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Abstract Ant-Miner is an ant-based algorithm for the discovery of classification rules. This
paper proposes five extensions to Ant-Miner: (1) we utilize multiple types of pheromone,
one for each permitted rule class, i.e. an ant first selects the rule class and then deposits
the corresponding type of pheromone; (2) we use a quality contrast intensifier to magnify
the reward of high-quality rules and to penalize low-quality rules in terms of pheromone
update; (3) we allow the use of a logical negation operator in the antecedents of constructed
rules; (4) we incorporate stubborn ants, an ACO variation in which an ant is allowed to take
into consideration its own personal past history; (5) we use an ant colony behavior in which
each ant is allowed to have its own values of the α and β parameters (in a sense, to have
its own personality). Empirical results on 23 datasets show improvements in the algorithm’s
performance in terms of predictive accuracy and simplicity of the generated rule set.

Keywords Ant Colony Optimization (ACO) · Data mining · Classification ·
Multipheromone · Stubborn Ants

1 Introduction

Data mining is an active research area involving the development and analysis of algorithms
for extracting interesting knowledge (or patterns) from real-world datasets. In this paper we
focus on the classification task of data mining, where the goal is to discover, from labeled
cases, a model that can be used to predict the class of unlabeled cases (Jaiwei and Kamber
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2006). Ant-Miner is an Ant Colony Optimization (ACO) (Dorigo and Stützle 2004, 2010)
algorithm, proposed by Parpinelli et al. (2002), which discovers classification rules of the
form

IF 〈Term-1〉 AND 〈Term-2〉 AND. . . 〈Term-n〉 THEN〈Class〉
where each term is of the form 〈attribute = value〉, and the consequent of a rule is the
predicted class. In this paper, we propose a number of extensions to the Ant-Miner algorithm
and then empirically evaluate them using 23 widely-used datasets.

In Sect. 2, we present a brief description of the original Ant-Miner algorithm, followed
by a brief review of related work in Sect. 3. We then present each of our proposed extensions
in Sects. 4 through 8. In Sect. 4 we introduce the multipheromone ant system, in which a
different pheromone type is associated with each permitted class; an ant selects the rule class
first and then deposits pheromone of the type associated with the selected class. Section 5
presents our novel quality contrast intensifier. Section 6 describes the use of a logical nega-
tion operator in the construction of rule antecedents. Section 7 proposes the use of stubborn
ants, an ACO variation in which an ant is influenced by its own rule construction history.
Section 8 describes the use of ants with personality, an ACO extension in which each ant has
its own values of the α and β parameters. Finally, Sects. 9 and 10 discuss our experimental
methodology and results, respectively, and some final remarks are presented in Sect. 11.

This paper builds on our earlier work (Salama and Abdelbar 2010) in which four of the
five proposed extensions were introduced. More precisely, this paper extends the work re-
ported in Salama and Abdelbar (2010) in three ways. Firstly, the quality contrast intensifier
is introduced. Secondly, the number of datasets used in the experimental evaluation is in-
creased from 4 to 23. Thirdly, we report results for variations of the proposed algorithm,
involving 12 different combinations of Ant-Miner extensions.

2 Ant-Miner algorithm

The proposed modifications presented in this paper are based on the original Ant-Miner
algorithm introduced in Parpinelli et al. (2002). Algorithm 1 presents a high-level pseudo-
code description of the Ant-Miner Algorithm. For a more detailed discussion, the reader is
referred to Parpinelli et al. (2002), and to Dorigo and Stützle (2004, Sect. 5.6.1).

Ant-Miner discovers an ordered list of IF-THEN classification rules (whose form was
described in the Introduction) and is applicable only to datasets with categorical attributes.
Datasets with real-valued attributes need a pre-processing step to discretize these attributes
into categorical intervals before applying the algorithm. An important characteristic of ACO
algorithms is the construction graph used to represent the trails followed by the artificial
ants. In the case of Ant-Miner, the nodes of the construction graph correspond to the terms
(attribute-value pairs) available in the dataset being mined. Hence, a trail in Ant-Miner con-
sists of following a sequence of vertices in the construction graph, adding one term at a time
to a rule antecedent.

The algorithm consists of two nested loops: the outer loop (while loop), where a single
rule in each iteration is added to the discovered rule list; and the inner loop (repeat–until
loop) where an ant in each iteration constructs a rule as follows. Each ant first constructs
a rule’s antecedent by selecting terms probabilistically according to the pheromone amount
for that term and a heuristic function involving information gain (Quinlan 1993), until all
the attributes have been used (an attribute can be used only once in a rule antecedent), or



Swarm Intell (2011) 5:149–182 151

Algorithm 1 Pseudo-code of Ant-Miner.
Begin Ant-Miner
training_set ← all training cases;
discovered_rule_set ← φ;
InitializePheromoneAmounts();
while |training_set| > max_uncovered_cases do

CalculateHeuristicValues();
Rbest ← φ;
i ← 0;
repeat

ConstructRuleAntecedent(anti );
ComputeRuleClass(anti );
Rcurrent ← PruneRule(anti);
Qcurrent ← CalculateRuleQuality(Rcurrent);
UpdatePheromone(Rcurrent);
if Qcurrent > Qbest then

Rbest ← Rcurrent;
end if
i ← i + 1;

until i = max_trials OR Convergence()
discovered_rule_set ← discovered_rule_set + Rbest;
training_set ← training_set − Cases(Rbest);

end while
End

until adding any other term to the rule antecedent would make the rule coverage less than
min_cases_per_rule. Then, the rule consequent is chosen by a deterministic proce-
dure, which chooses the class value with maximum occurrence in the set of cases matching
the rule antecedent.

Next, a rule pruning procedure is carried out on the rule antecedent, in order to in-
crease the rule’s accuracy and/or improve its simplicity (reduce its size). Then, the ant
updates the pheromone level by depositing pheromone on the terms contained in the just-
constructed rule antecedent in proportion to the quality of the rule. This is done in order
to increase the probability that the following ants will select the terms involved in the
rule.

When the execution of the inner loop finishes, the best rule constructed in that
loop is added to the list of discovered rules, and the training cases matched by that
rule are removed from the training set (since those cases do not need to be cov-
ered by the next rules to be discovered). This set of steps is considered an itera-
tion of the outer loop and is repeated until the number of training cases remain-
ing in the training set becomes less than or equal to the value determined by the
max_uncovered_cases parameter, or until the same rule is generated for a number
of consecutive trials specified by the no_rules_converg parameter. The values of
min_cases_per_rule, max_uncovered_cases, and no_rules_converg are
user-specified thresholds.
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2.1 Pheromone initialization and update

At the beginning of each outer loop, the pheromone is initialized for each term with the
same value given by the function

τij (t = 0) = 1
∑a

r=1 br

(1)

where a is the total number of attributes, i is the index of an attribute, j is the index of a
value in the domain of attribute i, and br is the number of values in the domain of attribute r .

After an ant constructs a rule, the rule quality is evaluated and the pheromone amount is
increased for the terms belonging to the rule according to its quality. This is calculated as
follows:

Q = TP

TP + FN
︸ ︷︷ ︸

sensitivity

× TN

TN + FP
︸ ︷︷ ︸

specificity

(2)

where TP (true positives) is the number of cases covered by the rule and labeled by the class
predicted by the rule, FP (false positives) is the number of cases covered by the rule and
labeled by a class different from the class predicted by the rule, FN (false negatives) is the
number of cases that are not covered by the rule but are labeled by the class predicted by the
rule, and TN (true negatives) is the number of cases that are not covered by the rule and are
not labeled by the class predicted by the rule.

The formula governing the increase in pheromone amount (according to rule quality) is:

τij (t + 1) = τij (t) + τij (t) · Q (3)

where Q is the constructed rule’s quality, computed using (2). The pheromone values for all
terms are normalized to simulate evaporation, so that the pheromone levels are increased in
the nodes selected in the constructed rule and decreased in the rest of the nodes in the con-
struction graph. Normalization takes place by rescaling the entries of τ so that the following
condition is true:

a∑

r=1

br∑

s=1

τrs = 1 (4)

2.2 Term selection

The term is selected probabilistically according to two components, as shown in the follow-
ing formula:

Pij = [τij (t)]α · [ηij ]β
∑a

r=1

∑br

s=1[τrs(t)]α · [ηrs]β
(5)

The terms α and β in (5) are typically assigned to 1 in Ant-Miner; therefore, (5) can be
written more simply as

Pij = τij (t) · ηij
∑a

r=1

∑br

s=1 τrs(t) · ηrs

(6)
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Table 1 An example of eight
cases with two attributes and a
class

Case Condition Safety Class

1 Excellent Bad Buy

2 Very good Very good Buy

3 Good Good Buy

4 Good Very good Buy

5 Bad Very good Wait

6 Bad Very good Wait

7 Bad Good Do not buy

8 Bad Bad Do not buy

In this equation, Pij is the probability of selecting the term 〈attributei = valuej 〉 (referred to
as termij ), and ηij is a problem-dependent heuristic function that involves information gain
(Quinlan 1993) and is computed as follows:

ηij = log2(m) − entropy(Tij )
∑a

r=1

∑br

s=1(log2(k) − entropy(Trs))
(7)

where the measure of entropy associated with termij is calculated as follows:

entropy(Tij ) = −
m∑

w=1

(
freq(T w

ij )

|Tij |
)

· log2

(
freq(T w

ij )

|Tij |
)

(8)

where m is the number of classes, Tij is the subset of cases in which attribute i is equal to
value j , |Tij | is the number of cases in the subset Tij , and freq(T w

ij ) is the number of cases
in subset Tij labeled with class w. The second component in the term selection formula is
τij , which is the amount of pheromone on termij . The higher the value of ηij , the better for
classification the termij is, thus leading to a higher probability of being selected. The same
applies for pheromone amount τij .

Example Suppose that we have the set of 8 cases shown in Table 1 taken from a
dataset that has two categorical attributes and a class attribute. The Condition at-
tribute has four possible values, and Safety has three values. Thus, the construction
graph will contain seven attribute-value nodes: four nodes for the Condition attribute
and three nodes for the Safety attribute. Specifically, τ would contain seven entries:
τ [Condition,Excellent], τ [Condition,Very Good], τ [Condition,Good],
τ [Condition,Bad], τ [Safety,Very Good], τ [Safety,Good], and τ [Safety,

Bad]. From (1), these seven entries would be initialized to 1/7. Applying (7), we find
that the η heuristic values are:

η [Condition,Excellent] = 0.22 η [Safety,Very Good] = 0.08
η [Condition,Very Good] = 0.22 η [Safety,Good] = 0.08
η [Condition,Good] = 0.22 η [Safety,Bad] = 0.08
η [Condition,Bad] = 0.08
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Suppose that after some number of trials, the τ values are as follows:

τ [Condition,Excellent] = 0.05 τ [Safety,Very Good] = 0.18
τ [Condition,Very Good] = 0.24 τ [Safety,Good] = 0.16
τ [Condition,Good] = 0.06 τ [Safety,Bad] = 0.23
τ [Condition,Bad] = 0.08

An ant constructing a rule in trial t would then make its decisions based on the following
probabilities (6):

P [Condition,Excellent] = 0.09 P [Safety,Very Good] = 0.11
P [Condition,Very Good] = 0.41 P [Safety,Good] = 0.10
P [Condition,Good] = 0.10 P [Safety,Bad] = 0.14
P [Condition,Bad] = 0.05

Suppose that the ant chooses as its first term the highest-probability term, which is
〈Condition = Very Good〉. The ant then chooses its next term from the three possible
values of the Safety attribute. Suppose that the ant chooses 〈Safety = Very Good〉,
which has the second-highest probability of the three remaining available attribute-value
pairs. The ant then selects the most frequently occurring class for this combination of
attribute-values, which in this simple dataset is the class Buy. The constructed rule is thus:

IF 〈Condition = Very Good〉 AND 〈Safety = Very Good〉 THEN 〈Buy〉
For this rule: TP = 1, FP = 0, FN = 3, and TN = 4; therefore, the sensitivity and specificity
are 1/4 and 4/4, respectively, and the rule quality (14) is 0.25.

The two entries τ [Condition,Very Good] and τ [Safety,Very Good] are then
increased to become 0.30 and 0.23, respectively. τ is then normalized to simulate evapora-
tion, and the final state of τ at the end of the trial is:

τ [Condition,Excellent] = 0.05 τ [Safety,Very Good] = 0.20
τ [Condition,Very Good] = 0.27 τ [Safety,Good] = 0.14
τ [Condition,Good] = 0.05 τ [Safety,Bad] = 0.21
τ [Condition,Bad] = 0.07

As discussed in Parpinelli et al. (2002), there are several elements of similarity between
the Ant-Miner algorithm and decision tree algorithms such as C4.5. The entropy-based
heuristic function η used by Ant-Miner is the same kind of heuristic function used in de-
cision tree algorithms. The main difference is that in the case of decision trees, weighted
entropy is computed for each attribute on the data partition resulting from the different at-
tribute values (or the choice of a threshold for a quantitative attribute), while, in the case
of Ant-Miner, entropy is computed for an attribute-value pair only, since an attribute-value
pair is chosen to expand a rule. In conventional tree algorithms, entropy is typically the only
heuristic used during tree building. In contrast, in Ant-Miner, entropy is used in conjunction
with pheromone information, which makes the rule-construction process of Ant-Miner more
robust, since the feedback provided by pheromone updating tends to offset the shortsighted-
ness of the entropy measure.

Note that the entropy measure considers one attribute at a time and therefore is sensitive
to potential attribute interaction issues. On the other hand, pheromone updating tends to deal
better with attribute interactions, because it is directly based on the performance of a rule as
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a whole and thus directly takes into account interactions among all attributes occurring in
the rule. The search strategy of Ant-Miner’s rule pruning is also very similar to the pruning
procedure suggested by Quinlan (1993), although the rule quality evaluation functions used
in the two procedures are very different from one another.

3 Related work

3.1 Related work on ACO-based classification rule discovery

Chan and Freitas (2005) have proposed a new rule pruning procedure for Ant-Miner that led
to the discovery of simpler (shorter) rules and improved the computational time in datasets
with a large number of attributes, although in some datasets this led to a smaller predictive
accuracy. Liu et al. presented two extensions, AntMiner2 (Liu et al. 2002) and AntMiner3
(Liu et al. 2003). AntMiner2 employs a density-based heuristic function for calculating the
heuristic value for a term, while AntMiner3 is based on a new state transition approach.
A pseudorandom proportional transition rule was used by Wang and Feng (2004).

Smaldon and Freitas (2006) introduced the idea of selecting the rule consequent class
before rule construction—this idea is the inspiration for our multipheromone ant system
modification described in Sect. 4—and producing an unordered rule set. Their approach
was based on constructing rules for each class separately: an extra For-Each (class value)
loop is added as an outer loop for the original algorithm. The consequent of the rule is known
by the ant during rule construction and does not change. An ant tries to choose terms that
improve the accuracy for a rule predicting the class value in the current iteration of the For-
Each loop. This approach generates better rules in comparison with the original Ant-Miner,
where a term is chosen for a rule in order to decrease entropy in the class distribution of cases
matching the rule under construction. However, the entire execution (with the complete
training set) is repeated separately for each class value until the number of positive cases
(belonging to the current class) remaining in the dataset that have not been covered by the
discovered rules is less than or equal to max_uncovered_ cases. For a more detailed
description of the algorithm, refer to Smaldon and Freitas (2006).

Martens et al. (2007) have introduced a new ACO-based classification algorithm, named
AntMiner+, which employs different pheromone initialization and update procedures based
on the MAX -MI N Ant System (MMAS) (Stützle and Hoos 2000). It makes a distinc-
tion between nominal and ordinal attributes. Instead of creating a pair 〈attribute = value〉
for each value of an ordinal attribute, AntMiner+ creates two types of bounds that represent
the intervals of values to be chosen by the ants. Edges in the construction graph are con-
sidered the decision components, and, in addition, the α and β parameters are included as
nodes in the construction graph, so that their values are selected, and adapted automatically
during the algorithm’s run, not statically set before execution. Moreover, AntMiner+ in-
cludes special handling of discrete attributes having ordered values (as opposed to nominal
attributes having unordered attributes such as “male” and “female”), allowing for interval
rules to be constructed. In addition, an extra vertex group is added at the start of the con-
struction graph containing class values to allow the selection of class first. This is similar to
considering the class as another variable. Rules with different classes can be constructed in
the same iteration. Different heuristic values are applied according to the selected class in
order to choose the terms that are relevant to the prediction of the selected class. However,
pheromone information is shared by all ants constructing rules with different consequents.

Galea and Shen (2006) presented an ACO approach for the induction of fuzzy rules,
named FRANTIC-SRL, which runs several ACO algorithm instances in parallel, each one
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generating rules for a particular class. Swaminathan (2006) proposed an extension to Ant-
Miner which enables interval conditions in the rules. For each discrete interval, a node is
added to the construction graph, and the pheromone value associated to the node is calcu-
lated using a mixed kernel probability density function (PDF).

Otero et al. (2008) introduced a version of Ant-Miner that copes with continuous at-
tributes named cAnt-Miner, by having the ability to create discrete intervals for continuous
attributes “on-the-fly.” Later, an extended version of cAnt-Miner was introduced in Otero et
al. (2009).

The reader is referred to Martens et al. (2011) for a recent survey of swarm intelligence
approaches to data mining.

3.2 Other related work

The extensions described in Sects. 7 and 8 of this paper are based on the ideas of stubborn
ants and ants with personality, respectively, which were proposed by Abdelbar (2008). These
ideas are motivated by the following argument. In most ACO methods, each ant generates
its solution in a given iteration according to (5). In other words, each ant stochastically
generates its solution, in a given iteration, based on the same pheromone τ and heuristic
information η as every other ant. In a given iteration, the probability that a given candidate
solution will be generated by a given ant k is identical to the probability that it will be
generated by any other given ant �.

Stubborn ants is an ACO variation, proposed in Abdelbar (2008) in the context of MAX -
MI N Ant System applied to the traveling salesman problem, in which if an ant k generated
a particular candidate solution S (k)

t−1 in iteration t − 1, then the solution components of S (k)

t−1

will have a higher probability of being selected in the candidate solution S (k)
t generated by

ant k in iteration t . The idea is to increase diversity by making the probability distribution
used to generate candidate solutions different from one ant to another based on each ant’s
past experience.

A further variation called ants with personality proposed in the future work section of
Abdelbar (2008) takes the idea of promoting diversity further by allowing each ant to have
its own values of the αk and βk parameters (where αk and βk represent the values used
by ant k in applying (5)). In this way, some ants will give more importance to pheromone
information, while others will give more importance to heuristic information. The αk and βk

parameters for each ant are randomly generated from a normal distribution centered at some
global αglobal and βglobal.

4 Utilizing multiple pheromone types

In the original Ant-Miner, the consequent of a rule is chosen after its antecedent’s terms are
selected by determining the class value with maximum occurrence in the cases matching
the rule antecedent. The main principle of the multipheromone system is that the class is
chosen before the rule antecedent’s construction, so that the antecedent’s terms are selected
with respect to the current selected class. As discussed in Sect. 3.1, the idea of selecting the
rule consequent prior to rule construction has been introduced in the literature in different
flavors by Smaldon and Freitas (2006) and in AntMiner+ (Martens et al. 2007).

A major difference between our work and AntMiner+ is that in AntMiner+ every ant is
influenced by the pheromone deposited by every other ant constructing similarly or differ-
ently labeled rules, as pheromone is shared by all ants. This can negatively affect the quality
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Algorithm 2 Pseudo-code of Multipheromone Ant-Miner.
Begin Multipheromone Ant-Miner
training_set ← all training cases;
discovered_rule_set ← φ;
while |training_set| > max_uncovered_cases do

InitializePheromoneAmounts();
CalculateHeuristicValues();
Rbest ← φ;
i ← 0;
repeat

SelectRuleClass(anti );
ConstructRuleAntecedent(anti );
Rcurrent ← PruneRule(anti );
Qcurrent ← CalculateRuleQuality(Rcurrent);
UpdatePheromone(Rcurrent);
if Qcurrent > Qbest then

Rbest ← Rcurrent;
end if
i ← i + 1;

until i = max_trials OR Convergence()
discovered_rule_set ← discovered_rule_set + Rbest;
training_set ← training_set − Cases(Rbest);

end while
End

of the constructed rules, as the terms that lead to constructing a good rule with class Cx as a
consequent do not necessarily lead to constructing a good rule with Cy as a consequent.

Our work is different from that of Smaldon and Freitas (2006) in that, in their ap-
proach, the entire execution (with the complete training set) is repeated separately for each
class value until the number of positive cases (belonging to the current class) remaining
in the dataset that have not been covered by the discovered rules is less than or equal to
max_uncovered_cases.

In contrast, our proposed multipheromone Ant-Miner system executes the course of op-
erations only once during the entire training process. Even though we use a class-based
strategy in term selection and pheromone update, ants can construct rules with different
consequent classes in the same iteration simultaneously. However, an ant is only influenced
by the ants that have constructed rules with the same consequent.

First, an ant probabilistically selects the rule consequent prior to the antecedent based on
pheromone and heuristic information as described below. Then, it tries to choose terms that
are relevant to predicting this class. The rule is then evaluated, and the pheromone is updated.
But, unlike the version of Ant-Miner in Martens et al. (2007), the ant deposits different kinds
of pheromone, as many as the number of permitted classes. The next ant is only influenced
by the pheromone deposited for the class for which it is trying to construct a rule. In this case,
pheromone information is not shared among ants constructing rules for different classes.
This allows choosing terms that are only relevant to the selected class. A high-level pseudo-
code description of multipheromone Ant-Miner is presented in Algorithm 2.

The idea of multipheromone Ant-Miner is that each class has a different pheromone type
to be deposited on the terms in the construction graph. In essence, we are replacing the tra-
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ditional two-dimensional pheromone structure (attribute, value) by a new three-dimensional
pheromone structure (attribute, value, class). This also applies to the heuristic values struc-
ture.

During rule construction, the rule class is already set, and an ant is only influenced by
the amount of pheromone in the pheromone array element corresponding to its rule class.
Similarly in pheromone update, an ant deposits pheromone in the array element correspond-
ing to the current rule class in each node belonging to the trail followed by the ant (i.e.,
for each term in the rule antecedent). Here, a term’s pheromone value is a representation of
that term’s relevance for predicting a specific class (the one that is preselected for the rule
consequent).

Class values are also represented as nodes in the construction graph, and pheromone
can be deposited on them. The class value is selected probabilistically according to the
pheromone amount and heuristic value associated with it, using (6). The heuristic value ηk

is based on the empirical prior probability of class k and is calculated as follows:

ηk = freq(k)

|TrainingSet| (9)

where freq(k) is the frequency of class k in the current training set. In pheromone update, the
pheromone level increases in the node of the constructed rule class according to the quality
of the rule, similar to any other decision components (attribute values) in the construction
graph.

We choose a class-based heuristic function that calculates the quality of an antecedent
with respect to a specific class, which focuses on the term’s relevance for predicting the
preselected rule consequent. Laplace-corrected confidence (Smaldon and Freitas 2006) is
used in the multipheromone system as a heuristic function and is given by

ηij,k = |termij , k|+ 1

|termij |+ m
(10)

where ηij,k is the heuristic value for termij given that class k has been selected, |termij , k| is
the number of training cases which include termij and the current selected class k, |termij |
is the number of training cases which include termij , and m is the number of classes. The
probability of selecting termij given that class k has been chosen is calculated as follows:

Pij,k = τij,k(t) · ηij,k
∑a

r=1

∑br

s=1 (τrs,k(t) · ηrs,k)
(11)

where τij,k is the pheromone amount of type class k associated with termij . The amount of
pheromone τij,k is a representation of the quality of termij in the prediction of class k.

Pheromone normalization (which is used to simulate evaporation) is applied separately
for the partition of τ corresponding to each class. Specifically, for a given class k, normal-
ization causes τ entries to be rescaled so that the following condition holds:

a∑

r=1

br∑

s=1

τrs,k = 1 (12)
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In addition, for the class value elements themselves, normalization rescales the entries of τ

corresponding to class values such that the following condition holds:

m∑

h=1

τh = 1 (13)

where m is equal to the number of classes.

Example Consider the previously introduced sample dataset shown in Table 1. In the
multipheromone system, τ would contain 21 elements, including elements such as
τ [Condition,Good,Buy], τ [Safety,Bad,Wait], and τ [Condition,Bad,Do not
Buy]. In addition, τ would contain three elements corresponding to the possible class
values: τ [Buy], τ [Wait], and τ [Do not Buy]. η would similarly contain 21 elements
for the attribute-value-class triples and three elements for the class values. If an ant se-
lects class Buy, then the probability of selecting (Safety,Good) would depend only on
τ [Safety,Good,Buy] and η[Safety,Good,Buy]. If the constructed rule includes the
term 〈Safety = Good〉, then the value of τ [Safety,Good,Buy], as well as the value
of τ [Buy], will each be increased by an amount that depends on the rule’s quality, while
τ [Safety,Good,Wait] and τ [Safety,Good,Do not Buy] will remain unchanged.

Rules are evaluated by a function that balances between the support and confidence of
the rule as follows:

Q(Rt) = TP

|TrainingSet|
︸ ︷︷ ︸

Support(Rt )

+ TP

|Matches|
︸ ︷︷ ︸
Confidence(Rt )

(14)

where Support(Rt ) represents the ratio of the number of cases that match Rt ’s an-
tecedent and are labeled by its class to the total number of cases in the training set, and
Confidence(Rt ) represents the ratio of the number of cases that match rule Rt ’s antecedent
and are labeled by its class to the total number of cases that match Rt ’s antecedent. Note
that, for any rule R, it is always true that 0 ≤ Q(R) ≤ 2.

We employ the quality evaluation function in (14), first used in AntMiner+ (Martens
et al. 2007), instead of Ant-Miner’s original evaluation function (2), since, in our multi-
pheromone approach, the class is preselected, and a rule’s antecedent is constructed based
on the selected class. Hence, we evaluate the quality of the rule constructed with respect
to the selected class, considering two aspects: predictive accuracy represented by the confi-
dence of the rule antecedent given the selected class, and the rule coverage represented by
the support of the rule. In contrast, in the original Ant-Miner, term selection is performed
to reduce class entropy, regardless of the rule consequent. Thus the rule is evaluated by its
sensitivity and specificity.

As for rule pruning, some alterations were made to take advantage of the preselection of
the rule consequent class and the use of multiple types of pheromone. Rule pruning involves
speculatively removing each term in turn and evaluating the quality of the rule without that
term, then considering the rule with the removed term having the largest increase in rule
quality. This process was repeated until no increase in rule quality was observed during
the term removal process. A new consequent, the class with the highest occurrence among
all cases covered by the rule, was assigned to the rule after each term was speculatively re-
moved. In multipheromone Ant-Miner, the consequent remains the same during this process,
and so the rule pruning procedure is simplified. After each term is removed, there is no need
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to compute the quality of the new reduced rule for all possible classes of the consequent.
This is because all the terms in the rule antecedent are selected based on the consequent
class, so it is certain that the current class produces the highest quality with the current
terms compared to other classes. Only the quality for the new reduced rule is computed.

Pheromone levels are increased on the terms included in the antecedent of the con-
structed rule Rt , with respect to the selected class k, according to the rule quality Q(Rt).
The pheromone amount is also increased for the selected class k of the constructed rule Rt .
The following are the pheromone deposit formulas for the rule’s terms and the rule’s class,
respectively:

τij,k(t + 1) = τij,k(t) + τij,k(t) · Q(Rt) (15)

τk(t + 1) = τk(t) + τk(t) · Q(Rt) (16)

Pheromone normalization (to simulate evaporation) is then applied to the τ attribute-value
pair entries corresponding to the class of the constructed rule, as well as to the τ entries
corresponding to class values. Equation (12) is applied for the class k of the constructed
rule, and (13) is applied to the τ entries corresponding to class values.

After the best rule of the current iteration is selected, all cases covered by this rule are
removed from the training set, and the pheromone is initialized, but only in the pheromone
array elements corresponding to the class of this rule. Leaving the pheromone in the array el-
ements of other classes unchanged tends not to waste the knowledge that has been collected
by the ants in the previous trials for the rest of the classes, leading to faster convergence in
the next iterations.

5 Quality contrast intensifier

Along with the multipheromone system, we propose a new pheromone update procedure.
The idea is to intensify the contrast between bad solutions, good solutions, exceptionally
good solutions, and unvisited solutions during rule construction. Quality contrast intensifi-
cation takes place as a new strategy for pheromone update. An ant that constructs a solution
with good quality is rewarded by magnifying the amount of pheromone to be deposited on
its trail. By contrast, an ant that constructs a bad rule is penalized by removing pheromone
from its trail according to the weakness of the constructed solution. The quality contrast in-
tensifier is applied—after rule quality evaluation—using the following conditional formula:

Δτ(t)k =
⎧
⎨

⎩

2Q(Rt) if confidence(Rt ) ≥ φ1

Q(Rt) if φ1 > confidence(Rt ) ≥ φ2

Q(Rt) − 2 if φ2 > confidence(Rt )

(17)

where Δτk is the amount of pheromone (type k) to be deposited by antt on each attribute
value belonging to Rt ’s antecedent as well as class k, Q(Rt) is the quality of Rt calculated
using (14), and φ1 and φ2 are the upper and lower thresholds, respectively, for the rule
confidence at which the quality is contrasted.

As we can see in (17), if the confidence of the constructed rule exceeds φ1, the amount of
the pheromone value to be added is doubled, as if there were two ants choosing the path that
led to this high confidence solution. On the other hand, if the confidence of the constructed
rule goes below φ2, the pheromone value to be added is negative. This is obtained by sub-
tracting 2 from the value of the rule quality (recall from (2) that the maximum value of rule
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quality is 2). In our experiments, we use 0.8 and 0.5 for φ1 and φ2, respectively; this means
that rules with a confidence of 80% or higher receive twice the reinforcement, while rules
with confidence below 50% are penalized.

This contrast intensification strategy comes with several advantages. First, higher-quality
rules get significantly more pheromone than other normal and lower quality rules, which
leads to faster convergence. Second, it ensures the balance in the quality of output between
the number of generated rules (which is affected by the rule support) and the classification
accuracy of these rules (which is affected by the confidence of the rule). For example, some
attribute values have a very high frequency of occurrence among the training set cases. This
increases the support value in the quality evaluation, which increases the quality of the rule
in general according to (14), regardless of the rule’s confidence. Thus, this quality contrast
intensifier works in favor of rule confidence in order not to generate significantly fewer rules
with low classification quality. Finally, penalizing bad rules by removing pheromone from
their trail gives an opportunity to unvisited nodes to be selected in further iterations, as their
pheromone amount is likely to become higher than that of already-tried bad nodes. This can
be expected to enhance the exploration aspect of the algorithm.

Note that the quality contrast intensifier described in this section is intended to be used
in combination with the multipheromone extension. This is because, as can be seen in (17),
the contrast intensifier rewards or penalizes solutions based on their confidence. Confidence
is part of the rule quality evaluation function when multipheromone is used but is not part
of the evaluation function in the original Ant-Miner, since in the former we apply a class-
based term selection strategy, where the confidence measure applies, while in the latter, term
selection is done only to decrease class distribution entropy.

6 Using logical negation operator in rule antecedents

In the original and various versions of Ant-Miner, the construction graph consists of nodes
representing attribute values of the problem domain. The set of nodes (N) in the construction
graph is

N =
a⋃

i=1

vij , j ∈ {1,2, . . . , bi}

where i is the ith attribute, a is the number of attributes, bi is the number of permitted values
for attribute i, and vij is the j th permitted value of the ith attribute. Thus, the constructed
rule antecedent will be of the form

IF 〈Ai = Vij 〉 AND 〈Ak = Vkl〉 AND . . .

To allow using the logical negation operator in the antecedents of constructed rules, the
values and their negation per attribute will be added to the construction graph. The set of
nodes (N) in the construction graph will be

N =
a⋃

i=1

vij ∪
a⋃

i=1

vij , j ∈ {1,2, . . . , bi}

Thus, the available decision components in the construction graph allow constructing rule
antecedents of the form

IF 〈Ai = Vij 〉 AND 〈Ak NOT = Vkl〉 AND . . .
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Negation nodes are added for an attribute if it has more than two values in its domain.
Pheromone is updated normally on these terms, and a heuristic value is calculated for the
negation attribute values in the same way as it is calculated for regular attribute values. An
example of a generated rule using the logical negation operator is: “IF 〈Price = Low〉
AND 〈Condition NOT = Bad〉 THEN 〈Buy〉”. In general, terms that have logical nega-
tion match more cases than the regular terms. This leads to the construction of rules with
high coverage.

Example Consider the previously introduced sample dataset shown in Table 1. If the logical
negation operator is used for constructing classification rules for this dataset, only three or-
dered rules will be needed to correctly classify the whole dataset. These rules are as follows:

1. IF 〈Condition NOT = Bad〉
THEN〈Buy〉.

2. ELSE IF 〈Condition = Bad〉 AND 〈Safety = Very Good〉
THEN 〈Wait〉.

3. ELSE 〈Do not Buy〉.
Because the rules generated with the logical negation operator have higher coverage, the out-
put rule set size becomes smaller than the rule set generated without using logical negation.
The following ordered list of rules is generated without using logical negation:

1. IF 〈Condition = Bad〉 AND 〈Safety = Very Good〉
THEN 〈Wait〉.

2. ELSE IF 〈Condition = Bad〉 AND 〈Safety = Good〉
THEN 〈Don’t Buy〉.

3. ELSE IF 〈Condition = Bad〉 AND 〈Safety = Bad〉
THEN 〈Do not Buy〉.

4. ELSE 〈Buy〉.
At least four rules are needed to correctly classify these cases without using the logical
negation operator.

Note that our use of the logical negation operator does not differentiate between nom-
inal and ordinal attributes. For example, given a nominal attribute “Color” with 3 val-
ues in its domain {red, green, blue}, the terms that can be generated from this
attribute are 〈Color NOT = red〉, 〈Color NOT = green〉 and 〈Color NOT =
blue〉. Similarly, given an ordinal attribute “Blood Pressure” with 3 values in its
domain {high, moderate, low}, the terms that can be generated using logical nega-
tion are 〈BloodPressure NOT = high〉, 〈BloodPressure NOT = moderate〉,
and 〈BloodPressure NOT = low〉.

In AntMiner+ (Martens et al. 2007), intervals are produced from ordinal attributes, gen-
erating terms of the form 〈Blood Pressure≥ moderate〉. However, this strategy does
not allow generating terms that cover cases having the upper and the lower values of the or-
dinal attribute (e.g., the case in which the Blood Pressure is high or low) and sharing
the same class. This can be covered using the logical negation operator by generating the
term 〈BloodPressure NOT = moderate〉.1

1Of course, in some applications, domain experts do not prefer terms such as NOT moderate. In such
domains, the use of NOT can be limited to the highest and lowest values of an attribute.
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Although using negated attributes doubles the size of the construction graph, it enables
the construction of rules that have greater coverage of the training cases. Consequently, a
lower number of rules is produced, which improves the simplicity of the output.

While our logical negation operator allows the construction of terms such as
〈Condition NOT = good〉 and 〈color NOT = green〉, which can only be gener-
ated in AntMiner+ by mining multiple rules, the interval approach used in AntMiner+
can also generate terms such as 〈Condition ∈ [Good : Very Good]〉 that can only be
generated with our logical negation operator by mining multiple rules. Luckily, the two ap-
proaches (logical negation and generated intervals) are not mutually exclusive. It is possible
to include both approaches in a single implementation, and we would like to consider this in
future work. Depending on the preference of the domain expert, or the nature of the problem
domain, the user would designate which attributes will use generated intervals, and which
will use logical negation.

7 Incorporating stubborn ants

As discussed in Sect. 3.2, stubborn ants (Abdelbar 2008) are an ACO variation in which
each ant has its own bias, based on its personal search history. Here, we adapt the stubborn
ants idea and use it in the context of Ant-Miner. In Abdelbar (2008), each ant was biased
toward the solution it had constructed in the previous iteration. In the approach we use here,
each ant retains a memory of the best-ever solution it has personally constructed in the past,
and is biased toward this personal historical-best solution.

The original Ant-Miner algorithm can be thought of as employing a large number of ants
(specified by the max_trials parameter), each making a single trial. In order to use stub-
born ants, we will consider that we have some number of ants (specified by a new parameter
number_of_stubborn_ants), each making a number of trials equal to the result of
dividing the parameter max_trials by the parameter number_of_stubborn_ants.
Thus, the total number of trials remains the same and equal to the max_trials parameter.
Algorithm 3 shows high-level pseudo-code for Ant-Miner with stubborn ants.

Basically, each ant carries out several trials in the execution of the algorithm. Each antt
memorizes the best solution R+

t that it has constructed during its own trials. During rule
construction, if termij belongs to the antecedent of rule R+

t , then termij will have an ampli-
fied probability of being selected by ant t , with the degree of amplification depending on the
quality of the solution R+

t . The probability that a term will be added to the current rule is
given by the following formula:

Pij (t) = Vij
∑a

r=1

∑br

s=1 (Vrs)
(18)

where

Vij =
{

ηij · τij (t) + ηij · τij (t) · Q(R+
t ) if termij belongs to R+

t

ηij · τij (t) otherwise
(19)

where Q(R+
t ) represents the quality of antt ’s historical-best memorized rule R+

t (recall that
Q always returns nonnegative values).

Note that the parameter number_of_stubborn_ants affects the behavior of the
algorithm; as the number of stubborn ants decreases, the stubbornness effect is stronger,
given that the max_trials parameter remains unchanged. For example, suppose that the
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Algorithm 3 Pseudo-code of Ant-Miner with the Stubborn Ants Extension.
Begin Ant-Miner with Stubborn Ants
training_set ← all training cases;
discovered_rule_set ← φ;
InitializePheromoneAmounts();
while |training_set| > max_uncovered_cases do

CalculateHeuristicValues();
Rbest ← φ;
i ← 0;
repeat

for t = 0 to number_of_stubborn_ants do
ConstructRuleAntecedent(antt );
ComputeRuleClass(antt );
Rcurrent ← PruneRule(antt );
Qcurrent ← CalculateRuleQuality(Rcurrent);
UpdatePheromone(Rcurrent);
if Qcurrent > Qbest then

Rbest ← Rcurrent;
end if
if Qcurrent > Q+

best then
R+

t ← Rcurrent;
end if
i ← i + 1;

end for
until i = max_trials OR Convergence()
discovered_rule_set ← discovered_rule_set + Rbest;
training_set ← training_set − Covered_Cases(Rbest);

end while
End

maximum trials allowed is 3,000; if the number_of_stubborn_ants is 3,000, then
each ant will carry out only one trial, which is the case in the original Ant-Miner algorithm.
On the other hand, if the number_of_stubborn_ants is 30, then each ant can carry
out up to 100 trials. If the number_of_stubborn_ants is 10, then the number of trials
that can be performed by a single ant is 300, in which case the stubbornness effect is more
pronounced.

In our experimental results, the number_of_stubborn_ants is 5, and the
max_trials parameter is equal to 1,500—which means that each ant will carry out 300
trials (unless convergence occurs sooner). Setting number_of_stubborn_ants to 5
means that up to 5 different previously-generated solutions could be memorized and used to
influence future solution construction.

8 Giving ants personality

As discussed in Sect. 3.2, in most ACO systems, each ant probabilistically generates its
solution in a given iteration according to (5). The exponents α and β in this equation are
used to adjust the relative emphases of the pheromone (τ ) and heuristic information (η),
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respectively. In this section, we adapt the “ants with personality” approach proposed as
future work in Abdelbar (2008) to the Ant-Miner framework. Each ant k is allowed to have
its own personality by allowing it to have its own values of the αk and βk parameters. In
other words, some ants will give more importance to pheromone information, while others
will give more importance to heuristic information. The αk and βk parameters are each
independently drawn from a Gaussian distribution centered at 2 with a standard deviation
of 1.

The idea of setting different values of α and β for each ant was explored as early as
2007 in AntMiner+ (Martens et al. 2007). As mentioned in Sect. 3.1, in AntMiner+, the
α and β values are considered as decision components in the construction graph. They are
selected probabilistically by each ant before rule construction using pheromone information.
However, the values of these parameters are limited to integer values between 1 and 3.
Moreover, since α and β values are selected according to pheromone information, ants could
potentially converge on specific values at some point, which can limit further exploration in
the rest of the algorithm’s execution.

9 Experimental evaluation methodology

9.1 Datasets

The performance of Ant-Miner with the proposed extensions was evaluated using 23 public-
domain datasets from the UCI dataset repository (Asuncion and Newman 2007). The main
characteristics of the datasets are shown in Table 2.

Since Ant-Miner does not handle continuous attributes directly, the datasets containing
continuous attributes were discretized in a preprocessing step, using the C4.5-Disc (Kohavi
and Sahami 1996) discretization algorithm. Briefly, the C4.5-Disc algorithm works as fol-
lows. For each continuous attribute, a two-attribute dataset is constructed. The first attribute
of the constructed dataset contains the values (extracted from the training set) of the numeric
attribute to be discretized, and the second is the class attribute. The C4.5 decision tree gener-
ation algorithm is then applied to this reduced dataset. Thus, C4.5 constructs a decision tree
in which all internal nodes refer to the attribute being discretized. Each path from the root
to a leaf node in the constructed decision tree corresponds to the definition of a categorical
interval produced by C4.5.

For each cross-validation fold, we separately discretized (using C4.5-Disc) the training
set and then used the created discrete intervals to discretize the test set. This separation is
necessary because if we had discretized the entire dataset before creating the cross-validation
folds, the discretization method would have had access to the test data—which would have
compromised the reliability of the experiments. The ten datasets that contained continuous
attributes and required preprocessing are: breast cancer (wisconsin), contraceptive method
choice, statlog credit (australian), statlog credit (german), dermatology, glass, heart (cleve-
land), ionosphere, iris, and wine.

9.2 Algorithms evaluated

A list of the classification algorithms used in our experiments is presented in Table 3. In
this paper, we have presented five extensions to the Ant-Miner algorithm. It would not be
practical to experimentally evaluate every possible combination of these extensions because
this would lead to 25 = 32 variations in theory (although several are not very meaningful, as
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Table 2 Description of datasets
used in the experiments Dataset Size Attributes Classes

Audiology 266 69 24

Balance scale 625 4 3

Breast cancer (wisconsin) 286 9 2

Car evaluation 1,728 6 4

Contraceptive method choice 1,473 9 3

Statlog credit (australian) 690 14 2

Statlog credit (german) 1,000 20 2

Dermatology 366 33 6

Glass 214 10 7

Hayes-roth 160 4 3

Heart (cleveland) 303 12 3

Ionosphere 350 34 2

Iris 150 4 3

Monks 432 6 2

Mushrooms 8,124 22 2

Post operative patient 90 8 3

Soybean 307 35 19

SPECT heart 267 22 2

Teaching assistant evaluation 151 5 3

Tic-tac-to 958 9 2

Voting records 435 16 2

Wine 178 13 3

Zoo 101 17 7

discussed below). Therefore, in our experiments, we restrict ourselves to 12 combinations
of these variations, as shown in Table 3. These 12 combinations were chosen based on the
following rationale.

We divide the five extensions presented in this paper into three groups:

(a) The multipheromone extension and the quality contrast intensifier extension, denoted
collectively as μAnt-Miner. The multipheromone extension without the quality contrast
intensifier is denoted μ−Ant-Miner. As discussed earlier, the quality contrast intensifier
is not intended to be used without the multipheromone extension.

(b) The logical negation operator extension, denoted Ant-Miner¬. This extension has been
considered as a separate group by itself because, out of all the 5 extensions, it is the
only one that modifies the construction graph (i.e., the search space) of Ant-Miner. (The
other 4 extensions modify the way the search is performed, rather than modifying the
search space.)

(c) The stubborn ants and the ants with personality extensions, denoted collectively as
ψAnt-Miner. Stubborn ants, without personality, are denoted ψ−Ant-Miner, and per-
sonality without stubbornness is denoted ψ∗Ant-Miner.

We experimentally evaluate all possible combinations of these three groupings, eight
variations in total: Ant-Miner, μAnt-Miner, Ant-Miner¬, ψAnt-Miner, μAnt-Miner¬,
ψAnt-Miner¬, μψAnt-Miner, and μψAnt-Miner¬.
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Table 3 Summary of the classification algorithms used in the experiments

Algorithm Abbr. Description

Ant-Miner AM Original Ant-Miner algorithm

μAnt-Miner μAM Ant-Miner with multiple pheromones types and quality contrast
intensifier

μ−Ant-Miner μ−AM μAnt-Miner without quality contrast intensifier

Ant-Miner¬ AM¬ Ant-Miner using logical negation operator

ψAnt-Miner ψAM Ant-Miner with stubborn ants with personality

ψ−Ant-Miner ψ−AM Ant-Miner with stubborn ants only

ψ∗Ant-Miner ψ∗AM Ant-Miner with personality only

μAnt-Miner¬ μAM¬ μAnt-Miner with logical negation operator

μ−Ant-Miner¬ μ−AM¬ μAnt-Miner¬ without quality contrast intensifier

ψAnt-Miner¬ ψAM¬ ψAnt-Miner using logical negation operator

μψAnt-Miner μψAM μAnt-Miner using stubborn ants with personality

μψAnt-Miner¬ μψAM¬ Ant-Miner with all of the five proposed extensions

Ripper JRip Weka (Witten and Frank 2005) implementation of the RIPPER algorithm
(Cohen 1995)

PART PART Weka implementation of the PART algorithm (Frank and Witten 1998)

C4.5-Rules C4.5r Quinlan’s (1993) implementation of the C4.5-Rules algorithm (Release 8)

Ripper (PD) JRippd JRip with prior discretization of the dataset

PART (PD) PARTpd PART with prior discretization of the dataset

C4.5-Rules (PD) C4.5rpd C4.5r with prior discretization of the dataset

Additionally, in order to isolate the effect of the quality contrast intensifier, we evaluate
the combinations μ−Ant-Miner and μ−Ant-Miner¬. This will allow us to compare μ−Ant-
Miner to μAnt-Miner and to compare μ−Ant-Miner¬ to μAnt-Miner¬. Further, to isolate
the effect of each of the extensions combined into the ψ grouping, we also evaluate ψ−Ant-
Miner and ψ∗Ant-Miner.

We compare each of the 12 Ant-Miner variations to the original Ant-Miner algorithm,
as well as to three state-of-the-art conventional rule induction algorithms, Ripper (Cohen
1995), PART (Frank and Witten 1998), and C4.5-Rules (Quinlan 1993).

These three conventional rule induction algorithms are able to process continuous at-
tributes and do not require prior discretization of the dataset. Therefore, for the sake of
fairness, we applied the following methodology for the ten datasets with continuous at-
tributes: each of three rule induction algorithms was run twice, once on the original dataset
and a second time with prior discretization of the dataset (using the C4.5-Disc algorithm,
fold by fold, as described in Sect. 9.1). As indicated in Table 3, we use JRippd, PARTpd, and
C4.5rpd, to refer to each of the three rule induction algorithms, respectively, run with prior
discretization of the dataset.

9.3 Experimental setup

The experiments were conducted using a ten-fold cross-validation procedure for each
dataset. A ten-fold cross-validation procedure consists of dividing the dataset into ten parti-
tions of cases, wherein each partition has a similar number of cases and class distribution.
For each partition, the classification algorithm is run using the remaining nine partitions as
the training set, and its performance is evaluated using the unseen (hold-out) partition.
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Table 4 Algorithm parameters
used in the experiments Parameter Value

General ant-miner
parameters

max_trials 1,500

max_uncovered_cases 10

min_cases_per_rule 5

no_rules_converg 10

Quality contrast intensifier φ1 0.8

φ2 0.5

Stubborn ants number_of_stubborn_ants 5

Personality Mean value of α and β 2

Standard deviation of α and β 1

For stochastic classification algorithms—i.e., Ant-Miner and its variations using the pro-
posed extensions—the algorithm is run fifteen times using a different random seed to ini-
tialize the search for each partition of the cross-validation. In the case of the deterministic
algorithms—i.e., Ripper, PART, and C4.5-Rules—each of them is run just once for each
partition of the cross-validation.

The number of rules generated (which represents the simplicity of the output) and the
predictive accuracy of the generated rules were recorded to evaluate the performance of the
algorithm.

Although dynamic parameter adaptation schemes have been investigated for ACO algo-
rithms (Stützle et al. 2010), we use static parameter settings in this paper in order to isolate
the effects of the proposed extensions. Table 4 shows the parameter settings used in our
experiments. The general parameters follow the parameter settings used in Parpinelli et al.
(2002). The extension-specific parameters were determined based on initial ad hoc experi-
mentation.

The source code, in the C# programming language, for our extended version of Ant-
Miner, including all extensions presented in this paper, is available as online supplementary
material.

10 Experimental results

10.1 Results for ant-miner extensions

Tables 5 and 6 show predictive accuracy results, while Tables 7 and 8 show model size
results for the Ant-Miner extensions. Results of predictive accuracy and model size for the
first 12 datasets are shown in Tables 5 and 7, respectively, while the results for the remaining
11 datasets are shown in Tables 6 and 8.

For each dataset, each table shows the mean and standard deviation (mean
± stdv.) of the measure

related to the table for each of the used algorithms. In addition, an entry is underlined if, for
the corresponding dataset, the value obtained by the corresponding algorithm is the best
(highest in accuracy or lowest in model size) among all values achieved by all 12 evaluated
extensions. Further, a value is shown in boldface if the difference between it and the best
value is less than the average of the two standard deviations (i.e., the average of the entry’s
standard deviation and the best entry’s standard deviation). For example, in Table 5, for
the aud dataset, the best value is 82.92 (corresponding to μψAnt-Miner)—therefore, this
value is underlined—and its corresponding standard deviation is 2.2. The value, for example,
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Table 5 Predictive accuracy results (%) for the first group of datasets. An entry is underlined if the value
obtained by the corresponding algorithm is the best among all values achieved by the 12 considered versions.
A value is shown in boldface if the difference between it and the best value is less than the average of the two
standard deviations

aud bal bcw car cmc c-a c-g drm gls hay hrt ion

AM 61.48 66.52 92.53 77.80 44.18 83.39 69.84 89.06 53.27 46.06 55.89 83.07

± 1.4 ± 2.1 ± 1.1 ± 1.8 ± 3.5 ± 3.2 ± 0.9 ± 2.5 ± 3.6 ± 4.4 ± 3.4 ± 2.7

μAM 81.95 78.41 94.05 94.79 47.61 82.88 70.70 96.00 65.94 66.46 58.28 85.95

± 0.8 ± 1.3 ± 1.8 ± 1.9 ± 1.5 ± 3.5 ± 0.1 ± 1.3 ± 3.7 ± 4.5 ± 3.5 ± 2.6

μ−AM 80.00 76.58 93.39 92.06 43.89 83.42 70.08 95.37 62.54 64.02 57.92 82.06

± 1.0 ± 1.5 ± 1.7 ± 2.3 ± 1.7 ± 3.6 ± 0.6 ± 1.6 ± 4.6 ± 5.1 ± 3.9 ± 3.0

AM¬ 67.95 70.68 92.83 84.76 46.81 84.32 71.03 90.28 61.17 50.76 57.92 86.49

± 1.1 ± 1.8 ± 1.8 ± 1.8 ± 1.9 ± 2.7 ± 0.8 ± 2.9 ± 3.6 ± 4.7 ± 3.7 ± 2.9

ψAM 76.58 65.70 93.89 76.00 46.62 83.61 70.30 94.15 63.06 48.66 57.14 84.24

± 1.8 ± 2.2 ± 1.5 ± 1.7 ± 1.6 ± 2.4 ± 0.8 ± 2.5 ± 3.1 ± 4.2 ± 3.4 ± 2.3

ψ−AM 76.22 67.50 93.57 79.40 45.01 83.26 70.82 93.11 63.21 48.41 56.08 86.20

± 1.8 ± 2.1 ± 1.6 ± 1.5 ± 1.7 ± 2.4 ± 0.6 ± 2.2 ± 3.4 ± 4.1 ± 3.1 ± 2.0

ψ∗AM 63.61 65.74 93.00 75.93 44.37 83.07 69.30 91.86 60.44 49.38 57.29 83.07

± 1.8 ± 2.4 ± 2.1 ± 1.2 ± 1.8 ± 2.6 ± 0.7 ± 2.7 ± 3.0 ± 4.3 ± 3.8 ± 2.1

μAM¬ 78.30 70.59 92.66 88.77 46.51 84.78 70.95 90.82 60.71 58.52 59.62 80.49

± 0.9 ± 2.2 ± 1.5 ± 1.6 ± 1.6 ± 3.2 ± 0.2 ± 3.3 ± 3.5 ± 4.4 ± 3.5 ± 3.1

μ−AM¬ 75.33 68.28 91.23 73.76 43.19 83.29 70.01 84.69 56.44 54.52 54.91 80.33

± 0.6 ± 2.5 ± 2.5 ± 0.0 ± 0.5 ± 3.3 ± 0.0 ± 3.1 ± 3.7 ± 4.9 ± 3.0 ± 3.4

ψAM¬ 74.81 70.01 93.02 80.10 46.02 84.68 71.64 93.83 63.38 52.65 57.63 85.41

± 1.7 ± 2.0 ± 1.4 ± 1.8 ± 1.9 ± 2.8 ± 0.8 ± 2.6 ± 3.4 ± 4.0 ± 3.6 ± 2.8

μψAM 82.92 79.73 94.51 94.83 47.76 82.57 70.38 97.40 66.61 68.46 57.82 86.95

± 2.2 ± 4.5 ± 1.8 ± 1.3 ± 2.8 ± 2.5 ± 0.2 ± 2.5 ± 3.8 ± 6.1 ± 3.0 ± 2.6

μψAM¬ 80.30 68.41 92.60 89.33 46.72 84.82 70.11 87.78 62.85 58.37 60.07 81.52

± 1.6 ± 2.6 ± 1.6 ± 1.4 ± 1.1 ± 3.1 ± 0.3 ± 3.4 ± 3.3 ± 5.2 ± 3.3 ± 3.1

corresponding to μAnt-Miner is shown in bold because its value (81.95) differs from the best
value (82.92) by less than the average of the two standard deviations (2.2 and 0.8).

Table 9 shows the average rank of each extension for predictive accuracy and model
size, with the best performances shown in bold. The average rank for a given algorithm g is
obtained by first computing the rank of g on each dataset individually. The individual ranks
are then averaged across all datasets to obtain the overall average rank, which will be in the
range from 1 to 12. Note that the lower the value of the rank, the better the algorithm.

It should be noted that the summary of results in Table 9 and the corresponding discus-
sion in the remainder of the paper are based on the average ranking of the algorithms for
each performance criteria (accuracy and model size), rather than the direct average values
of those two criteria. The rationale for this is as follows. Statistically speaking, the aver-
age accuracy and model size across all datasets has no clear meaning, because an average
should be computed across different values of the same random variable, but the value of the
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Table 6 Predictive accuracy results (%) for the second group of datasets. An entry is underlined if the value
obtained by the corresponding algorithm is the best among all values achieved by the 12 considered versions.
A value is shown in boldface if the difference between it and the best value is less than the average of the two
standard deviations

irs mon msh pop soy spt tae ttt vot win zoo

AM 92.93 60.99 97.09 71.74 55.89 78.59 44.65 69.73 92.69 88.13 95.48

± 3.0 ± 1.8 ± 0.3 ± 3.5 ± 3.3 ± 1.5 ± 7.7 ± 3.1 ± 1.4 ± 3.2 ± 1.5

μAM 94.66 63.78 98.20 73.95 86.86 79.12 44.15 94.50 92.76 93.17 99.08

± 1.9 ± 0.6 ± 0.4 ± 3.0 ± 8.1 ± 0.6 ± 8.7 ± 2.9 ± 1.0 ± 2.2 ± 0.6

μ−AM 92.90 63.25 98.53 72.50 86.05 79.93 40.29 90.38 94.41 90.58 98.26

± 2.1 ± 0.6 ± 0.4 ± 3.1 ± 3.0 ± 0.8 ± 7.4 ± 3.4 ± 1.9 ± 2.4 ± 0.8

AM¬ 93.60 62.38 98.13 71.86 69.73 77.74 45.41 71.87 94.34 92.56 96.63

± 3.4 ± 1.4 ± 0.4 ± 2.9 ± 4.9 ± 0.7 ± 10.0 ± 2.0 ± 1.7 ± 2.4 ± 2.2

ψAM 93.74 60.62 97.91 70.83 59.87 78.92 44.05 70.38 94.54 91.52 95.33

± 3.2 ± 1.4 ± 0.5 ± 2.6 ± 2.4 ± 1.4 ± 7.1 ± 2.4 ± 1.5 ± 3.0 ± 1.6

ψ−AM 93.98 59.71 97.82 69.33 60.37 78.87 43.14 69.88 94.50 90.09 95.00

± 3.0 ± 1.6 ± 0.4 ± 2.4 ± 3.1 ± 1.4 ± 8.2 ± 2.0 ± 1.1 ± 3.1 ± 1.0

ψ∗AM 93.19 60.07 97.41 70.17 51.36 78.75 45.10 69.98 92.29 89.34 95.75

± 3.3 ± 1.8 ± 0.4 ± 3.2 ± 2.4 ± 1.8 ± 8.5 ± 2.7 ± 1.3 ± 3.2 ± 1.4

μAM¬ 90.12 55.32 95.08 74.00 85.67 79.25 39.75 79.26 92.87 89.15 95.42

± 3.5 ± 2.0 ± 1.5 ± 3.2 ± 3.5 ± 0.7 ± 9.2 ± 3.1 ± 0.6 ± 2.6 ± 2.2

μ−AM¬ 84.41 58.50 91.21 72.92 86.38 79.24 42.06 65.26 90.69 87.30 96.01

± 4.3 ± 2.2 ± 1.7 ± 3.6 ± 4.1 ± 0.4 ± 5.3 ± 0.0 ± 3.0 ± 2.3 ± 2.3

ψAM¬ 93.51 62.85 98.02 70.31 68.33 76.15 44.77 71.96 95.16 91.72 95.89

± 3.4 ± 1.6 ± 0.3 ± 2.1 ± 4.6 ± 1.4 ± 7.6 ± 2.2 ± 1.5 ± 2.5 ± 1.5

μψAM 94.61 63.37 98.52 72.50 87.44 79.77 45.18 98.76 93.25 95.22 99.75

± 3.7 ± 0.9 ± 0.4 ± 3.8 ± 4.7 ± 1.3 ± 10.0 ± 2.7 ± 2.5 ± 2.5 ± 0.5

μψAM¬ 88.20 56.24 97.00 74.25 83.51 79.25 42.38 75.94 92.30 87.46 92.75

± 2.6 ± 2.4 ± 1.3 ± 2.8 ± 3.8 ± 1.3 ± 8.0 ± 3.3 ± 1.6 ± 3.3 ± 2.9

accuracy and model size in each dataset is a different random variable, since each dataset
has a unique probability distribution of attribute values and classes. To see the problem in
practice, one should note that the same given value of accuracy, say 70%, can be considered
a very low accuracy in some datasets (e.g., in the bcw dataset, where all algorithms have
accuracy higher than 90% in Table 5) but a very high accuracy in other datasets (e.g., in
cmc, where all algorithms have accuracy around or smaller than 45% in Table 5). Hence,
analyzing the results based on average accuracy and model size across all datasets is statis-
tically meaningless and can lead to potentially misleading results. In contrast, an analysis
based on average rankings mitigates the above problem, since a given rank obtained by an
algorithm in a given dataset can be interpreted in the same way regardless of the relative
difficulty of the dataset, so that the average ranking is a clearly interpretable and statistically
meaningful measure.
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Table 7 Model size results (number of rules) for the first group of datasets. An entry is underlined if the
value obtained by the corresponding algorithm is the best among all values achieved by the 12 considered
versions. A value is shown in boldface if the difference between it and the best value is less than the average
of the two standard deviations

aud bal bcw car cmc c-a c-g drm gls hay hrt ion

AM 9.46 12.00 6.08 12.07 8.38 7.36 8.53 7.98 5.89 4.95 7.04 5.22

± 0.1 ± 0.0 ± 0.3 ± 0.2 ± 0.3 ± 0.4 ± 0.2 ± 0.1 ± 0.2 ± 0.1 ± 0.4 ± 0.2

μAM 13.85 29.42 6.70 24.61 20.00 9.56 14.89 7.19 9.89 8.69 14.33 5.70

± 0.2 ± 1.4 ± 0.4 ± 1.5 ± 2.3 ± 0.2 ± 1.2 ± 0.1 ± 0.8 ± 0.6 ± 0.7 ± 0.5

μ−AM 13.15 25.53 4.57 20.12 10.31 4.20 2.00 7.11 9.91 9.18 11.77 4.26

± 0.2 ± 1.2 ± 0.6 ± 1.2 ± 1.3 ± 0.4 ± 0.0 ± 0.1 ± 0.7 ± 0.7 ± 0.8 ± 0.4

AM¬ 8.07 10.18 5.21 10.31 7.67 6.76 7.80 7.04 7.56 5.55 6.88 4.07

± 0.2 ± 0.2 ± 0.5 ± 0.4 ± 0.2 ± 0.1 ± 0.7 ± 0.1 ± 0.2 ± 0.2 ± 0.2 ± 2.9

ψAM 9.85 10.13 5.94 11.26 7.61 5.85 8.79 7.63 6.77 5.03 7.64 5.43

± 0.4 ± 0.2 ± 0.3 ± 0.4 ± 0.3 ± 0.2 ± 0.2 ± 0.1 ± 0.3 ± 0.2 ± 0.4 ± 0.2

ψ−AM 12.17 10.00 6.03 11.23 7.40 6.27 8.66 7.41 7.22 4.93 8.09 5.35

± 0.5 ± 0.3 ± 0.2 ± 0.3 ± 0.6 ± 0.5 ± 0.6 ± 0.2 ± 0.2 ± 0.4 ± 0.2 ± 0.3

ψ∗AM 8.71 11.30 6.19 10.60 6.85 6.16 8.73 7.34 5.98 4.93 7.17 4.94

± 0.6 ± 0.4 ± 0.3 ± 1.8 ± 0.5 ± 0.6 ± 0.5 ± 0.3 ± 0.2 ± 0.3 ± 0.5 ± 0.2

μAM¬ 12.45 22.75 6.93 18.63 15.96 6.04 11.73 9.21 8.02 5.49 11.73 5.07

± 0.3 ± 0.4 ± 0.4 ± 1.9 ± 0.4 ± 0.9 ± 1.0 ± 0.6 ± 0.7 ± 0.4 ± 0.8 ± 0.3

μ−AM¬ 11.72 6.01 4.17 2.00 3.50 3.00 2.00 8.14 7.36 3.63 8.00 3.31

± 0.2 ± 0.6 ± 0.5 ± 0.0 ± 0.4 ± 0.0 ± 0.0 ± 0.7 ± 0.3 ± 0.4 ± 0.8 ± 0.1

ψAM¬ 8.83 10.00 5.02 10.26 6.95 5.16 7.78 7.31 7.72 5.84 6.18 4.28

± 0.3 ± 0.2 ± 0.6 ± 0.4 ± 0.4 ± 0.3 ± 0.3 ± 0.2 ± 0.3 ± 0.3 ± 0.4 ± 0.2

μψAM 14.01 29.59 4.85 21.50 11.60 5.52 11.20 7.29 9.05 6.56 11.02 4.95

± 0.6 ± 1.5 ± 1.7 ± 1.1 ± 1.6 ± 0.4 ± 1.2 ± 0.6 ± 0.9 ± 0.4 ± 1.1 ± 0.4

μψAM¬ 10.78 17.58 6.03 18.28 17.63 6.02 13.03 9.45 7.13 4.77 12.86 4.66

± 0.5 ± 1.6 ± 0.7 ± 1.5 ± 1.9 ± 0.2 ± 0.8 ± 1.2 ± 0.5 ± 0.3 ± 0.6 ± 0.8

The multipheromone extension, combined with the quality contrast intensifier, generally
tends to improve the average predictive accuracy rank. For example, μAnt-Miner has a
much better accuracy rank than Ant-Miner, and μψAnt-Miner has a much better accuracy
rank than ψAnt-Miner. An exception is that μψAnt-Miner¬ has a worse accuracy rank than
ψAnt-Miner¬. However, in general, there is an accompanying relative decline in the model
size rank. For example, μAnt-Miner has a worse model size rank compared to Ant-Miner;
μψAnt-Miner has a slightly worse model size rank than ψAnt-Miner; and, μψAnt-Miner¬
has a worse size rank than ψAnt-Miner¬.

The use of the quality contrast intensifier in conjunction with the multipheromone sys-
tem (μAnt-Miner) generally improves predictive accuracy compared to the multipheromone
system without the contrast intensifier (μ−Ant-Miner), however, this often comes at the ex-
pense of increasing the model size—this is not unexpected since the quality contrast inten-
sifier favors confidence over support. Comparing μAnt-Miner to μ−Ant-Miner, we find that
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Table 8 Model size results (number of rules) for the second group of datasets. An entry is underlined if the
value obtained by the corresponding algorithm is the best among all values achieved by the 12 considered
versions. A value is shown in boldface if the difference between it and the best value is less than the average
of the two standard deviations

irs mon msh pop soy spt tae ttt vot win zoo

AM 4.90 7.36 6.53 4.08 7.65 10.93 5.40 7.30 4.33 5.02 5.95

± 0.2 ± 0.3 ± 0.4 ± 0.2 ± 0.5 ± 0.3 ± 0.8 ± 0.1 ± 0.1 ± 0.2 ± 0.2

μAM 4.05 10.07 5.31 5.17 21.25 21.50 5.34 10.88 3.64 5.10 6.00

± 0.3 ± 0.7 ± 0.1 ± 0.1 ± 0.3 ± 0.2 ± 0.5 ± 0.5 ± 0.2 ± 0.1 ± 0.0

μ−AM 4.00 4.44 5.01 2.30 20.85 21.07 4.15 10.51 3.00 4.04 6.00

± 0.3 ± 0.8 ± 0.2 ± 0.0 ± 0.3 ± 0.2 ± 0.4 ± 0.6 ± 0.1 ± 0.0 ± 0.0

AM¬ 4.06 7.91 5.02 3.68 10.74 8.87 5.00 6.27 3.99 4.83 5.04

± 0.2 ± 0.4 ± 0.1 ± 0.6 ± 1.0 ± 0.1 ± 0.8 ± 0.6 ± 0.3 ± 0.1 ± 0.3

ψAM 4.41 7.43 5.75 4.68 9.90 9.40 5.90 7.41 4.67 5.81 5.91

± 0.3 ± 0.4 ± 0.5 ± 0.4 ± 0.7 ± 1.0 ± 0.8 ± 0.2 ± 0.2 ± 0.2 ± 0.2

ψ−AM 4.55 7.33 6.20 4.49 11.72 9.33 5.00 7.26 4.40 5.01 5.98

± 0.3 ± 0.3 ± 0.2 ± 0.6 ± 0.8 ± 0.8 ± 0.7 ± 0.5 ± 0.4 ± 0.2 ± 0.2

ψ∗AM 4.83 7.46 6.70 4.51 9.13 8.56 5.06 7.47 4.03 4.68 5.56

± 0.2 ± 0.3 ± 0.3 ± 0.6 ± 0.8 ± 0.6 ± 0.8 ± 0.4 ± 0.3 ± 0.2 ± 0.3

μAM¬ 4.25 3.53 5.87 2.52 20.79 12.77 4.07 8.37 5.95 5.65 5.74

± 0.3 ± 0.5 ± 0.1 ± 0.0 ± 0.5 ± 0.4 ± 0.4 ± 0.3 ± 0.3 ± 0.1 ± 0.1

μ−AM¬ 4.00 2.00 3.84 2.00 17.52 2.00 3.06 2.00 5.52 4.00 5.00

± 0.0 ± 0.0 ± 0.3 ± 0.0 ± 0.5 ± 0.0 ± 0.1 ± 0.0 ± 0.5 ± 0.1 ± 0.0

ψAM¬ 4.60 7.53 5.25 3.80 10.65 8.22 4.04 6.58 4.11 4.60 5.50

± 0.2 ± 0.4 ± 0.4 ± 0.6 ± 0.9 ± 0.2 ± 0.6 ± 0.4 ± 0.2 ± 0.1 ± 0.2

μψAM 4.05 4.51 5.40 2.50 22.01 20.35 4.55 8.86 3.00 4.51 6.00

± 0.5 ± 0.5 ± 0.5 ± 0.2 ± 0.7 ± 0.7 ± 0.5 ± 0.7 ± 0.0 ± 0.2 ± 0.0

μψAM¬ 4.22 3.93 6.87 2.79 19.18 12.29 4.17 6.69 5.65 5.55 5.45

± 0.2 ± 0.7 ± 0.6 ± 0.5 ± 0.6 ± 1.2 ± 0.3 ± 0.3 ± 0.5 ± 0.2 ± 0.2

the accuracy rank improves, but the size rank declines. Similarly, comparing μAnt-Miner¬
to μ−Ant-Miner¬, we find that the accuracy rank improves and the size rank declines.

Using the logical negation operator generally tends to produce simpler (smaller) clas-
sification models. Comparing Ant-Miner¬ to Ant-Miner, ψAnt-Miner¬ to ψAnt-Miner,
μAnt-Miner¬ to μAnt-Miner, μ−Ant-Miner¬ to μ−Ant-Miner, and μψAnt-Miner¬ to
μψAnt-Miner, we find that the model size rank improves.

The effect of negation on predictive accuracy is less consistent and appears to depend
on whether it is used in combination with the multipheromone extension. In the absence of
multipheromone, negation tends to improve accuracy. Comparing Ant-Miner¬ to Ant-Miner
and ψAnt-Miner¬ to ψAnt-Miner, we find that the accuracy rank improves in both cases.
When used in conjunction with multipheromone, we find that negation reduces accuracy.
Comparing μAnt-Miner¬ to μAnt-Miner, μ−Ant-Miner¬ to μ−Ant-Miner, and μψAnt-
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Table 9 Average rankings of the
Ant-Miner algorithms Algorithm Predictive accuracy Model size

AM 9.3 7.0

μAM 3.3 10.0

μ−AM 5.1 6.1

AM¬ 5.5 4.7

ψAM 6.8 7.0

ψ−AM 7.4 6.7

ψ∗AM 8.9 6.0

μAM¬ 6.7 8.3

μ−AM¬ 9.6 2.7

ψAM¬ 5.7 4.5

μψAM 2.5 7.3

μψAM¬ 6.9 7.2

Miner¬ to μψAnt-Miner, we find that the improvement in model size comes at the expense
of a decline in accuracy.

The most likely explanation for why the effect of logical negation on predictive accu-
racy depends on whether it is used in combination with multipheromone is the following.
Without multipheromone, the rule quality evaluation function is Ant-Miner’s original evalu-
ation function sensitivity × specificity (2). With multipheromone, the evaluation function is
support + confidence (14). Terms with negation tend to have high support and may over-
shadow the confidence component in (14); e.g., a term such as 〈Condition NOT =
Good〉 is likely to match more cases than any specific value of Condition (this effect
is even more magnified as the number of possible values for an attribute increases).

The effect of the ψ combination on performance seems to depend on whether it is com-
bined with the use of negation. Without logical negation, the accuracy rank consistently
improves, while the model size rank does not decline—we observe this comparing ψAnt-
Miner to Ant-Miner and μψAnt-Miner to μAnt-Miner. When the ψ combination is used
in conjunction with logical negation, its effect on performance depends on whether multi-
pheromone is also employed. Comparing ψAnt-Miner¬ to Ant-Miner¬, we find that both
accuracy and model size improve slightly; however, comparing μψAnt-Miner¬ to μAnt-
Miner¬, we find that the accuracy rank declines slightly but the size rank improves.

To isolate the effect of stubborn ants alone without the personality extension, we com-
pare the performance of ψ−Ant-Miner to Ant-Miner and ψAnt-Miner to ψ∗Ant-Miner.
Comparing ψ−Ant-Miner to Ant-Miner, we find that the accuracy and size ranks both im-
prove. Comparing ψAnt-Miner to ψ∗Ant-Miner, we find that accuracy improves while the
size rank declines.

Similarly, to isolate the effect of the personality extension, we compare ψ∗Ant-Miner
to Ant-Miner and ψAnt-Miner to ψ−Ant-Miner. Comparing ψ∗Ant-Miner to Ant-Miner,
we find that the accuracy and size ranks both improve. Comparing ψAnt-Miner to ψ−Ant-
Miner, we find that accuracy improves while the model size rank declines.

Using the vocabulary of multiobjective optimization (Deb 2009), we say an algorithm h

is dominated by another algorithm g if g is not worse than h in any of the two performance
criteria (predictive accuracy and model size) and g is better than h in at least one of those
criteria. An algorithm g is said to be Pareto-optimal if it is not dominated by any other com-
peting algorithm—this means g cannot be improved upon in any one performance measure
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Fig. 1 Plot showing the average accuracy rank (x-axis) versus the average size rank (y-axis). The Pare-
to-frontier is shown as a connected line and consists of five algorithms: μψAnt-Miner, μ−Ant-Miner,
Ant-Miner¬, ψAnt-Miner¬, and μ−Ant-Miner¬

Table 10 Results of the Friedmann test with the Nemenyi post-hoc test for predictive accuracy. The entry
in row i and column j shows the symbol

.= if there is no statistically significant difference, at the 0.05
significance level, between algorithm i and algorithm j ; if the difference is significant at the 0.05 level, then
the symbol � is shown if i has a better rank than j , and the symbol � is shown if i has a worse rank than j

AM μAM μ−AM AM¬ ψAM ψ−AM ψ∗AM μAM¬ μ−AM¬ ψAM¬ μψAM μψAM¬
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.= .= .= .= .= .= �
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without sacrificing in another performance measure. The set of Pareto-optimal algorithms
are said to form a Pareto-frontier.

Figure 1 presents a visual representation of the average accuracy rank and the average
model size rank. In the figure, the Pareto-frontier is shown as a connected line and consists
of five algorithms: μψAnt-Miner, μ−Ant-Miner, Ant-Miner¬, ψAnt-Miner¬, and μ−Ant-
Miner¬.

In order to determine the statistical significance of differences in performance between
the 12 considered Ant-Miner variations, we apply a two-tailed Friedmann test with the Ne-
menyi post-hoc test, as outlined in Demsăr (2006), to the accuracy performance and to the
model size performance of the 12 Ant-Miner variations. Table 10 shows the results for pre-
dictive accuracy and uses the following notation. The entry in row i and column j shows
the symbol

.= if there is no statistically significant difference, at the 0.05 significance level,
between algorithm i and algorithm j ; if the difference is significant at the 0.05 level, then
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Table 11 Results of the Friedmann test with the Nemenyi post-hoc test for model size. The entry in row i

and column j shows the symbol
.= if there is no statistically significant difference, at the 0.05 significance

level, between algorithm i and algorithm j ; if the difference is significant at the 0.05 level, then the symbol
� is shown if i has a better rank than j , and the symbol � is shown if i has a worse rank than j

AM μAM μ−AM AM¬ ψAM ψ−AM ψ∗AM μAM¬ μ−AM¬ ψAM¬ μψAM μψAM¬
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Table 12 Rules generated by
Ant-Miner for Monk’s dataset Supp. Conf.

1 IF (Attribute-1 = 1) THEN (0) 0.25 0.71

2 Else IF (Attribute-1 = 2) THEN (0) 0.30 0.59

3 Else IF (Attribute-4 = 2) THEN (0) 0.19 0.61

4 Else IF (Attribute-4 = 3) THEN (0) 0.25 0.53

5 Else IF (Attribute-5 = 4) THEN (1) 0.13 0.57

6 Else IF (Attribute-5 = 3) THEN (0) 0.17 0.57

7 Else IF (Attribute-5 = 2) THEN (0) 0.22 0.58

8 Else (1) – –

Cov. Acc.

95.00 62.0

the symbol � is shown if i has a better rank than j , and the symbol � is shown if i has
a worse rank than j . Table 11 shows the corresponding results for model size and uses a
similar notation.

To better understand how the proposed extensions affect the output model of Ant-Miner,
Tables 12, 13, 14, and 15 show representative examples of the rule sets generated by
Ant-Miner, Ant-Miner¬, μAnt-Miner, and μ−Ant-Miner¬, respectively, for the Monk’s
Problem dataset. These outputs were generated by applying each algorithm on the same
training set/test set pair. Each table shows the generated rules, the support of each rule, the
confidence of each rule, and the total coverage of the rule set over the training set, as well
as its predictive accuracy.

10.2 Comparison with conventional rule induction algorithms

For each of the three conventional rule induction algorithms (JRip, PART, and C4.5r), Ta-
bles 16–17 show the predictive accuracy and the number of generated rules, respectively. As
discussed in Sect. 9.2, for each of the datasets with continuous attributes, for the sake of fair-
ness, each of the three algorithms was run twice: once on the original dataset, and a second
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Table 13 Rules generated by
Ant-Miner¬ for Monk’s dataset Supp. Conf.

1 IF (Attribute-1 = 1) THEN (0) 0.25 0.71

2 Else IF (Attribute-2 = 1) THEN (0) 0.23 0.65

3 Else IF (Attribute-3 = 1) THEN (1) 0.28 0.55

4 Else IF (Attribute-4 = 2) THEN (0) 0.25 0.79

5 Else IF (Attribute-2 = 2) THEN (0) 0.31 0.77

6 Else IF (Attribute-1 NOT= 3) THEN (0) 0.68 0.68

7 Else (1) – –

Cov. Acc.

100.0 67.85

Table 14 Rules generated by
μAnt-Miner for Monk’s dataset Supp. Conf.

1 IF (Attribute-1 = 1) AND

(Attribute-2 = 3) AND

(Attribute-3 = 1) AND

(Attribute-6 = 1) THEN (0) 0.04 1.00

2 ELSE IF (Attribute-2 = 1) AND

(Attribute-3 = 1) AND

(Attribute-5 = 4) AND

(Attribute-6 = 1) THEN (0) 0.02 1.00

3 ELSE IF (Attribute-1 = 3) AND

(Attribute-3 = 2) AND

(Attribute-4 = 2) AND

(Attribute-6 = 2) THEN (0) 0.03 0.92

4 ELSE IF (Attribute-1 = 1) AND

(Attribute-3 = 1) AND

(Attribute-6 = 1) THEN (0) 0.05 0.88

5 ELSE IF (Attribute-6 = 2) THEN (0) 0.32 0.58

6 ELSE IF (Attribute-6 = 1) THEN (0) 0.53 0.53

7 Else (1) – –

Cov. Acc.

100.0 75.00

Table 15 Rules generated by
μ−Ant-Miner¬ for Monk’s
dataset

Supp. Conf.

1 IF (Attribute-4 NOT= 1) THEN (0) 0.62 0.62

2 Else (1) – –

Cov. Acc.

100.0 64.28

time with prior discretization of the dataset (using the C4.5-Disc algorithm, fold by fold, as
described in Sect. 9.1). As indicated in Table 3, we use JRippd, PARTpd, and C4.5rpd to refer
to each of the three algorithms, respectively, coupled with prior discretization of the dataset.
Of course, for datasets without continuous attributes, the three variant algorithms JRippd,
PARTpd, and C4.5rpd are the same as the three standard algorithms JRip, PART, and C4.5r,
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Table 16 Predictive accuracy results (%) for the conventional rule induction algorithms. An entry is under-
lined if the value obtained by the corresponding algorithm is the best among all values achieved by the 12
considered versions. A value is shown in boldface if the difference between it and the best value is less than
the average of the two standard deviations

aud bal bcw car cmc c-a c-g drm gls hay hrt ion

JRip 71.45 75.37 93.22 87.60 50.90 83.41 70.48 93.14 65.70 72.62 54.41 86.30

± 3.9 ± 2.4 ± 2.4 ± 2.2 ± 4.8 ± 3.5 ± 1.5 ± 2.9 ± 4.9 ± 5.2 ± 3.9 ± 3.1

JRippd 94.12 48.87 82.40 72.62 92.72 65.51 55.82 88.20

± 2.6 ± 4.1 ± 4.2 ± 2.2 ± 3.4 ± 8.3 ± 5.6 ± 3.7

PART 78.20 78.49 93.23 94.56 50.89 83.52 70.07 94.31 67.42 63.61 54.91 88.25

± 3.7 ± 2.9 ± 1.4 ± 1.3 ± 3.8 ± 3.6 ± 1.6 ± 2.9 ± 3.0 ± 6.0 ± 3.1 ± 2.5

PARTpd 94.40 49.82 82.52 72.70 92.40 68.31 54.91 86.43

± 2.2 ± 4.1 ± 4.7 ± 2.8 ± 3.4 ± 7.3 ± 5.2 ± 4.2

C4.5r 83.34 81.84 92.34 94.21 53.64 82.96 70.80 95.69 65.56 75.36 56.06 86.77

± 7.9 ± 6.0 ± 3.0 ± 2.7 ± 4.1 ± 5.3 ± 2.8 ± 3.4 ± 6.8 ± 10.8 ± 9.1 ± 5.6

C4.5rpd 95.17 49.73 84.13 72.30 94.85 66.11 56.77 90.60

± 2.2 ± 4.8 ± 4.6 ± 3.9 ± 3.3 ± 11.3 ± 8.8 ± 4.8

irs mon msh pop soy spt tae ttt vot win zoo

JRip 93.93 59.80 100.00 69.33 84.05 79.26 40.78 97.54 93.66 92.59 88.70

± 2.2 ± 2.3 ± 0.0 ± 3.9 ± 0.1 ± 2.7 ± 8.1 ± 1.7 ± 1.4 ± 2.2 ± 3.7

JRippd 93.85 92.50

± 4.5 ± 3.1

PART 94.20 60.95 100.00 62.66 85.98 78.06 44.80 93.60 94.51 92.07 93.40

± 3.1 ± 3.2 ± 0.0 ± 6.9 ± 4.4 ± 2.4 ± 9.7 ± 2.1 ± 1.2 ± 3.4 ± 3.4

PARTpd 94.66 90.72

± 5.5 ± 4.3

C4.5r 94.66 55.27 100.00 61.25 85.54 81.87 45.01 98.31 95.47 93.76 100.00

± 5.3 ± 4.3 ± 0.0 ± 19.9 ± 6.3 ± 3.6 ± 10.7 ± 1.9 ± 2.8 ± 7.2 ± 0.0

C4.5rpd 94.67 91.90

± 7.6 ± 4.2

respectively, and therefore, results are shown for them in Tables 16–17 only for datasets with
continuous attributes.

The format of Tables 16–17 is similar to that of Tables 5–8. For each dataset, each table
shows the mean and standard deviation (mean

± stdv.) of the measure related to the table for each
of the used algorithms. In addition, an entry is underlined if, for the corresponding dataset,
the value obtained by the corresponding algorithm is the best (highest in accuracy or lowest
in model size). Further, a value is shown in boldface if it differs from the underlined value
by less than the average of the two standard deviations.

Table 18 shows the average accuracy ranking of the six rule induction algorithms across
the 23 datasets, with the best average ranking shown in boldface. To compute this average
ranking, we first compute the rank of each of the six algorithms for each dataset, then com-
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Table 17 Model size results for the conventional rule induction algorithms. An entry is underlined if the
value obtained by the corresponding algorithm is the best among all values achieved by the 12 considered
versions. A value is shown in boldface if the difference between it and the best value is less than the average
of the two standard deviations

aud bal bcw car cmc c-a c-g drm gls hay hrt ion

JRip 15.08 12.18 5.30 37.89 5.90 30.10 4.20 8.70 7.60 6.91 3.40 6.50

± 1.0 ± 1.3 ± 0.8 ± 2.4 ± 1.5 ± 0.6 ± 0.4 ± 0.8 ± 0.9 ± 0.6 ± 1.3 ± 1.6

JRippd 8.40 4.80 28.60 6.20 8.80 8.20 4.20 8.30

± 1.8 ± 1.6 ± 1.5 ± 2.2 ± 0.7 ± 1.4 ± 0.6 ± 1.4

PART 19.67 33.14 7.90 56.52 163.60 29.70 69.20 8.90 15.20 11.32 40.50 8.50

± 1.8 ± 1.9 ± 0.6 ± 3.4 ± 3.0 ± 1.6 ± 2.0 ± 0.5 ± 0.4 ± 1.5 ± 2.7 ± 1.3

PARTpd 10.10 94.50 25.30 82.60 7.50 13.50 52.60 12.20

± 0.8 ± 8.9 ± 2.9 ± 6.4 ± 0.5 ± 1.2 ± 2.6 ± 1.7

C4.5r 23.20 39.70 8.90 79.00 37.40 15.00 22.50 9.10 15.30 11.00 15.50 9.30

± 1.1 ± 2.6 ± 1.0 ± 2.6 ± 6.8 ± 2.0 ± 5.0 ± 0.7 ± 1.9 ± 0.7 ± 2.1 ± 1.3

C4.5rpd 11.00 25.30 11.30 35.90 9.00 13.90 15.70 15.30

± 1.7 ± 3.1 ± 2.0 ± 4.4 ± 0.8 ± 1.4 ± 2.5 ± 1.6

irs mon msh pop soy spt tae ttt vot win zoo

JRip 3.60 3.12 8.70 2.33 23.20 8.73 6.29 10.33 3.70 4.10 7.43

± 0.3 ± 0.9 ± 0.6 ± 0.5 ± 1.3 ± 1.3 ± 1.3 ± 1.4 ± 0.3 ± 0.2 ± 0.8

JRippd 3.60 6.10

± 0.3 ± 0.4

PART 4.50 37.75 11.57 8.40 29.39 34.53 16.74 38.85 6.60 4.40 7.65

± 0.8 ± 3.5 ± 1.8 ± 1.4 ± 1.4 ± 5.2 ± 2.3 ± 4.7 ± 0.4 ± 0.2 ± 0.5

PARTpd 5.00 4.40

± 0.0 ± 1.3

C4.5r 5.00 14.30 18.00 4.90 14.46 32.10 13.60 24.70 7.30 5.40 9.70

± 0.0 ± 2.6 ± 0.0 ± 1.3 ± 6.3 ± 1.8 ± 1.1 ± 4.7 ± 0.7 ± 0.5 ± 0.5

C4.5rpd 4.60 9.80

± 0.5 ± 1.0

pute the average across all datasets (thus, the average rank will range between 1 and 6).
For each of the variant algorithms JRippd, PARTpd, and C4.5rpd, respectively, we use the
results for the corresponding standard algorithm, JRip, PART, and C4.5r, respectively, for
the datasets without continuous attributes. We can see from the table that C4.5rpd has the
best accuracy rank of the evaluated conventional rule induction algorithms.

We would like to determine if there is a statistically significant difference in accuracy
between the best-performing Ant-Miner extension, identified in Table 9 to be μψAnt-Miner,
and the best-performing conventional rule induction algorithm, identified in Table 18 to be
C4.5rpd. The results for the two algorithms, μψAnt-Miner and C4.5pd, were obtained using
10-fold cross-validation using the same fold partitioning. Consequently, for a given dataset,
the results for each fold, for the two algorithms, can be considered a matched pair.
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Table 18 Accuracy ranking of
the conventional rule induction
algorithms. The best average
ranking is shown in boldface

Algorithm Predictive accuracy

JRip 3.96

JRippd 4.00

PART 3.09

PARTpd 3.17

C4.5r 2.39

C4.5rpd 2.09

Table 19 Results of applying a
two-tailed Wilcoxon
matched-pairs test (at the 0.05
significance level) to the
fold-by-fold accuracy results for
each dataset. p-values lower than
0.05 are shown in boldface

Datasets C4.5rpd μψAM p Remark

aud 83.34 82.92 0.878 No diff.

bal 81.84 79.73 0.221 No diff.

bcw 92.34 94.51 0.010 μψAM better

c-a 82.96 82.57 1.000 No diff.

car 94.21 94.83 0.386 No diff.

c-g 70.80 70.38 0.625 No diff.

cmc 53.64 47.76 0.004 C4.5r better

drm 95.69 97.40 0.008 μψAM better

gls 65.56 66.61 0.846 No diff.

hay 75.36 68.46 0.114 No diff.

hrt 56.06 58.66 0.193 No diff.

ion 86.77 86.95 0.492 No diff.

irs 94.66 94.61 0.695 No diff.

mon 55.27 63.37 0.005 μψAM better

msh 100.00 98.52 0.005 C4.5r better

pop 61.25 72.50 0.108 No diff.

soy 85.54 87.44 0.574 No diff.

spt 81.87 79.77 0.240 No diff.

tae 45.01 45.18 0.944 No diff.

ttt 98.31 98.76 0.799 No diff.

vot 95.47 95.22 0.878 No diff.

win 93.76 93.25 0.432 No diff.

zoo 100.00 99.75 0.157 No diff.

Therefore, for each individual dataset, we apply a two-tailed Wilcoxon matched-pairs
test to the results of the 10 folds for the two algorithms under consideration (μψAnt-Miner
and C4.5rpd) to determine if there is a significant difference for that dataset.

The results of these Wilcoxon tests for each of the 23 datasets are shown in Table 19. We
use the common convention that a p-value less than 0.05 indicates a statistically significant
difference, and such p-values are shown in the table in boldface. Table 19 indicates that there
is no statistically significant difference for 18 (out of 23) datasets, C4.5rpd is significantly
better in 2 datasets, and μψAnt-Miner is significantly better in 3 datasets.
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These results do not suggest that there is an overall significant difference in accuracy
between the two methods, however, for completeness, we apply a (one-tailed) sign test to
the overall results (Demšar 2006). We count 3 wins for μψAnt-Miner, 2 wins for C4.5rpd,
and 18 ties. We divide the ties evenly between the two methods, giving μψAnt-Miner 12
wins out of 23 datasets. From the binomial distribution, this corresponds to a p-value of
0.500, which confirms that there is no overall significant difference in accuracy performance
between the two methods. However, we note that in 22 out of the 23 datasets, μψAnt-Miner
produced a smaller average number of rules than C4.5rpd (as can be seen from Tables 7–8
for μψAnt-Miner and Table 17 for C4.5rpd).

11 Concluding remarks

This paper has proposed five extensions to the Ant-Miner classification rule discovery al-
gorithm and reported the results of experiments with 12 variations of Ant-Miner, involving
different combinations of those five extensions, across 23 public datasets often used as a
benchmark in classification research.

Concerning the effectiveness of those extensions, in summary, the use of the multi-
pheromone and quality contrast intensifier extensions combined together led to higher pre-
dictive accuracies in general, by comparison with several Ant-Miner variations that do not
use such extensions. The use of the stubborn ants and ants with personality extensions
combined together also led, in general, to predictive accuracies higher than or similar to
the accuracies obtained by Ant-Miner variations that do not use these extensions. On the
other hand, the logical negation extension improves the simplicity (reduces the size) of
the discovered rule set, but sometimes at the expense of some loss in predictive accu-
racy.

Broadly speaking, out of the 12 Ant-Miner variations evaluated in our experiments, the
most successful one was the variation μψAnt-Miner using four of the proposed extensions,
namely multipheromone, quality contrast intensifier, stubborn ants, and ants with person-
ality, but not using the logical negation extension. This Ant-Miner variation achieved the
best predictive accuracy overall, with an average ranking of 2.5 (out of 12 Ant-Miner vari-
ations) across all datasets, and it still had an average performance in terms of the sim-
plicity of the discovered rule set, with an average ranking of 7.3 (out of 12) across all
datasets.

We also evaluated the performance of three state-of-the-art rule induction algorithms
(Ripper, PART, and C4.5-Rules), and found C4.5-Rules to have the best accuracy perfor-
mance of the three. We then compared μψAnt-Miner to C4.5-Rules and found that there
was no statistically significant difference in accuracy between the two; however, μψAnt-
Miner produced, in almost all cases, smaller classification models than C4.5-Rules.

In future work, we would like to explore combining some of our extensions, particularly
the multipheromone and logical negation extensions, with the MMAS-based AntMiner+.
We would also like to extend the cAnt-Miner algorithm (the version of Ant-Miner that copes
with continuous attributes) with the multipheromone system.

In addition, we would like to explore controlling the balance between a rule’s coverage
and its predictive accuracy in rule quality evaluation—especially when the logical negation
operator is combined with the use of multipheromone. This can be achieved by employing
different coefficients for the support and confidence components in (14), so that we would be
able to decrease the emphasis on the rule coverage if the algorithm generates a small number
of rules with reduced predictive accuracy, or enhance the simplicity of the discovered rule
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set if a sufficient accuracy level is reached. This should allow the practitioner to have more
control over the predictive accuracy and comprehensibility levels of the output classification
model.
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