and move towards a light source in a clustered formation. Three classes
of behaviours were evolved, but each evolutionary run always converged to only one of
the classes. Trianni et al. (2003) studied the evolution of a swarm of simple robots to per-
form aggregation in a square arena. Two different behaviours were evolved: static clustering
which leads to the formation of compact and stable clusters, and dynamic clustering which
leads to loose but moving clusters. Bahgeçi and Şahin (2005) used a similar experimental
setup as Trianni et al. (2003), and studied how some of the parameters of the evolutionary
algorithm affected the performance and the scalability of the evolved behaviours.

In the previous studies discussed above, the robots used directional sound sensing. Di-
rectional sensing allowed the robots to follow gradients towards groups of other robots
emitting sound signals. The use of sound and directional microphones makes the ag-
gregation task sufficiently easy for controllers based on reactive neural networks with-
out any hidden neurons to solve the task (Trianni et al. 2003; Baldassarre et al. 2003;
Bahgeçi and Şahin 2005). In our work, the aggregation task is more challenging: the robots
do not use sound, the range of the sensors is significantly lower than in previous studies, and
the arena is larger. These modifications increase the difficulty of the task and may require
radically different strategies for aggregation (Soysal et al. 2007), since robots can only sense
one another when they are close.

3.1 Experimental setup

Our experimental framework is based on the Simbad 3d Robot Simulator (Hugues and Bre-
deche 2006) for the robotic simulations, and on NEAT4J1 for the implementation of NEAT.
Simbad 3d simulates kinematics and implements simple collision handling. The environ-
ment is a 3 m by 3 m square arena bounded by walls. The swarm is homogeneous and com-
posed of seven robots. The robots are modelled based on the e-puck educational robot (Mon-
dada et al. 2009), but do not strictly follow its specification. Each robot is circular with a
diameter of 8 cm and can move at speeds of up to 12 cm/s. Regarding sensors, each robot
is equipped with eight IR sensors evenly distributed around its chassis for the detection of
obstacles (walls or other robots) within a range of 10 cm, and eight sensors dedicated to
the detection of other robots within a range of 25 cm. Both types of sensors return the dis-
tance of the object that is being sensed, or the maximum value if nothing is sensed. An

1NeuroEvolution for Augmenting Topologies for Java—http://neat4j.sourceforge.net.

http://neat4j.sourceforge.net
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additional sensor (count sensor) returns the percentage of nearby robots (within a radius of
25 cm), relative to the desired cluster size (the total swarm size in our experiments). The
simulated sensors are not based on any specific hardware. Nevertheless, the obstacle sensors
could be implemented with active IR sensors, while the robot sensors and the robot count
sensor could be implemented with short-range communication (Correll and Martinoli 2007;
Gutiérrez et al. 2008). The inputs of the neural network controller are the normalised read-
ings from the sensors mentioned above. The controller has three outputs: one to control the
speed of each motor, and one dedicated to completely stopping the robot if its activation is
above 0.5.

We evaluate each controller 10 times. In each simulation, we vary the initial position
and orientation of each robot. The initial positions are randomised in such a way that the
robots are placed at least 50 cm from one another, which ensures that the robots are always
reasonably well distributed at the beginning of the simulation. Each simulation lasts for 2500
simulation steps, which corresponds to 250 s of simulated time. The best individual of each
generation was post-evaluated in 100 simulations, in order to obtain a more accurate fitness
estimate.

3.2 Configuration of the evolutionary algorithms

Fitness-based evolution and random evolution use the default NEAT implementation pro-
vided by the NEAT4J library. In random evolution, random fitness scores are assigned to
each individual. Novelty search was implemented over NEAT, following the description and
parameters in (Lehman and Stanley 2011a). We used a k value of 15 nearest neighbours and
individuals are stochastically added to the archive with a probability of 2 %, as suggested
in Lehman and Stanley (2010b). The parameters for NEAT were the same in all experi-
ments: recurrent links are allowed, crossover rate—25 %, mutation rate—10 %, population
size—200, and each evolutionary process was conducted for 250 generations. The remaining
parameters were assigned their default value according to the NEAT4J implementation.

The fitness function is based on the average distance to the centre of mass (also used in
Trianni et al. 2003). The fitness Fa of a simulation with T time steps and N robots is defined
as

Fa =
N∑

i=1

1 − dist(RT , ri,T )

N
, (2)

where RT is the centre of mass at the end of the simulation, and ri,T is the position of robot i

at the same instant. The distance values are normalised to [0,1]. The fitness scores obtained
in each of the 10 simulations are combined to a single value using the harmonic mean, as
advocated in Bahgeçi and Şahin (2005).

The behaviour characterisations we use in novelty search are based on spatial inter-robot
relationships, measured at regular intervals of 5 s throughout the simulation. We devised
three characterisations:

bcm: The average distance to centre of mass of the swarm is sampled throughout the sim-
ulation. Considering a simulation with N robots and τ temporal samples, the behaviour
characterisation bcm is given by

bcm = 1

N

[
N∑

i=1

dist(R1, ri,1), . . . ,

N∑

i=1

dist(Rτ , ri,τ )

]
. (3)
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bcl: The number of robot clusters is sampled at regular intervals throughout the simulation,
inspired by the metric used in Bahgeçi and Şahin (2005). Two robots belong to the same
cluster if the distance between them is less than their sensor range (25 cm). The behaviour
characterisation bcl is given by

bcl = 1

N

[
clustersCount(1), . . . , clustersCount(τ )

]
. (4)

bcmcl: The two characterisations bcm and bcl are concatenated to form a single character-
isation. Both bcm and bcl have the same length and each element of the characterisation
vectors ranges from 0 to 1. Thus both components of the behaviour characterisation ap-
proximately have the same contribution to the novelty metric. The new characterisation
bcmcl is given by

bcmcl = (bcm,bcl). (5)

We computed the spatial inter-robot relationships at every 5 s and the simulation lasted
for 250 s. This resulted in behaviour characterisation vectors of length 50 for bcm and bcl, and
vectors of length 100 for bcmcl. As 10 simulations are conducted to evaluate each controller,
the corresponding final behaviour characterisation vector is the element-wise mean of the
vectors obtained in all 10 simulations. In order to establish a basis for comparison, all the
controllers evolved by novelty search and by random evolution were also scored by the
fitness function Fa . It is important to note that the fitness scores did not have any influence
on the evolutionary process in the novelty search experiments.

3.3 Performance comparison

The fitness trajectories for novelty search, fitness-based evolution, and random evolution,
are depicted in Fig. 1 (left). The data points plotted are the averages of the highest fitness
score found so far from the start of the evolutionary run and until the current generation.2

Note that since novelty search does not follow a fitness gradient, the best solutions are not
necessarily found in the last generation. As such, it is necessary to save the interesting so-
lutions (for instance, the best one found so far) throughout the evolutionary process. We
continued the evolutionary process beyond the 150th generation for all experiments, but
there was no significant change in the fitness scores after that point. Although the lowest
possible fitness score is ≈0.05, the highest fitness of an initial random population is on av-
erage ≈0.55. The relatively high fitness of an initial random population is explained by the
fact that stochastically moving robots tend be significantly closer to one another than in the
worst case scenario where robots are located in opposite corners of the arena.

Figure 1 (right) shows box-plots of the highest fitness score for each method in 30 evo-
lutionary runs. The results show that novelty search could consistently find relatively high
scoring solutions, with all the behaviour characterisations. There was no significant differ-
ences between the highest fitness scores achieved with fitness-based evolution and with nov-
elty search with bcmcl (Mann–Whitney U test, p-value < 0.05). With bcl, the highest fitness
scores were significantly lower than the highest scores found by novelty search with bcmcl

2The values that are plotted are fitness scores measured by the fitness function Fa , and not the actual scores
used for selection in novelty search or in random evolution. Note that even random evolution has an ascending
fitness trajectory because the data points plotted are the highest score achieved so far in the evolutionary
process. The trajectory for random evolution can thus increase from time to time when an individual, by
chance, scores higher than any previously evaluated individual.
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Fig. 1 Highest fitness scores achieved in the aggregation task with fitness-based evolution (Fit), random
evolution (Random), and novelty search with the three behaviour characterisations (NS-cmcl, NS-cm, NS-cl).
Left: average fitness value of the highest scoring individual found so far at each generation. The values are
averaged over 30 independent evolutionary runs for each method. Right: box-plots of the highest fitness score
found in each evolutionary run, for each method. The whiskers extend to the lowest and the highest data point
within 1.5 times the interquartile range. Outliers are indicated by circles

and fitness-based evolution. The capacity of novelty search to bootstrap the evolutionary pro-
cess should be noted. From around generation 5 to generation 40, all novelty search variants
achieve fitness scores significantly higher than fitness-based evolution (p-value < 0.01).

Previous studies have shown that novelty search can perform better than fitness-based
evolution in deceptive tasks, but fails to match the performance of fitness-based evolution
when the task is non-deceptive (Lehman and Stanley 2011a; Mouret 2011). Our results
reveal that in the aggregation task, the fitness-function is not deceptive, as fitness-based
evolution typically converges to the most effective strategy, achieving high fitness scores
(except in a single run, see Fig. 1). Still, novelty search managed to achieve fitness scores
that are comparable to the scores achieved in fitness-based evolution.

3.4 Behavioural diversity

The analysis of the explored behaviour space in novelty search and in fitness-based evolu-
tion allows for a better understanding of the evolutionary dynamics. Since each behaviour
characterisation vector has either 50 or 100 dimensions, we applied a dimensionality reduc-
tion method to facilitate visualisation of the explored regions of the behaviour space. We
used a Kohonen self-organising map (Kohonen 1990). Kohonen maps are neural networks
trained using unsupervised learning to produce a two-dimensional discretisation of the in-
put space of the training samples, while preserving the topological relations. We trained a
Kohonen map with the behaviour vectors found both by novelty search and by fitness-based
evolution, and then mapped each individual to the region whose vector is more similar to
the individual’s behaviour vector.

3.4.1 Centre of mass behaviour characterisation

The Kohonen maps corresponding to the explored behaviour space in fitness-based evolu-
tion and novelty search with bcm can be seen in Fig. 2. The results show that fitness-based
evolution focussed the search on only a subset of the behaviour regions. In contrast, novelty
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Fig. 2 Kohonen maps representing the explored behaviour space in fitness-based evolution (Fit) and in nov-
elty search with bcm (NS-cm). Each circle is a neuron corresponding to the vector depicted by the embedded
plot (the average distance to the centre of mass over time). Each behaviour vector is mapped to the neuron
with the most similar vector. The darker the background of a neuron is, the more behaviours were mapped to
it. The regions associated with higher fitness scores are indicated with a bold circle (regions c to g)

Table 1 The number of
individuals mapped to each
behaviour region a–g (see Fig. 2),
relative to the total number of
mapped individuals

Behaviour region Fit exploration (%) NS-cm exploration (%)

a 18.17 3.80

b 22.18 6.39

c 10.27 1.82

d 4.57 1.54

e 1.23 2.75

f 0.15 1.90

g 0.14 3.50

search explored the behaviour space much more uniformly. If we consider the behaviour
regions associated with higher fitness scores (regions c to g), important differences become
apparent: fitness-based evolution avoids behaviour regions where the average distance to
the centre of mass rises beyond the initial value, such as the regions f and g (see Table 1).
Instead, the evolutionary process is much more focussed on behaviours that lead to a mono-
tonic decrease in the average distance to the centre of mass. This bias is introduced by the
fitness function, as it favours a low average distance to centre of mass. Evolving solutions
where the average distance rises beyond the initial value might require going against the fit-
ness gradient. As such, these types of solutions are avoided in the fitness-based evolutionary
process. Novelty search, on the other hand, is not subject to a static evolutionary pressure,
and can therefore explore and discover a wider range of solutions to the task.

The analysis of the behaviour patterns (see plots inside the neurons in Fig. 2) reveals
an interesting point: the regions explored by novelty search are characterised by vectors
that differ much less than uniformly sampled vectors of length 50 would. This happens
because the elements of a given behaviour vector are inherently correlated. Robots cannot,
for instance, travel instantly to any location in the environment, and the difference between
consecutive samples of the average distance to the centre of mass is therefore limited by
the speed of the robots. As such, the reachable behaviour regions constitute only an (often
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Fig. 3 The typical best solution evolved by fitness-based evolution (fit), and two examples of solutions found
by novelty search with bcm (cm1 and cm2). Each line represents the trajectory of a single robot throughout
the simulation. The circles depict the initial positions of the robots and the squares depict their final positions.
Videos of the behaviours are available as online supplemental material

small) subset of the total behaviour space. This explains why novelty search can consistently
find successful solutions to the task, even in a high-dimensional behaviour space.

The results also show that fitness-based evolution spends a considerable amount of time
in behaviour regions where there are no aggregation dynamics at all (regions a and b). These
regions correspond to the initial best solutions, where robots do not move or move randomly
in the arena, in order to maintain an average distance to the centre of mass that is at least as
low as the average distance at the start of the simulation. This class of behaviours constitutes
a local maximum. Novelty search does not spend as much time in such behaviour regions
(see Table 1), as the search moves towards regions with novel behaviours. Since the initial
average distance to the centre of mass is situated in the middle of the spectrum, the novel
behaviours can be aggregation behaviours as well as dispersion behaviours. Typically, each
novelty search evolutionary run explores both types of behaviour simultaneously, maintain-
ing a healthy diversity in the population. This phenomenon can offer an explanation for
the relatively good performance of novelty search in the earlier stages of evolution: novelty
search does not get stuck in the early local maximum, and as such can explore and discover
better solutions faster.

To confirm the behavioural diversity evolved by each method, we resorted to the visual
inspection of the best solutions. In fitness-based evolution, the highest scoring individuals
tended to follow the same behaviour pattern (Fig. 3, fit):

fit: The robots explore the environment in large circles, and form static clusters when they
encounter one another. If a cluster is small, the robots abandon it after a while and recom-
mence the circular exploration.

The fit behaviour pattern was also often found by novelty search. However, novelty
search commonly evolved a different type of solutions in which walls are exploited to
achieve aggregation. Examples of behaviour patterns that use the walls are described be-
low and depicted in Fig. 3 (cm1 and cm2).

cm1: The robots go towards the walls while avoiding any other robots encountered. When
they reach a wall, they follow the wall for a while and then depart with a certain circular
trajectory that causes them to pass through the centre of the arena. Eventually, the robots
end up forming a loose cluster close to the centre.
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Fig. 4 Examples of distinctive
behaviours evolved by novelty
search with bcl. Each line
represents the trajectory of a
single robot throughout the
simulation. The circles depict the
initial positions of the robots and
the squares depict their final
positions. Videos of the
behaviours are available as online
supplemental material

cm2: The robots move in straight lines until they encounter a wall, and then, depending on
the approach angle, they either remain static for a while or start to follow the wall. When
two or more robots encounter one another, they stop and form a cluster near the wall.

Visual inspection of the behaviours confirms that fitness-based evolution did not explore
some classes of solutions, and in particular, solutions where the robots navigate near the
walls. If all the robots initially move towards one of the walls surrounding the arena, they
will often end up far apart. Consequently, the centre of mass of the robots will often be
close to the centre of the arena, far from the robots, which explains the initial high average
distance to the centre of mass (regions e, f, g in Fig. 2). Learning to navigate near the walls
potentially requires the evolution of many solutions with very low fitness scores. Avoiding
navigation close to walls, on the other hand, results in higher fitness scores, because robots
will, by chance, be closer to one another, and therefore to the centre of mass. Given the
opportunistic nature of fitness-based evolution, the stepping stone of first navigating along
walls to later achieve aggregation, is thus unlikely to be found. In fact, we have been unable
to find reports in the literature on the evolution of aggregation behaviours that exploit walls.
Such behaviours have, however, proven successful in biological systems, such as in self-
organised aggregation of cockroaches (Jeanson et al. 2005).

3.4.2 Number of clusters behaviour characterisation

The difference between the fitness scores of the solutions achieved with bcm and bcl was not
significant. Nevertheless, we found that the different characterisations affected the evolved
behaviours. Many of the best solutions evolved with bcl were similar to the solutions evolved
by fitness-based evolution, namely the formation and disbandment of small clusters. How-
ever, new behaviour patterns were also found. The distinctive behaviours evolved by novelty
search with bcl were focussed on the exploitation of inter-robot relations and of flocking in
particular. For example, the following two behaviour patterns were identified (see Fig. 4):

cl1: The robots navigate in circles, and when two robots meet, one starts to follow the
other, which leads to flocking with circular trajectories. Eventually, a single moving file is
formed.

cl2: Similar to cl1, but when a robot cluster reaches a reasonable size, the cluster becomes
static.

Overall, novelty search with bcl focussed on different classes of behaviours than nov-
elty search with bcm. One of the main reasons for the difference in the evolved behaviours
is conflation. Conflation occurs when individuals with distinct observable behaviours have
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Fig. 5 An illustration of conflation for the centre of mass behaviour characterisation bcm (left) and for the
number of clusters behaviour characterisation bcl (right). In both cases, the differences would not be reflected
in the respective behaviour characterisations

very similar behaviour characterisation vectors (Lehman and Stanley 2011a). The conse-
quence is that an individual with a distinct observable behaviour might not be considered
novel by the novelty measure, and may thus disappear from the population. Conflation can
represent both an advantage in terms of efficiency because it reduces the size of the search
space, and a disadvantage when it inhibits the discovery of successful solutions or important
stepping stones.

Two examples of behaviours that can be conflated are shown in Fig. 5. For the bcm char-
acterisation, the degree of clustering of the robots is irrelevant; while for the bcl characterisa-
tion, the distance between robots (and clusters) is irrelevant. The impact of conflation can be
seen in the evolved behaviours: with the bcm characterisation, there were more behaviours
that exploited walls, because navigating near them has a great impact on the novelty mea-
sure; while with bcl, the behaviours focussed on the interactions between the robots and
clusters, including following one another and disbanding clusters.

3.4.3 Combined behaviour characterisation

Novelty search with the composed behaviour characterisation bcmcl achieved on average
marginally higher fitness scores than bcm and bcl (Mann–Whitney U test, p-value < 0.05),
see Fig. 1 (right). The composed behaviour characterisation considers both the average dis-
tance to centre of mass and the number of clusters formed. As such, different behaviours are
less likely to be conflated, which can potentially lead to better solutions.

It should, however, be noted that bcm and bcl are closely related with one another. It is
not possible, for instance, to have a low average distance to the centre of mass and at the
same time a large number of clusters. A large number of clusters implies that the swarm is
scattered, and as such, the robots will have a high average distance to the centre of mass.
Combining bcm and bcl reduces conflation to some extent, but since the two characterisations
are related to one another, no additional effort is needed to explore the larger behaviour
space. This explains why the behaviour space with more dimensions (bcmcl) did not have a
negative impact on the effectiveness of novelty search in this case.

3.5 Neural network complexity

Previous work has shown that an advantage of novelty search, when used together with
NEAT, is its ability to evolve solutions with lower genomic complexity than fitness-based
evolution (Lehman and Stanley 2011a). To determine if such advantage holds in the ag-
gregation task, we analysed the complexity (sum of the number of neurons and number of
connections) of the solutions found by fitness-based evolution and by novelty search. The
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Table 2 Comparison of the least complex solutions evolved by fitness-based evolution (Fit) and novelty
search with bcmcl (NS). The Complexity columns lists the network complexity (sum of the number of neu-
rons and the number of connections) of the least complex individual with a fitness score above a certain
Fitness level. The Generation column lists the average generation in which the least complex individual was
generated. The values are averages of 30 evolutionary runs for each method

Fitness level Generation Complexity

Fit NS Fit NS

0.60 9 5 74.20 71.33

0.65 18 7 75.77 71.67

0.70 28 14 77.10 72.40

0.75 42 22 79.10 74.13

0.80 55 41 80.90 77.33

0.85 76 63 83.17 81.70

comparison is established by analysing the average complexity (across the multiple evolu-
tionary runs) of the least complex solution with a fitness score above a certain threshold. The
results are shown in Table 2. We only show the results for the bcmcl characterisation because
the results for the bcm and bcl characterisations are similar.

The results show that on average, for the same fitness levels, novelty search finds indi-
viduals with significantly less complex neural networks (Mann–Whitney U test, p-value <

0.05). The difference is especially pronounced at the lower fitness levels. Note that the
networks in the initial populations (without any hidden neurons) have a complexity of 71
(20 neurons and 51 links). The difference in the network complexity can be ascribed to the
convergent nature of fitness-based evolution. If the best controllers in the earlier stages of
evolution have more complex neural networks, fitness-based evolution starts to converge to
such complex structures. As novelty search does not converge, and has tendency to explore
simple solutions before moving on to more complex ones (Lehman and Stanley 2011a), it is
capable of finding solutions with a lower network complexity.

4 Evolution of resource sharing behaviours with novelty search

In this section, we study the application of novelty search to a more complex task in which a
swarm of robots share a single resource. The swarm must coordinate in order to allow each
member periodical access to a single battery charging station. In the task, the robots should
first find the charging station, and then effectively share the station to ensure the survival of
all the robots in the swarm. The charging station can only hold one robot at the time.

The problem of autonomous charging and resource conflict management is widely stud-
ied in the literature. Cao et al. (1997) identify resource conflicts as one of the fundamental
challenges in the design of cooperative behaviours in multirobot systems. Resource con-
flicts arise when a single indivisible resource (in our task, the charging station) is requested
by multiple robots at the same time. The problem of sharing an energy charging station in
particular is addressed in Muñoz Meléndez et al. (2002), Michaud and Robichaud (2002),
Kernbach and Kernbach (2011).

4.1 Experimental setup

We use a swarm composed of five homogeneous robots. The robots are identical to the
ones used in the aggregation experiments (see Sect. 3.1), except that they are equipped with
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Fig. 6 The resource sharing task
experimental setup. The grey
circle in the centre is the charging
station. The black filled circles
are the robots (starting positions
vary in each simulation). The
solid circle around the top left
robot represents the range of the
obstacles sensor, the dashed
circle represents the range of the
robot sensor, and the fine dashed
circle represents the range of the
charging station sensor

additional sensors. Each robot has (i) eight IR sensors evenly distributed around its chassis
for the detection of obstacles (walls or other robots) up to a range of 10 cm; (ii) eight sensors
dedicated to the detection of other robots up to a range of 25 cm; (iii) a ring of eight sensors
for the detection of the charging station up to a range of 1 m; (iv) a binary sensor that
indicates whether or not the robot is currently being recharged; and (v) a proprioceptive
sensor that reads the current energy level of the robot. The sensors (i), (ii) and (iii) return the
distance of the object that is being sensed. The experimental setup and the sensor ranges are
depicted in Fig. 6. The environment is a 3 m by 3 m square arena bounded by walls.

Each robot starts with full energy (1000 units), and the energy consumption increases
linearly with the speed of the motors: a robot spends five units per second when motors are
off, and 10 units of energy per second when both motors operate at their maximum speed.
The charging station has the same diameter as a robot, and to recharge, the robots must
remain static inside the charging station. The charging station is located in the centre of
the arena, and charges a robot at a rate of 100 units of energy per second. Similarly to the
aggregation experiments, each controller is evaluated in 10 simulations with random starting
positions for the robots. Each simulation lasts for 2500 simulation steps. The highest scoring
individual of each generation was post-evaluated in 100 simulations.

4.2 Configuration of the evolutionary algorithms

We used the same parameter values for novelty search and the NEAT algorithm as in the
aggregation experiments (see Sect. 3.2). However, we continued each evolutionary run until
the 400th generation, since the resource sharing task proved to be more challenging than the
aggregation task.

The fitness function Fs used to evaluate the controllers is a linear combination of the
number of robots alive at the end of the simulation (henceforth referred to as survivors) and
the average energy of the robots throughout the entire simulation:

Fs = 0.9 · |aT |
N

+ 0.1 ·
T∑

t=1

N∑

i=1

ei,t

T Nemax
, (6)

where |aT | is the number of survivors, T is the length of the simulation, N is the number
of robots in the swarm, ei,t is the energy of the robot i at time t , and emax is the energy
capacity of a robot. The second term of Fs concerning the average energy was included to
differentiate solutions where the same number of robots survive. Without the second term,
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there would be no fitness gradient, since it is unlikely that the initial population contains
solutions where at least one robot survives until the end.3

We experimented with behaviour characterisations of a different nature in the resource
sharing experiments, compared to the characterisations used in the aggregation experiments.
While in the aggregation task, we used spatial relationships between the robots sampled
every 5 s during the simulation, in the resource sharing experiments, we use only quantities
that characterise a simulation as a whole. We evaluated two behaviour characterisations:

bsimple: The first characterisation is closely related to the fitness function, and it is composed
of two values (normalised to the interval [0,1]): (i) the number of robots that survive till
the end of the simulation; and (ii) the average energy of all alive robots throughout the
simulation. bsimple is given by

bsimple =
(

|aT |
N

,

A∑

t=1

∑

i∈at

ei,t

A · |at | · emax

)
, (7)

where A is the number of time steps in which there was at least one robot alive and at is
the set of robots alive at time t .

bextra: The second behaviour characterisation is an extension of bsimple. Two more features,
which are not directly related to the fitness function, were added to the characterisation:
(i) the average speed of the alive robots throughout the simulation; and (ii) the average
distance of the alive robots to the charging station. The movement of a robot in a given
instant is determined by the average wheel speed at that instant. The two additional features
are also normalised to the interval [0,1]. bextra is defined as

bextra =
(

bsimple,

A∑

t=1

∑

i∈at

si,t

A · |at | · smax
,

A∑

t=1

∑

i∈at

di,t

A · |at | · dmax

)
, (8)

where si,t and di,t are the speed of the robot i and its distance to the charging station,
respectively, at time t . smax is the maximum speed of a robot, and dmax is half the length of
the diagonal of the arena.

4.3 Performance comparison

Figure 7 depicts the highest fitness scores achieved by novelty search, fitness-based evolu-
tion, and random evolution. Random evolution only achieves very low fitness scores (<0.2).
In fitness-based evolution, the distribution of the highest fitness scores achieved is character-
istically wide. Fitness-based evolution achieved close to the maximum fitness score in 10/30
of the evolutionary runs, but failed to evolve any viable solution (where at least one robot
consistently survives) in 10/30 of the runs. Bootstrapping proved difficult in fitness-based
evolution, as most runs got stuck in low regions of the fitness landscape for a large number
of generations.

Novelty search, on the other hand, did not get stuck in local maxima. The result indi-
cates that novelty search was unaffected by deception, and was capable of bootstrapping the
evolutionary process. Novelty search with bsimple consistently achieved high fitness scores,

3We empirically determined the probability of randomly generating a solution where at least one robot sur-
vives until the end (in any of the 10 trials) to be approximately 1 %.
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Fig. 7 Highest fitness scores achieved in the resource sharing task with novelty search with bsimple and
bextra (NS-simple, NS-extra), fitness-based evolution (Fit), and random evolution (Random). Left: average
fitness value of the highest scoring individual found so far at each generation. The values are averaged over
30 independent evolutionary runs for each method. Right: box-plots of the highest fitness score found in
each evolutionary run, for each method. The whiskers extend to the lowest and the highest data point within
1.5 times the interquartile range. Outliers are indicated by circles. The maximum fitness score in practice is
about 0.98, which corresponds to all robots surviving until the end of the experiment, while maintaining high
levels of energy

with 4–5 robots surviving in the best solutions. The fitness scores achieved with bsimple are
significantly higher than those achieved by fitness-based evolution (Mann–Whitney U test,
p-value < 0.01). With bextra, novelty search failed to match the performance of bsimple, and
the fitness scores achieved are significantly lower (p-value < 0.01). Within 400 generations,
NS-simple could consistently achieve fitness scores close to the maximum value. However,
it should be noted that NS-extra and Fit do not appear stable at that point, and if more
generations were allowed, they might still improve. The differences between the behaviour
characterisations and the evolved behaviours are discussed below.

4.4 Behavioural diversity

Through visual inspection of the solutions that achieved the highest fitness scores (above
0.95), we found that all evolutionary methods produced solutions that display similar be-
haviours. In the successful behaviours, the robots always start by searching for the charging
station. Depending on the solution, the robots move in straight lines, in large circles, or
in spirals, until the station has been located. The second part of the successful behaviours
concerns the coordination of access to the charging station. We observed three different
coordination behaviours (see Fig. 8):

Charge and go away: If a robot in the charging station detects another robot approaching,
it leaves the station to let the approaching robot recharge. The leaving robot performs what
resembles a random walk in the arena and eventually returns to the station to recharge.

Charge and surround: If a robot in the charging station detects another robot approaching,
it leaves the station to let the approaching robot recharge. The leaving robot begins to
circle the charging station, and approaches the station again when its energy level is below
a solution-specific threshold.

Charge and wait: Once a robot is in the charging station, it continues to occupy the station
until its energy level is above a solution-specific threshold. When the robot leaves, it moves
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Fig. 8 The patterns of behaviour corresponding to the highest scoring solutions found by novelty search and
fitness-based evolution in the resource sharing task. Each line represents the trajectory of the robot through-
out the simulation. The circles indicate initial positions and squares indicate final positions. Videos of the
behaviours are available as online supplemental material

only a short distance away from the station. Then, the robot remains almost static until its
energy level is below a solution-specific threshold, at which point the robot tries to recharge
again.

4.4.1 Fitness-based evolution

As mentioned above, fitness-based evolution did not consistently evolve solutions with high
fitness scores (see Fig. 7). In fact, of the 30 runs conducted, 10 runs never evolved solutions
with a fitness score much higher than the initial randomly generated population. We analysed
the controllers evolved in the runs that only achieved low fitness scores and identified two
behaviour patterns:

• The robots move slowly in small circles. When one of the robots detects the charging
station, it moves towards the station, and occupies it till the end of the simulation. As a
result, the rest of the swarm dies.

• All the robots remain almost static from the beginning of the simulation until they run out
of energy.

Both behaviours represent local maxima in the fitness landscape. In the first case, evolution
converges to solutions where only one robot survives at the expense of the rest of the swarm.
In the second case, the evolutionary process starts to converge to controllers that reduce the
wheel speed to conserve energy. Conserving energy causes the robots to survive longer, thus
slightly increasing the fitness score of the controller. However, reducing the wheel speed
also decreases the chance that a robot will find the charging station. Once an evolutionary
process starts to converge to a local maximum based on energy conservation, it can take
many generations to escape from that maximum, or evolution may not escape at all.

4.4.2 Simple behaviour characterisation

The highest scoring solutions evolved by novelty search follow the same behaviour patterns
as the highest scoring solutions evolved by fitness-based evolution (see Fig. 8). However, an
analysis of the explored behaviour space reveals that novelty search could in fact evolve a
greater diversity of solutions (see Fig. 9). The greater diversity comes from variations of the
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Fig. 9 Behaviour space exploration with fitness-based evolution (Fit) and novelty search with bsimple
(NS-simple), in all evolutionary runs. The x-axis is the average energy level of the robots still alive, the
y-axis is the number of survivors. Each individual is mapped according to its characterisation. Darker zones
indicate that there were more individuals evolved with the behaviour of that zone

Fig. 10 Kohonen map
representing the explored
behaviour space in novelty search
with bextra. Each circle
represents a behaviour pattern,
depicted by the four slices of
different colour. Each slice
represents one component of the
behaviour characterisation
vector—the bigger the slice, the
higher the value of that
component. The darker the
background of a circle, the more
individuals were evolved with the
corresponding behaviour (Color
figure online)

same behaviour patterns. For instance, if the coordination behaviours use different energy
thresholds to trigger entering and leaving the charging station, it will result in different
average levels of energy. In such cases, the behaviour patterns may appear similar through
visual inspection, but they have distinct behaviour characterisations.

4.4.3 Extra behaviour characterisation

We adapted the visualisation technique based on Kohonen maps to the four-dimensional
behaviour space created by the bextra characterisation to analyse the degree of exploration of
different behaviour regions. The results in Fig. 10 show how novelty search with the bextra

characterisation explored the behaviour space—a notable variety of combinations of average
energy, movement, and distance to the charging station. However, the behaviour dimension
related to the number of surviving robots was the least explored dimension of the behaviour
space. In almost all the explored regions, the number of surviving robots was either zero or
one. Only a single behaviour region included behaviours in which the whole swarm often
survives (highlighted in Fig. 10), and that region was one of the least explored.

The relatively low performance of novelty search is caused by the significantly larger
behaviour space and the lack of correlation between the behaviour features. Novelty search
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can freely explore dimensions such as average movement and distance to charging station
without any robots surviving. Furthermore, both of these dimensions are intuitively easier to
explore than the dimension concerning the number of surviving robots. As such, the oppor-
tunistic nature of evolution causes the search to focus less on the surviving robots dimension,
often inhibiting the evolution from finding successful solutions to the task. This is in contrast
with the correlated features used in the bcmcl characterisation from the aggregation exper-
iments, in which novelty search performed well despite the enlarged behaviour space (see
Sect. 3.4.3).

The two-dimensional bsimple characterisation restricts novelty search to explore the two
dimensions directly related to the fitness function. Similar solutions in which robots move at
different speeds are, for instance, conflated when the bsimple characterisation is used, whereas
they are considered different (and potentially novel) when the bextra characterisation is used.
As a consequence, novelty search with the bsimple characterisation focussed exploration on
the dimensions directly related to the fitness function and had significantly more success in
finding solutions with high fitness scores. On the other hand, conflation can be prejudicial
to the diversity of solutions that are evolved. For instance, by analysing the best solutions
evolved with each characterisation, we verified that the behaviour pattern Charge and wait
was less common with bsimple when compared to bextra. This behaviour is intuitively one of
the most interesting solutions, since it takes advantage of the variable energy spending to
extend the lifetime of the robots. However, it was conflated with bsimple, since this character-
isation does not consider the speed of the robots.

Our results suggest that caution must be exercised when behaviour characterisations are
defined. Dimensions that novelty search may opportunistically explore at the cost of other
dimensions that are more crucial for the task should not be included. Alternatively, a number
of methods have been proposed that aim to guide exploration in novelty search towards high
fitness solutions. In Sect. 5, we study the application of two such methods to the resource
sharing task.

4.5 Neural network complexity

The experiments with the aggregation task showed that novelty search found successful
solutions with less complex neural networks than fitness-based evolution. To determine if
the same is true for the resource sharing task, we analysed the complexity of the solutions
evolved for this task. Table 3 shows a comparison between the complexity of the solutions
found by novelty search with bsimple and fitness-based evolution. The results show that there
was a considerable difference between the complexity of the solutions evolved by the two
methods. At fitness levels above 0.2, the simpler solutions evolved by novelty search were of
significantly lower complexity than the solutions evolved by fitness-based evolution (Mann–
Whitney U test, p-value < 0.05). Note that the complexity of the networks in the initial
populations is 107 (29 neurons and 78 links).

5 Combining novelty and fitness

The results of the resource sharing experiments showed that although novelty search finds
a broad diversity of behaviours, regions with high-fitness behaviours may never be ex-
plored. This issue has also been reported in other studies (Lehman and Stanley 2010a;
Cuccu and Gomez 2011), and a common solution is to combine novelty search with fitness-
based evolution (see Sect. 2.4). The combination is promising, because while novelty search
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Table 3 Comparison of the least complex solutions evolved by fitness-based evolution (Fit) and novelty
search with bsimple (NS). The Complexity columns lists the network complexity (sum of number of neurons
and number of connections) of the least complex individual with a fitness score above a certain Fitness level.
The Generation column lists the average generation in which the least complex individual was generated.
The values are averages of 30 evolutionary runs for each method

Fitness level Generation Complexity

Fit NS Fit NS

0.20 65 21 114.90 110.50

0.40 150 69 127.30 118.40

0.60 192 135 134.20 125.90

0.80 213 192 136.90 132.40

0.90 268 239 145.70 133.90

promotes exploration of the behaviour space, fitness-based evolution exploits existing high
fitness solutions. In this section, we study the application of progressive minimal criteria
novelty search (PMCNS) (Gomes et al. 2012) and linear scalarisation (Cuccu and Gomez
2011) to the evolution of solutions for the resource sharing task. We compare the results ob-
tained with PMCNS and with linear scalarisation to the results obtained with pure novelty
search and with fitness-based evolution.

5.1 Progressive minimal criteria novelty search

PMCNS (Gomes et al. 2012) is an extension of minimal criteria novelty search (MCNS)
(Lehman and Stanley 2010a). In MCNS, the exploration of the behaviour space is restricted
by domain-dependent minimal criteria that evolved individuals must meet in order to be
selected for reproduction. The objective of PMCNS is to take advantage of the restrictions
on behaviour space exploration provided by MCNS, but without having to define fixed,
domain-dependent criteria a priori. In PMCNS, a dynamic fitness threshold is used as the
minimal criterion: individuals with a fitness score above the threshold meet the criterion. The
fitness threshold is progressively increased during the evolutionary process. The idea behind
the increasing fitness criterion is to progressively restrict the search space to regions of the
behaviour space with higher fitness scores, and thereby avoid that novelty search spends
much or all effort on regions of the behaviour space with novel, but low fitness behaviours.

The minimal criterion starts at the theoretical minimum of the fitness score (typically
zero), so all controllers initially meet the criterion. In each generation g, the new criterion
mcg is based on the fitness score vg of the P th percentile of the individuals in the current
population, i.e., the fitness score below which P percent of the individuals fall. The param-
eter P controls the exigency of the minimal criterion (0—all individuals meet the criterion,
1—only the individual with the highest fitness meets the criterion). Only increases in the
minimal criterion are allowed, and in order to smoothen the increase, the minimal criterion
from the previous generation is used to determine the criterion for the current generation
(see Eq. (9)). The score used for selection of each individual i in the population is then
calculated according to Eq. (10):

mcg = mcg−1 + max
(
0, (vg − mcg−1) · S)

, (9)

score(i) =
{

novi if fiti ≥ mcg,

0 otherwise.
(10)
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The variables novi and fiti are the novelty and fitness score of the individual i, respec-
tively. The smoothening parameter S controls the speed of adaptation of the minimal crite-
rion.

5.2 Linear scalarisation of novelty and fitness scores

Cuccu and Gomez (2011) proposed a linear scalarisation of novelty and fitness score, as an
approach to sustain diversity while improving the performance of traditional fitness-based
evolution. Each individual i is evaluated to obtain both fitness score, fiti , and novelty score,
novi , which after being normalised (Eq. (11)) are combined according to Eq. (12):

fiti = fiti − fitmin

fitmax − fitmin
, novi = novi − novmin

novmax − novmin
, (11)

score(i) = (1 − ρ) · fiti + ρ · novi . (12)

The parameter ρ controls the relative weight of fitness and novelty, and must be specified
by the experimenter (usually through trial and error). fitmin and novmin are, respectively, the
lowest fitness and novelty scores in the current population, and fitmax and novmax are the
corresponding highest scores.

5.3 Experimental setup

We used the experimental setup of the resource sharing task (see Sect. 4.1) for this set of
experiments. The fitness function and the behaviour characterisations are also the same as
we used in previous experiments (see Sect. 4.2).

For PMCNS, we chose a percentile value of P = 0.50 (values of 0.25, 0.50 and 0.75
were tested), which corresponds to the median value of the fitness scores in the population,
and a smoothening parameter of S = 0.25, which corresponds to relatively slow increases
in the minimal criterion value. For linear scalarisation, the parameter ρ was set to ρ = 0.75
(values of 0.25, 0.50 and 0.75 were tested), which means that the score of each individual
is composed of 75 % of the novelty score and 25 % of the fitness score. A discussion of the
parameter values for linear scalarisation and PMCNS can be found in Cuccu and Gomez
(2011) and in Gomes et al. (2012), respectively.

5.4 Results

We ran experiments with both behaviour characterisations bsimple and bextra to evaluate the
performance of PMCNS and linear scalarisation in behaviour spaces of different dimension-
ality. The resulting fitness trajectories are shown in Fig. 11.

The results show that both PMCNS and linear scalarisation are more effective than pure
novelty search when using bextra (Mann–Whitney U test, p-value < 0.01), and achieve sim-
ilar fitness scores when using bsimple. With the bextra characterisation, pure novelty search
fails to reach high fitness scores, as evolution tends to focus the exploration on behaviour di-
mensions that are not directly relevant for solving the task. The results suggest that PMCNS
and linear scalarisation can overcome this issue, and that the inclusion of a fitness compo-
nent in the selection criteria helps to guide the evolutionary process towards solutions with
high fitness. It should also be noted that PMCNS and linear scalarisation do not appear to
be affected by the deceptiveness of the fitness function since they could consistently achieve
high fitness scores.
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Fig. 11 Highest fitness scores obtained in the resource sharing task with fitness-based evolution (Fit), and
novelty-based evolutionary techniques with bsimple (PMCNS-s, Scalarisation-s, NS-s) and bextra (PMCNS-e,
Scalarisation-e, NS-e). Top: average fitness value of the highest scoring individual found so far at each gener-
ation. The values are averaged over 30 independent evolutionary runs for each method. Bottom: box-plots of
the highest fitness score found in each evolutionary run, for each method. The whiskers extend to the lowest
and the highest data point within 1.5 times the interquartile range. Outliers are indicated by circles

Figures 12 and 13 depict the behaviour space exploration with bsimple and bextra, respec-
tively. An analysis of the behaviour space exploration shows that PMCNS and linear scalar-
isation have a greater focus on regions associated with high fitness scores compared to pure
novelty search. The coverage of the behaviour space was not negatively affected in PMCNS
and linear scalarisation. In fact, the two methods found the same broad range of behaviours
as pure novelty search. The difference between pure novelty search and novelty search com-
bined with fitness-based search is the amount of exploration done in each behaviour re-
gion: PMCNS and linear scalarisation focussed less on the low fitness behaviours (few or no
robots surviving till the end of the simulation) and more on the high-fitness behaviours (high
number of surviving robots). As a result, the PMCNS and linear scalarisation could achieve
solutions with significantly higher fitness scores than the best solutions evolved with pure
novelty search.

6 Conclusions

We studied the application of novelty search to the evolution of controllers for swarms of
robots. The study was based on two distinct swarm robotics tasks: (i) an aggregation task,
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Fig. 12 Behaviour space exploration for each variant of novelty search, with the bsimple characterisation, in
all evolutionary runs. The x-axis is the average energy level of the robots still alive, the y-axis is the number
of survivors. Each individual is mapped according to its behaviour. Darker zones indicate that there were
more individuals evolved with the behaviour of that zone

Fig. 13 Kohonen maps representing the explored behaviour space with each variant of novelty search, with
the bextra characterisation. Each circle represents a behaviour pattern, depicted by the four slices of different
colour. Each slice represents one component of the behaviour characterisation—the bigger the slice, the
greater the value of that component. The darker the background of a circle is, the more individuals were
evolved with the corresponding behaviour. The behaviour patterns with higher fitness scores are indicated in
the upper right corner of each map (Color figure online)

and (ii) a resource sharing task. The aggregation task was non-deceptive, as fitness-based
evolution consistently managed to find high fitness solutions. Nevertheless, novelty search
could achieve a similar performance in terms of fitness scores. We also showed how nov-
elty search found several alternative and successful solutions to the task. Our analysis was
based on Kohonen self-organising maps that allowed for the visualisation of the degree of
exploration conducted in different regions of the behaviour space.

The resource sharing task was a deceptive setup in which fitness-based evolution often
got stuck in local maxima. Novelty search was unaffected by deception and displayed a sig-
nificantly better performance than fitness-based evolution. In both tasks, novelty search was
distinctively able to bootstrap the evolutionary process, it could consistently find behaviours
with high fitness scores early in the evolutionary process, and it was able to find successful
solutions with lower neural network complexity than the solutions evolved by fitness-based
evolution.

To the best of our knowledge, our study is the first in which novelty search has been
applied to evolutionary swarm robotics. Since behaviour characterisations are domain-
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dependent and a fundamental component in novelty search, we studied two different ap-
proaches to the design of characterisations: one based on the spatial inter-robot relationships
sampled at regular intervals, and one based on two to four quantities that summarise the
swarm behaviour throughout an entire experiment. None of the characterisations depends
on the swarm size and they are thus scalable. In our experiments, we combined different
behaviour characterisations and found that such combinations were only effective when the
dimensions in the characterisation were directly related to the task. The opportunistic nature
of artificial evolution will cause the search to first focus on the behaviour dimensions that
are easier to explore. If such dimensions are not related to the task, the search will spend
considerable effort in unfruitful regions of the behaviour space, reducing the effectiveness
of novelty search.

We discovered that novelty search may not always find high-fitness solutions, especially
when the behaviour space has dimensions that are unrelated or only weakly related to the
objective. To overcome this issue, we studied two variants of novelty search, PMCNS and
linear scalarisation of novelty and fitness scores, in which novelty search operates in con-
cert with fitness-based evolution. Our experimental results showed that PMCNS and linear
scalarisation are effective in guiding the exploration towards behavioural regions of higher
fitness, without compromising the capacity of novelty search to find a broad diversity of
solutions. The diversity of evolved solutions was neither negatively affected in PMCNS nor
in linear scalarisation, when compared to pure novelty search.

Overall, our study shows that novelty search can be successfully applied to swarm
robotics systems. Novelty search has several advantages over fitness-based evolution. One
of the prominent advantages is that novelty search often produces a broad diversity of suc-
cessful behaviours based on self-organisation. In the swarm robotics domain, diversity and
self-organisation are particularly important because of the difficulties of designing such
behaviours by hand. Moreover, novelty search is unaffected by deception, less prone to
bootstrapping issues, and can evolve solutions with less complex neural networks. Novelty
search is therefore a promising alternative for the artificial evolution of controllers for swarm
robotics systems.

6.1 Future work

Our results showed that care must be taken in the definition of macroscopic behaviour char-
acterisations, especially when combining distinct behaviour features. It is necessary to en-
sure that (i) each component of the characterisation is relevant to the task, and (ii) that the
components do not differ too much in terms of how easy or hard it is for novelty search to
explore the corresponding dimensions of the behaviour space. It may be difficult to guaran-
tee that macroscopic behaviour characterisations always meet these criteria, and in ongoing
work we are therefore studying how individual weights can be assigned to components and
modified during evolution, either manually or automatically. Such weights could ensure that
particularly important dimensions are thoroughly explored.

While pure novelty search performed reasonably well in our tasks, our results show that
the inclusion of a fitness component can further increase the performance of novelty search.
As such, in future work we are going to elaborate on strategies for combining novelty and
fitness. For instance, we are studying if the use of dynamic weights in linear scalarisation
can bring significant advantages. Such approach could allow the search to focus more on
exploitation or more on exploration at different stages of the evolutionary process.

An alternative that we are currently studying is generic novelty measures for swarm
robotics. Doncieux and Mouret (2010) proposed a behaviour characterisation based on the
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mapping between the sensor input and the actuator output. We are studying how such char-
acterisations could be defined in the collective robotics domain, and if they represent a viable
alternative to domain-dependent novelty measures. Such generic measures are typically used
in combination with fitness-based evolution, since the behaviour spaces created by generic
measures tend to be vast and only weakly related to the objective.

Supplemental material Videos of the behaviours are available as online supplemental ma-
terial and at the following URL: http://home.iscte-iul.pt/~alcen/si2013. The source code of
the software used in the experiments can be found at: https://github.com/jorgemcgomes/
evosimbad.
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