
Swarm Intell (2011) 5: 73–96
DOI 10.1007/s11721-011-0053-0

Self-organized cooperation between robotic swarms

Frederick Ducatelle · Gianni A. Di Caro ·
Carlo Pinciroli · Luca M. Gambardella

Received: 20 August 2010 / Accepted: 27 January 2011 / Published online: 18 March 2011
© Springer Science + Business Media, LLC 2011

Abstract We study self-organized cooperation between heterogeneous robotic swarms. The
robots of each swarm play distinct roles based on their different characteristics. We inves-
tigate how the use of simple local interactions between the robots of the different swarms
can let the swarms cooperate in order to solve complex tasks. We focus on an indoor nav-
igation task, in which we use a swarm of wheeled robots, called foot-bots, and a swarm of
flying robots that can attach to the ceiling, called eye-bots. The task of the foot-bots is to
move back and forth between a source and a target location. The role of the eye-bots is to
guide foot-bots: they choose positions at the ceiling and from there give local directional
instructions to foot-bots passing by. To obtain efficient paths for foot-bot navigation, eye-
bots need on the one hand to choose good positions and on the other hand learn the right
instructions to give. We investigate each of these aspects. Our solution is based on a pro-
cess of mutual adaptation, in which foot-bots execute instructions given by eye-bots, and
eye-bots observe the behavior of foot-bots to adapt their position and the instructions they
give. Our approach is inspired by pheromone mediated navigation of ants, as eye-bots serve
as stigmergic markers for foot-bot navigation. Through simulation, we show how this sys-
tem is able to find efficient paths in complex environments, and to display different kinds of
complex and scalable self-organized behaviors, such as shortest path finding and automatic
traffic spreading.
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1 Introduction

Swarm robotics is the study of robotic systems consisting of large groups of relatively small
and simple robots that interact and cooperate with each other in order to jointly solve tasks
that are outside their own individual capabilities (Dorigo and Sahin 2004). Swarm robotics
systems typically exhibit interesting properties such as high degrees of parallelism and re-
dundancy. Building on these properties, these systems can be engineered to be highly adap-
tive to changes in the environment, to be robust to unexpected events and failures, and to
show good scalability to increased problem and/or swarm size. On the downside, they may
be less resource efficient than traditional systems, and may not guarantee optimal solutions
to given problems.1 Most work in this area focuses on homogeneous, single-swarm systems.
Recently, however, more complex systems consisting of multiple heterogeneous swarms
have started to receive attention (e.g., see Pinciroli et al. 2009). The use of such heteroge-
neous systems opens possibilities to solve more complex tasks, since different skills can be
combined synergistically.

An important aspect in swarm robotics, and more in general in the broader field of
swarm intelligence (Bonabeau et al. 1999; Dorigo and Birattari 2007), is the role of self-
organization. This refers to the fact that system-level behavior emerges from local non-linear
interactions among system components and between system components and their environ-
ment. Self-organization is often observed in swarms in nature (Detrain and Deneubourg
2006), and it is a possible approach to let the robots of a swarm robotics system cooperate
to solve complex tasks. Several self-organized behaviors have been studied in the context of
homogeneous swarm robotics, such as behaviors for task allocation (Labella et al. 2004) or
for navigation (Sharpe and Webb 1999).

In this paper, we study self-organization in the context of heterogeneous swarm robotics.
We investigate systems consisting of multiple sub-swarms, where the robots of each sub-
swarm play distinct roles based on their different characteristics, and the sub-swarms need to
cooperate to jointly solve a complex task. We investigate how such cooperation can emerge
in a self-organized way from local interactions and mutual adaptation between the robots of
the different sub-swarms. This is to our knowledge the first work in this direction in the area
of heterogeneous swarm robotics.

We perform our study focusing on a problem of cooperative navigation between a source
and a target location. Such navigation tasks have been the focus of several studies in
swarm robotics and multi-agent systems (Panait and Luke 2004; Sharpe and Webb 1999;
Sugawara et al. 2004; Vaughan et al. 2000; Wodrich and Bilchev 1997). Here we consider
the following problem setup, which involves heterogeneous swarms of robots whose char-
acteristics are modeled after the robots developed in the EU-funded project Swarmanoid
(http://www.swarmanoid.org). A swarm of wheeled robots, called foot-bots, is deployed in
an indoor environment to solve a navigation task: they need to go back and forth between
a source and a target location (e.g., to transport objects). They are assisted by a swarm of
flying robots, called eye-bots, that attach to the ceiling in stationary positions in the area

1For example, a comparison between task allocation methods in Kalra and Martinoli (2006) showed how a
swarm robotics approach found less good solutions than a market-based approach when accurate information
was available.

http://www.swarmanoid.org
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between source and target. From these positions, the eye-bots locally broadcast directional
instructions to foot-bots passing by, in order to guide them toward the source or the target.
The use of a heterogeneous swarm provides flexibility. The flying eye-bots can quickly ex-
plore and cover an unknown indoor environment. Their ability to attach to the ceiling, that
is, their ability to be positioned in a different portion of the space than that used by the foot-
bots, allows them to interact with the foot-bots, guide and observe them, without physically
interfering with their movements. We investigate how the combined system of foot-bots and
eye-bots can discover and use navigable and efficient paths in cluttered environments.

As we are interested in self-organization, we focus on distributed solutions to this prob-
lem, which are based on local mutual adaptation between foot-bots and eye-bots. Our sys-
tem features minimal information exchange, and purely broadcast-based local interactions
based on short-range radio signals and simple visual cues. Such solutions are in line with
the general approach followed in swarm robotics, and support the desired system properties
of robustness, adaptivity, and scalability.

Specifically, we adopt mechanisms that are based on self-organized stigmergic navigation
processes of ants in nature (Bonabeau et al. 1999). Stigmergy refers to indirect communi-
cation that is mediated by local modification and sensing of the environment (Grassé 1959;
Dorigo et al. 2000). Stigmergic communication in ant colonies is mostly based on the use
of a chemical substance called pheromone. Foraging ants leave a trail of pheromone while
moving, marking the path they follow, which is useful to find their way back and to attract
other ants. Through this process, the ants of a colony can solve complex navigation tasks,
as pheromone locally encodes navigation information in the environment. In our work, eye-
bots play the role of pheromone for foot-bot navigation. Foot-bots move toward eye-bots
they perceive in the environment in order to get directional instructions that locally guide
their navigation toward their destination. Eye-bots, in turn, adapt their position and their
directional instructions based on the observation of foot-bots: they move to locations where
they see a lot of foot-bots, and adapt their instructions based on the directions where they
see foot-bots come from. This behavior attracts them to areas that are navigable for foot-bots
and makes them indicate directions that are often followed by foot-bots. This way, eye-bots
serve as discrete, mobile stigmergic markers for foot-bot navigation, with a role that is sim-
ilar to the one of pheromone in ant navigation. In this sense, our use of the eye-bots can be
seen as a practically feasible implementation of pheromone in swarm robotics.

In general, core elements that affect the effectiveness of a pheromone-based stigmergic
process are how pheromone is updated and when and where it is placed. Accordingly, we
consider two different decision parameters for our system: the way eye-bots learn navigation
policies to give instructions to foot-bots and the locations taken by eye-bots. We first focus
on navigation policy learning. We keep the eye-bots in fixed positions and study how they
can learn good directional instructions by using foot-bots to explore the environment. After
that, we explore how this can be combined with the ability of the eye-bots to adapt their
positions to provide a better coverage of the paths that are effectively navigable by foot-bots
and to reduce the number of needed eye-bots.

The rest of this paper is organized as follows. First, in Sect. 2, we give a detailed descrip-
tion of the robot models used in our research, and of the problem setup. Then, in Sect. 3,
we study how eye-bots can learn good directional instructions to guide foot-bots. In Sect. 4,
we investigate interesting self-organized behaviors of this system, such as the abilities to
converge onto the shortest of multiple paths and to spread over multiple paths in case of
congestion. In Sect. 5, we study how eye-bots can move and adapt their position in order
to give better instructions to the foot-bots. In Sect. 6, we describe related work. Finally, in
Sect. 7, we draw conclusions and point out directions for future research.
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2 Robot characteristics and problem setup

In this section, we first present the robot models that are used in this work, and then we
describe the problem setup. It is important to note that the applicability of the cooperative
approach we propose is not limited to the specific foot-bot and eye-bot robots we use. In
practice, any set of robots equipped with LED signaling, basic visual capabilities, and a
line-of-sight radio device, could be used. More in general, the only specific requirement for
implementing the system consists in the ability to locally broadcast directional and status
information between the mobile robots in the swarm.

2.1 The robots

The foot-bot and the eye-bot robots were developed within the EU-funded project Swar-
manoid (http://www.swarmanoid.org). Here, we describe the features of both robots that are
relevant for this work. All experiments described in this paper are done with ARGoS, the
Swarmanoid simulator, which was developed as part of the Swarmanoid project (Pinciroli
et al. 2010). It contains, among others, detailed models of the foot-bot and eye-bot robots.
Further details about both robots and about the simulator are given in the Swarmanoid web-
site.

The foot-bot (Bonani et al. 2010) is shown in Fig. 1(a). It has a diameter of about 15 cm
and it is about 20 cm high. It moves on the ground using a combination of tracks and wheels.
It has two cameras, one omni-directional to see other foot-bots and one pointing up to see
eye-bots. It also has a rotating distance scanner, which provides a 360 degrees distance
profile with a maximum range of 1.5 m, and infrared proximity sensors, which have a range
of a few centimeters and can be used as virtual bumpers. Foot-bots can communicate with
each other and with eye-bots through visual signaling, using the multi-color LED ring that is
placed around their body and the LED beacon they have centrally on top. Moreover, they can
exchange wireless messages locally at low bandwidth using an infrared range and bearing
(IrRB) system, which also provides them with relative positional information about each
other.

The eye-bot (Roberts et al. 2008, 2011) is shown in Fig. 1(b). It is a flying robot with a
carbon-fiber structure of a diameter of 50 cm and a height of 54 cm. It has four rotor systems,
each consisting of two co-axial counter-rotating brushless motors. This design provides a
total platform thrust of 3000 g. The eye-bot can attach to the ceiling using a magnet (the
design assumes the presence of a ferrous ceiling), which allows it to save energy. It has a

Fig. 1 Swarmanoid robots:
(a) the foot-bot and (b) the
eye-bot

http://www.swarmanoid.org
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Fig. 2 Example problem
scenario. The foot-bots are
deployed in the start location at
the top right of the arena. The
target location is at the bottom
left. The eye-bots take positions
against the ceiling in the area
between source and target

pan-and-tilt camera which can be pointed in any direction below or around it. Like the foot-
bot, the eye-bot can communicate with visual signals using a multi-color LED ring that is
placed all around its body, or with wireless messages using the IrRB system.

2.2 The problem setup

The eye-bots and foot-bots are placed in an indoor arena such as the one shown in Fig. 2.
The task of the foot-bots is to go back and forth between a source location (top right in
the figure) and a target location (bottom left in the figure). All eye-bots are attached to the
ceiling. One is located above the source and one above the target. The others are placed in
the area between these two in a formation that covers the area between source and target.
In the figure we show a grid, but any formation that lets eye-bots approximately cover with
their visual range the area between the source and target locations could be used. We do
not study how this initial formation of eye-bots can be obtained; any algorithm that lets
robots spread out in an area (e.g., see Payton et al. 2001) or find a target location from a
given source location (e.g., see Nouyan et al. 2008; Stirling et al. 2010) could be used. The
role of the eye-bots is to support the foot-bots in their navigation task, by giving directional
instructions to foot-bots that are within their visual range (the shadow disk under selected
eye-bots in the figure).

In this paper, we study how eye-bots can adapt the navigation instructions they give, and
the positions from which they give these instructions, so that foot-bots follow efficient paths
between source and target. No a priori knowledge about the environment is assumed. The
task is made more difficult by the presence of obstacles (e.g., the two blocks in the middle
of the arena in Fig. 2). We consider obstacles that are low enough so that eye-bots near the
ceiling can pass over them, but foot-bots on the ground need to go around them (such ob-
stacles are common in indoor human-made environments, e.g., they could be cupboards or
sofas). Because of this, the local environment of eye-bots is different from the one of foot-
bots. As a consequence, eye-bots cannot find efficient paths for foot-bot navigation by only
considering the open spaces at the ceiling level. We study how the heterogeneous swarm can
solve this task in a distributed and self-organized way through a stigmergic process of local
adaptation between foot-bots and eye-bots, with the eye-bots learning from the observation
of foot-bots’ behaviors, and the foot-bots being guided by the instructions locally broadcast
by the eye-bots. Note that one could come up with different solutions to the given problem.
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For example, we could let eye-bots process their camera images to detect obstacles on the
ground and calculate local navigable paths for foot-bots, and then possibly exchange infor-
mation with other eye-bots in order to calculate a global obstacle-free path. While such a
solution would be viable (we explored it in Reina et al. 2010), it would rely critically on the
performance of the obstacle recognition algorithm, and may not be scalable to large numbers
of eye-bots. Since the focus of this work is on the design of scalable swarm solutions and on
the study of general aspects of mutual adaptation between heterogeneous swarms, we limit
the eye-bots’ visual processing to foot-bot LED detection, and we limit communication to
local eye-bot to foot-bot instructions.

Finally, we point out that the selected experimental setup includes some simplifying as-
sumptions compared to possible real-world scenarios. First, the obstacles are assumed to be
rectangular cuboids impenetrable by foot-bots. In this way, the eye-bots can always perceive
the foot-bots underneath. However, in the presence of certain typical indoor obstacles such
as tables or chairs, an eye-bot could lose visual contact with a foot-bot that navigates under
the area of the obstacle. If the area under the obstacle is easily navigable, no major varia-
tions are expected in the algorithm’s behavior and performance: an eye-bot will still detect
foot-bots coming from and going to the area covered by the obstacle. Only if under the ob-
stacle there are different obstacles which are hard to pass by foot-bots, we do expect the
system’s performance to be affected. Another simplifying assumption in the experimental
setup regards foot-bot detection. We assume that single foot-bot LEDs are perfectly visi-
ble by eye-bots. In practice, LEDs detection is affected by perceptual noise (e.g., due to
reflections or occlusions). However, tests with the type of camera used on the eye-bots have
indicated that this is a minor problem, and it is not expected to affect the system’s perfor-
mance much. Finally, in our experimental setup we made some simplifying assumptions
regarding the characteristics of the source and target positions. We assumed that there is
always a navigable path between source and target, in order to have a measurable criterion
of performance in terms of traveling time. Moreover, we did not consider scenarios includ-
ing moving or multiple sources and targets, which could be interesting directions for future
work.

In the following Sects. 3 and 4 we first consider the case in which the eye-bots learn the
navigation policy after having taken fixed positions attached to the ceiling. In Sect. 5 we let
the eye-bots adaptively learn both the navigation policy and the positions from where they
broadcast it.

3 Stigmergic learning of navigation policies

In this section, we describe the behaviors that allow the robots of the heterogeneous swarm to
synergistically find navigable and efficient paths in cluttered, unknown, indoor environments
through stigmergic cooperation and informed exploration. We consider a situation in which
eye-bots are deployed beforehand to cover the area between source and target, as described
in Sect. 2.2, and they remain static in the locations where they were initially deployed. We
study how eye-bots can adapt the instructions they give to foot-bots in order to learn effective
navigation paths in cluttered environments.

In our approach, eye-bots maintain two stochastic navigation policies, one for the source
location and one for the target location. Each policy is used to indicate to passing foot-bots
the direction to follow to reach the corresponding end location. At the beginning, the policies
are initialized such that all directions are equally probable. In this way, eye-bots spread
foot-bots in the environment. Foot-bots give feedback about their behavior and experiences
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(in the form of visual signals), and eye-bots adapt their policies based on this feedback. This
way, eye-bots use foot-bots as sampling agents to learn about the environment and find good
policies that indicate navigable paths between source and target. The implementation of this
process is fully distributed, and there is no direct communication among eye-bots or among
foot-bots. Instead, the system’s behavior depends only on local broadcast communication
between eye-bots and foot-bots.

An interesting aspect of this process is its similarity to pheromone-based stigmergic navi-
gation in ant colonies. One can view the eye-bots as a set of discrete locations in the environ-
ment storing and updating a distributed navigation policy that is based on observed foot-bot
behavior and that in turn influences future foot-bot movements. In this sense, eye-bots form
stigmergic markers for foot-bot navigation, and their role is similar to that of pheromone in
ant foraging, as discussed in the introduction. Therefore, they could be seen as a practical
way to physically implement pheromone in swarm robotic systems.

In the rest of this section, we first describe the behavior of eye-bots and foot-bots. Then,
we evaluate the swarm behavior through simulation experiments. We show how it can find
efficient paths for foot-bot navigation through cluttered environments with varying proper-
ties and increasing numbers of foot-bots. Later, in Sect. 4, we report on other experiments
that study different emergent properties of the swarm.

3.1 Behavior description

3.1.1 General description

Eye-bots maintain and learn stochastic navigation policies that are used to guide the foot-
bots moving between the source and the target. We limit the possible navigation instructions
to 12 discrete directions: one direction every π/6 radians. Each eye-bot i maintains two
different policies: policy P t

i for the target and policy P s
i for the source. Each policy is

based on an array of 12 positive real valued numbers, expressing the preference for the
discrete navigation directions. Periodically, at discrete time steps, each eye-bot i selects two
directions from the policies, θ t

i for the target and θs
i for the source. These directions are

broadcast locally to nearby foot-bots.
Foot-bots move in the directions they receive from eye-bots. As they move, they use light

signals to make their behavior visible for eye-bots. A foot-bot simultaneously switches on
its LED beacon on top and one LED in front, to show eye-bots its movement direction. The
color of the front LED is used to indicate whether the foot-bot’s goal is the source or the
target, whereas the color of the LED beacon shows whether it is doing obstacle avoidance.

Eye-bots use their camera to observe the behavior of foot-bots in their field of view, and
based on this information they update P t

i and P s
i . They consider three aspects of a foot-bot

j ’s behavior: the foot-bot’s current goal (whether it is going to the target or the source),
the direction θ

f

j it is coming from (relative to the eye-bot’s orientation), and whether it is
performing obstacle avoidance.

In what follows, we first describe how eye-bots update their policies and use them to
direct foot-bots, and then how foot-bots behave in reaction to eye-bot instructions.

3.1.2 Updating eye-bot stochastic policies

When an eye-bot i observes a foot-bot j that is going toward the target, it assumes that
j is coming from the source, so it increases the value of policy P s

i for the direction θ
f

j

foot-bot j is coming from, and decreases the value of policy P t
i for that same direction
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(equivalent updates are made for foot-bots going toward the source). The idea is that θ
f

j is
a local sample of a feasible direction toward the source (and is hence not a direction toward
the target). The frequency with which a direction is observed is also expected to be related
to its quality, as this effect has been observed in shortest path finding experiments with
ant colonies (Goss et al. 1989). When the eye-bot observes a foot-bot performing obstacle
avoidance, it decreases the value of both policies P s

i and P t
i for the direction in which it sees

the foot-bot, assuming that direction is blocked by obstacles.
To update a policy P in a given direction θ , the eye-bot first associates θ with the closest

of its 12 discrete policy directions, and derives the corresponding index k. Then, policy
increases for the direction with index k are performed using an additive constant ca ∈ R

+,
while policy decreases are performed using a multiplicative constant cm ∈ ]0,1[, as shown
in (1). The multiplicative rule allows the system to learn fast about the presence of obstacles.
All policy entries P [k], k = 1, . . . ,12, are initialized to 1/12.

P [k] =
{

P [k] + ca in case of a policy increase,

P [k] · cm in case of a policy decrease.
(1)

3.1.3 Eye-bots giving navigation instructions to foot-bots

Eye-bots draw navigation directions from the policies using a stochastic rule balancing ex-
ploitation and exploration: with a constant probability q , the direction with highest prefer-
ence is chosen. Otherwise, a direction is chosen randomly, from a distribution proportional
to the relative preferences of directions in the policy (this corresponds to the pseudo-random-
proportional rule used in Dorigo and Gambardella (1997)).

Navigation instructions are communicated to foot-bots using a combination of visual sig-
nals with LEDs and wireless communication with the IrRB system. Each eye-bot i switches
on a red LED in front and a blue LED in the back, in order to show a reference direction θ0

i .
At regular intervals, it broadcasts θs

i and θ t
i using the IrRB system. IrRB communication

from an eye-bot i reaches only foot-bots that are located directly underneath eye-bot i.
Hence, in order to get directions, a foot-bot j moves under eye-bot i. It uses its upward
camera to read θ0

i , and extracts direction θs
i or θ t

i (depending on whether foot-bot j ’s goal is
the source or the target) from the received wireless message. Then foot-bot j interprets θs

i

or θ t
i relative to θ0

i , in order to derive a new travel direction θn
j .

3.1.4 Foot-bot navigation behavior and communication with eye-bots

Foot-bot movements are guided by the instructions locally broadcast by eye-bots. When a
foot-bot j receives a new direction θn

j from an eye-bot, it turns into that direction, and moves
forward for a distance d (set to 2 m in the experiments, enough to get out of view of the eye-
bot it received the message from) or until it arrives under a different eye-bot. If after the
distance d no eye-bot is reached, the foot-bot moves toward the closest eye-bot in its camera
view. If no eye-bot is seen, it starts a random movement: it repeatedly makes a random turn
and moves forward for a random distance (this corresponds to the random direction mobility
model (Royer et al. 2001)).

When executing eye-bot instructions, foot-bots have a preference not to return where they
come from. This preference is implemented as follows. When a foot-bot j receives from an
eye-bot i a travel direction θn

j that is forward (i.e., between −π/2 and π/2) with respect to
the travel direction received from the previous eye-bot, the foot-bot follows θn

j and does not
consider other directions received in subsequent time steps from i. If, however, the received
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travel direction θn
j is backward, the foot-bot follows θn

j but simultaneously keeps listening
for other instructions from i. If i has a strong preference for the backward direction θn

j , it
will send θn

j to the foot-bot again in the next time steps, so that the foot-bot keeps going in
that direction. However, if in one of the subsequent time steps i sends a forward direction
θn
j , the foot-bot will use that without listening to other directions, and will not turn back.

Besides this, foot-bots have an obstacle avoidance behavior, which makes them turn away
reactively from obstacles detected using infrared proximity sensors.

In order to let eye-bots learn feasible paths, foot-bots use LED signals to show them
their status and behavior. Using a LED in front and the LED beacon on top, foot-bots shows
eye-bots where they are, which direction they are coming from, θ

f

j , whether they are go-
ing toward the target or the source (indicated by the color of the front LED), and whether
they are performing obstacle avoidance (indicated by the color of the LED beacon). In cer-
tain occasions, foot-bots switch off their front LED. This way, eye-bots can see where they
are and whether they are doing obstacle avoidance (through the LED beacon, which is not
switched off), but not the direction they are coming from, θf . As a consequence, eye-bots
cannot update their policy for θf . Foot-bots do this whenever their movement direction is not
representative of the general direction they are following from source to target: when they
are performing obstacle avoidance, when they are following an instruction that sends them
backward, or when they are not following an eye-bot instruction (e.g., performing random
movement). The goal is to reduce noise in eye-bot policies.

It is important to remark that the instructions from eye-bots to foot-bots and the light-
based feedback from foot-bots to eye-bots are the only communications required in the sys-
tem. They are of broadcast type and as such do not require the use of identifiers to address
a specific robot. Moreover, since wireless communication is limited to one periodic, local
broadcast by each eye-bot, and all other communication is via light signals, the communi-
cation scheme is scalable in the number of foot-bots and eye-bots. Finally, given that there
is no communication between eye-bots, the system is robust to the presence of obstacles
obstructing communication between eye-bots. As a consequence, learned navigation paths
are entirely independent of the topology of the eye-bot environment.

3.2 Experimental evaluation

We investigate the behavior of the system through simulation tests using a range of differ-
ent scenarios. As mentioned in Sect. 2.1, all tests are done with ARGoS, the Swarmanoid
simulator. Some preliminary results have appeared in Ducatelle et al. (2010a, 2010b), with
different settings for the behavior and the experimental setup. All experiments last 3000 sec-
onds, and we carry out 30 independent runs for each test. In all plots we show the average
and the standard deviation of the observed data (unless explicitly stated otherwise). In all
tests, we use the following parameter settings: ca = 0.5, cm = 0.99, q = 0.5. These values
were chosen empirically. The system’s behavior is relatively robust to variations in the val-
ues for ca and q . It is a bit more sensitive to the value of cm, as this is a multiplicative factor.
The maximum foot-bot speed is 0.3 m/s. We investigate scenarios of different complexity
and characteristics. We focus on the ability of the system to find efficient paths through clut-
tered environments. Later, in Sect. 4, we investigate also what happens when the system is
confronted with the choice between multiple distinct paths.

The first scenario we study is the one of Fig. 2. The arena is 10 × 10 m2 (the tiles in the
floor are squares with sides of 1 m). The difficulty in this setup is caused by the presence
of two large blocks. They are connected to the walls of the arena on one side, in this way
locally forming concave obstacles for the foot-bots. Such obstacles are a challenging issue
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Fig. 3 Concave obstacles
experiments with static eye-bots
(scenario of Fig. 2): travel time
vs. number of foot-bots

in robot navigation. The results are shown in Fig. 3. We report the time from the start of the
experiment until the first foot-bot reaches the target, t1, the average time needed by foot-bots
to travel between source and target, ta , and the average time needed by foot-bots in case we
pre-program the static eye-bots to show the shortest path, ts .

At first, the entries of the eye-bot navigation policies are set uniformly, and foot-bots per-
form random exploration. Once the first foot-bot has reached the target, for its way back it
exploits updated policies. A comparison between ta and t1 shows that foot-bots need much
less time on average to travel between source and target than during the first successful
trip. This shows that the system can cooperatively learn a path from experience and guide
foot-bots between source and target in a cluttered environment. Moreover, ta is close to ts ,
showing that the approach is able to find efficient paths in this scenario with concave ob-
stacles. For increasing numbers of foot-bots, up to 15, t1 decreases. This is due to the fact
that multiple foot-bots searching in parallel explore the environment more efficiently. This
is partly because the expected minimum time to reach the target decreases due to multiple
parallel sampling, and partly because foot-bots profit from what eye-bots have learned from
the movements of other foot-bots (e.g., when an eye-bot j has reduced its policy in the di-
rection of an obstacle due to observed obstacle avoidance of a foot-bot i, other foot-bots
have less probability of being sent toward this obstacle). Finally, we also point out the effect
of congestion, which makes ta and ts increase for increasing numbers of foot-bots (for the
same reason, also t1 increases when the number of foot-bots goes above 15). We will come
back to this later, in Sect. 4.

As an illustration of the behavior of the algorithm, we show in Fig. 4 a snapshot of the
system’s state after 700 s in an experiment with 15 foot-bots. The lines above the eye-bots
show the relative preferences for the different directions in each of the two policies (Ps in
light color and Pt in dark color). The line on each foot-bot shows the way it is heading (again,
light color for those heading toward the source and dark color for those heading toward
the target). The figure shows that the policies have converged to indicate an efficient path
between source and target, and that foot-bots align on this path. Eye-bots that are situated
above either of the two obstacles never get in contact with any foot-bot, so their policies do
not affect foot-bot behavior.

Next, to verify if the observed behavior can scale up with the number of eye-bots and with
an increased complexity of the environment, we consider the more challenging scenario of
Fig. 5. In this case, the arena is 12 m wide and 15 m long, and more obstacles, both locally
concave and convex, are present. The results are shown in Fig. 6. We again report the time
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Fig. 4 Snapshot of the system’s
behavior after 700 s in an
experiment with 15 foot-bots

Fig. 5 Setup for experiments in
a larger and more complex
cluttered environment with static
eye-bots

till the first foot-bot reaches the target, t1, the average travel time between source and target,
ta , and the average travel time over the shortest path, ts . The trends are very similar to those
in the previous scenario. The value of ta is much lower than t1, indicating that the system is
able to learn from previous experiences. Also, ta is close to ts , showing that the system is able
to find efficient paths. Again, ta increases with the number of foot-bots, due to congestion.

Finally, we consider a series of scalability experiments in which we place an increasing
number of blocks at random locations in the environment. We start from an empty arena
of 10 × 10 m2, with the source location at the top right corner, and the target location at
the bottom left. We add cubic obstacles with a side of 1 m at random locations (excluding
the areas of the source and target location), and with random orientations. The number of
obstacles added goes from 0 to 15. In Fig. 7, we show an example scenario with 15 blocks.
The eye-bots are placed in a grid as before, and we use 15 foot-bots. The results are shown
in Fig. 8. We again report the time till the first foot-bot reaches the target, t1, and the average
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Fig. 6 Results of experiments
with the scenario of Fig. 5: travel
time vs. number of foot-bots

Fig. 7 Example scenario with 15
randomly placed blocks

Fig. 8 Results of experiments
with randomly placed blocks:
travel time vs. number of blocks

travel time between source and target, ta . We do not report the travel time over the best
path, as this is different for each independent test run, due to the random placement of the
obstacles. The results show that ta is always better than t1, which is an indication of the fact
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that the system is able to converge onto an efficient path. However, the difference between
the two measures decreases when the number of blocks increases. We do not show standard
deviations, as the variability between scenarios in independent runs (due to the random
placement of blocks) causes them to be very high. However, paired t-tests over the different
scenarios show that the difference between t1 and ta is statistically significant up to 10 blocks
(p-value < 0.01) and not significant above 10 blocks. This is because scenarios with high
numbers of blocks become very complex (as is illustrated in Fig. 7). Especially since we
deploy the eye-bots in a static grid, without considering the placement of the obstacles, it
can become difficult for the system to find a way through. In Sect. 5, we will show how
including eye-bot mobility can improve performance in this kind of situations.

4 Effects of self-organization: shortest path finding and traffic spreading

In this section, we describe the results of experiments in which we study the properties of
our system that are the result of self-organization. Given the similarities between our system
and the pheromone mediated navigation of ants in nature (as pointed out in Sect. 3), we
expect to observe our swarm of robots to display self-organized behaviors that are similar to
those of ant colonies. Specifically, we investigate the ability of our system to find shortest
paths (Goss et al. 1989), and to spread traffic over multiple paths in case of congestion when
the number of robots increases (Dussutour et al. 2004).

4.1 Experimental results

We consider the scenario of Fig. 9, where the source and target locations are connected by
two paths of different lengths. This scenario is reminiscent of the one used by Goss et al.
(1989) to investigate the ability of ant colonies to select shortest paths exploiting pheromone-
based stigmergic communication. Additional results and discussions regarding the behavior
of our system in a scenario directly derived from that of Goss et al. can be found in Ducatelle
et al. (2010a, 2010b).

As in Sect. 3.2, we carry out experiments of 3000 s. We gather statistics in the last 1000 s
of each experiment, when the system has had time to explore the area and reach a sub-
stantially stationary behavior in terms of path selection. We count how often foot-bots use

Fig. 9 Scenario setup for
shortest path finding experiments
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Fig. 10 Frequency histogram (over 100 test runs) of the path selection ratio ρ in the scenario of Fig. 9 for
the number of foot-bots ranging from 1 to 30. The y-axis scale of all plots ranges from 0 to 1

the longer (right) path cl , and how often the shorter (left) path, cs . We calculate the ratio
ρ = cs/(cl +cs), which is near 1 or near 0 if foot-bot traffic has converged onto, respectively,
the shorter or the longer path, and near 0.5 if they use both paths in similar proportions.

In Fig. 10, we show the histogram distribution of the ratio ρ for tests with 1 up to 30 foot-
bots. The histograms summarize the values of ρ measured in 100 test runs. On the x-axis we
show the values of ρ, discretized into five intervals; on the y-axis we show the fraction of
the 100 runs that falls into each interval. The figure shows how the distribution of ρ varies,
revealing a qualitatively different behavior of the system as the number of foot-bots grows:
the distribution first shifts from symmetric bimodal (1 to 2 foot-bots) to asymmetric bimodal
(3 to 11 foot-bots), then it gradually becomes asymmetric unimodal (12 to 20 foot-bots), and
finally it shifts to an increasingly symmetric unimodal distribution (21 to 30 foot-bots).

The symmetric bimodal distribution of robot traffic for the cases of 1 and 2 foot-bots in-
dicates that the system always focuses on one of the two available paths, without a specific
preference for either of them. This is due to the positive reinforcement of eye-bot policies
when foot-bots pass by (see Sect. 3.1.2): the path that is randomly chosen in the begin-
ning (when eye-bot policies are still uniform) is reinforced and gets selected over and over
again in future runs. This positive reinforcement remains the defining force in the system’s
behavior as the number of foot-bots increases up to about 11. The distribution of ρ shifts
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Fig. 11 Scatter plot of the path selection ratio ρ versus the average time needed by foot-bots to travel between
source and target, ta , for the tests with 10, 20 and 30 foot-bots

increasingly toward 1 though, indicating that the system prefers the shortest path. The rea-
son is that the presence of multiple foot-bots means that both paths are initially tried out in
parallel, with equal probability. As the short path is completed faster and hence more fre-
quently, it receives more reinforcement, and is therefore more likely to emerge eventually as
the preferred path for robot traffic. Both of these effects, the tendency of the system to select
one of two paths, and the preference to choose the shortest, were also observed for real ants
in Goss et al. (1989). In Ducatelle et al. (2010b), we also show how the preference for the
shortest path is proportional to the difference in length between the paths.

Starting from about 12 foot-bots, the distribution of ρ is clearly shifted toward the right,
indicating that the system prefers the short path. However, as the number of foot-bots grows,
the peak of the distribution gradually moves closer to 0.5, showing that foot-bots do not
move exclusively over the short path, but increasingly also use the other one. This comes
down to increased robot traffic spreading as the number of foot-bots grows. Such traffic
spreading has also been observed for ants in laboratory experiments with two available
paths (Dussutour et al. 2004): when the number of ants gets high, ant traffic no longer fo-
cuses on one of the paths, but rather spreads over both of them. The mechanism behind this
phenomenon is based on physical interaction between ants: at the busy intersection points
where the two paths meet, ants physically push each other onto the other path. Since robots
are embodied agents, just like ants, physical interactions also play an important role for
them. However, closer visual investigation of our system revealed that physical pushing be-
tween robots only plays a minor role in the observed traffic spreading behavior. A much
more important role is played by the negative reinforcement of eye-bot policies. As de-
scribed in Sect. 3.1.2, eye-bots decrease their policies in the direction of locations where
they observe foot-bots perform obstacle avoidance. While this mechanism was in the first
place developed to let the system learn about the presence of obstacles, it also leads to traffic
spreading: in case of congestion, foot-bots on the busiest path perform obstacle avoidance
when they meet each other, causing a reduction in the preference for this path.

Automatic traffic spreading in case of congestion can give important advantages in terms
of system performance. In Fig. 11, we plot the ratio ρ/ta , for the tests with 10, 20 and 30
foot-bots. The plot for 10 robots shows how focusing on the short path allows the robots to
travel faster between source and target. However, as the number of foot-bots increases, travel
times grow for the cases where ρ is equal to 1, due to increased congestion on the short
path. It then becomes advantageous to also send some robots over the long path (ρ < 1).
The figures show how automatic traffic spreading allows the system to shift foot-bot traffic
in order to limit the growth of ta .
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4.2 Discussion

We have shown in this section that the system of cooperative adaptation between eye-bots
and foot-bots shows interesting properties of self-organization. The robotic swarm is able
to find the shortest among two paths, and is able to spread traffic in case of congestion.
These properties allow it to improve system performance in terms of robot travel times.
Both properties are also found back in the pheromone mediated navigation behavior of ants
in nature, which was the main source of inspiration for our system.

However, it needs to be pointed out that the system has some limitations. First of all,
the correct placement of the eye-bots plays a role. We have assumed an even spreading of
a sufficient number of eye-bots, so as to cover all possible paths. However, if eye-bots are
badly placed or not enough eye-bots are available, the system might not be able to obtain
efficient navigation. We will address this issue in Sect. 5. Another shortcoming of the system
is the limited feedback available for policy learning. The eye-bots only receive implicit
feedback, provided by the observation of foot-bot behavior. As a consequence, the system
does not always find the short path, and has difficulties to change its policies once it has
converged to the long path (as shown in Fig. 10). Also, traffic spreading does not always
focus on the best ratio between short and long path, and a spreading in which robots use
one path to go and the other to return cannot be found by the system. These issues could
be solved by including explicit feedback; e.g., foot-bots could communicate information to
eye-bots about the travel times they have experienced. Such a system is outside the scope of
this paper, in which we focus on the study of the capabilities of a simple system of mutual
adaptation, but will be studied in future work.

5 Mobile stigmergic markers: combining the learning of policies and positions

In the previous section we discussed the possible shortcomings deriving from the use of an
approach in which the stigmergic markers are maintained fixed at certain locations. Here, we
exploit the flying capabilities of the eye-bots, and enhance our system by giving eye-bots the
ability to learn and adapt over time the positions from where they provide guidance to foot-
bots. As before, we use a simple approach of implicit feedback based on the observation of
other robots.

The general idea is that eye-bots move in the direction of locations where they often see
foot-bots. This brings them to areas that are navigable for foot-bots. Also, it brings them
to paths that are often traveled by foot-bots. This is reminiscent of the way pheromone is
placed primarily in places that are most often visited by ants. This way, eye-bots define stig-
mergic communication between foot-bots not only through their policies, but also through
the positions they choose. Apart from that, eye-bots also make moves to avoid getting too
close to each other.

In what follows, we first describe robot behaviors, next we explain the working of the
system through an example, and then we report experimental results obtained in simulation.
The work presented here is based on the system described in Ducatelle et al. (2010c).

5.1 Eye-bot movement behavior

Robot behaviors remain unchanged with respect to what was described in Sect. 3, with the
exception of the addition of a behavioral component that aims at learning good relative
positions for eye-bots. Each eye-bot adapts its position in two different ways. The first is
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in the direction of observed foot-bots (to indicate good feasible paths for foot-bots). The
second is away from other eye-bots (to avoid collisions). Both movements are based on
observations accumulated over time. The eye-bots indicating the source and target locations
never move. These behaviors are described in the following.

When an eye-bot i observes a foot-bot j , it uses its camera observation and altitude
measurement to calculate the distance rij and angle αij to j in i’s horizontal plane. We
indicate by uij = (cos(αij ), sin(αij )) the unit vector in the direction of j with respect to i’s
frame of reference (given by its reference direction θ0

i ). Using uij and rij , eye-bot i updates
a two-dimensional vector pi , which it uses to direct its movements. After observing j , pi is
updated as follows:

pi =
{

pi + (1 − rij )uij if rij < rf ,

pi + (1 − rf )uij otherwise.
(2)

In this equation, rf ∈ [0,1] is a threshold. The formula gives larger updates for nearby
foot-bots, in proportion to their distance, and smaller, fixed updates for foot-bots distant
more than rf . Updating pi for each foot-bot observation, eye-bot i calculates over time
an aggregate of the directions in which it sees foot-bots. If foot-bots are observed more in
one direction than in others, pi grows in that direction. Once the magnitude of pi reaches
a threshold value cp , |pi | > cp , i makes a fixed small move in the direction indicated by
pi . Then, pi is re-initialized to (0,0). The lower weight given to faraway foot-bots in (2),
due to the constant rf , is meant to improve stability: faraway foot-bots are observed in a
given direction for longer than nearby foot-bots, which would make pi grow too fast in their
direction.

When i observes another eye-bot k nearby, it uses the IrRB system to derive the dis-
tance rik and angle αik to k. uik = (− cos(αik),− sin(αik)) is i’s unit vector in the direction
opposite to k. In this case, the same movement vector pi is updated:

pi + e(rik)uik, (3)

where e(rik) is a staircase function that serves to scale uik in different ways according to
how far is eye-bot k. The closer k, the larger the scaling. This update makes pi grow when
two eye-bots get close to each other, so that eye-bots tend to spread out and avoid collisions.

5.2 An example of eye-bot movement behavior

The eye-bots’ behavior attracts them to paths that are navigable for foot-bots and that receive
a lot of foot-bot traffic. The way this leads to efficient paths is illustrated in the example
of Fig. 12. Figure 12(a) shows the initial setup of the example scenario. For illustrative
purposes, we do not cover the arena with eye-bots, but only place a chain of eye-bots around
the outside of the arena. Figure 12(b) shows a snapshot after 700 s of simulation. The eye-
bot policies have converged to indicate the path along the chain of eye-bots between source
and target, and the eye-bots have adapted their positions to follow the straight path between
source and target.

The shape of the eye-bots chain shown in Fig. 12(b) is typical for the formations we
obtain from the eye-bot behavior: in open space, they tend to take position on a straight
line, while in the presence of obstacles, they move toward the edges and corners of these
obstacles. The ability to find straight paths relies on the tendency of an eye-bot to line up
with neighbors that send foot-bots to it. An eye-bot that is not lined up with its neighbors
observes foot-bots more in one direction than another, and moves in that direction. If we



90 Swarm Intell (2011) 5: 73–96

Fig. 12 An example of the working of the adaptive navigation system with eye-bot movements: (a) initial
setup, (b) snapshot after 700 s

consider, for example, the eye-bot in the top left of Fig. 12(a), foot-bots enter its field of view
on the right (coming from the source) or at the bottom (coming from the target). Therefore,
the eye-bot observes more foot-bots toward its bottom-right than toward its top-left half.
Its movement vector pi grows toward the bottom-right, and eventually the eye-bot moves in
that direction. This process goes on continuously and lets eye-bots form straight lines. When
obstacles are present, the straight line will wrap around them. As foot-bots cannot enter the
obstacles, eye-bots will not position themselves above obstacles, but rather along edges and
corners, where they see foot-bots.

5.3 Experimental results

In this section, we perform some experiments to investigate the capabilities of the adaptive
navigation system with mobile eye-bots. We revisit the scenarios used with static eye-bots
in Sect. 3.2, and study what we gain when using mobile eye-bots.

First, we consider the scenarios of Figs. 2 and 5. In an initial set of tests, we found that the
performance is more or less the same when using mobile eye-bots versus using static eye-
bots. This is because the initial positioning of eye-bots in a grid covering the whole arena is
already a good configuration for these scenarios, and eye-bot mobility cannot improve much.
Therefore, we consider a slightly different setup, where eye-bots are placed in a randomized
grid formation: we divide the surface of the arena into a number of cells, like a grid, and
place one eye-bot in each cell, giving it a uniformly random location in the cell. Moreover,
we vary the total number of cells (and hence the number of eye-bots). We show results using
static and dynamic eye-bots in Fig. 13 (for the arena of Fig. 2) and Fig. 14 (for the arena
of Fig. 5). We do not show standard deviations, as the differences in scenarios (initial eye-
bot placements) lead to high variability. However, paired t-tests show that the difference
between the two approaches is statistically significant in each data point. As can be seen
from the data, the approach with dynamic eye-bots leads to better performance in each
setup. Especially when the number of eye-bots is low, adapting their positions dynamically
helps to improve performance. When the number of eye-bots is high, the improvement due
to adapting eye-bot positions becomes smaller, but still resulting in a positive effect.
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Fig. 13 Results of experiments
with randomly placed eye-bots in
the scenario of Fig. 2: average
foot-bot travel time (ta ) vs.
number of eye-bots

Fig. 14 Results of experiments
with randomly placed eye-bots in
the scenario of Fig. 5: average
foot-bot travel time (ta ) vs.
number of eye-bots

Fig. 15 Results of experiments
with randomly placed blocks as
in the scenario of Fig. 7: average
foot-bot travel time (ta ) vs.
number of blocks

Next, we study the behavior of our system in the scenarios with randomly placed blocks
of Sect. 3.2 (see Fig. 7). The results are shown in Fig. 15 (the data points for static eye-bots
are the same of Fig. 8). The eye-bots start in the same regular grid as for the tests with
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static eye-bots. Due to the random placement of the obstacles, this regular grid formation
is not always good; i.e., it is possible that eye-bots are not placed above feasible paths. In
our previous tests, we found that the system with static eye-bots had difficulties in the most
complex scenarios, with high numbers of obstacles. The results of Fig. 15 show that for
scenarios with few obstacles, the systems with static and dynamic eye-bots work more or less
equally well. However, as the number of randomly placed obstacles increases, the approach
with mobile eye-bots becomes increasingly better. This indicates that eye-bot mobility can
help deal with complex environments.

In general, the results in this section show that using the proposed eye-bot movement
behavior can help when the initial placement of eye-bots does not show a good fit with
respect to the placement of obstacles in the environment, either because the eye-bots are
not well placed, or because the scenario has high complexity. Also, it can help deal with
situations where not enough eye-bots are available.

6 Related work

Our work is in the first place related to research on heterogeneous swarm robotics. Swarm
robotics research has mainly focused on homogeneous systems. Nevertheless, there is some
work using heterogeneous swarm robots to study flocking (Momen et al. 2007; Möslinger
et al. 2009), where different, although similar, robots flock together like birds of distinct
species might do; task allocation (Momen and Sharkey 2009), where robots with different
capabilities are assigned to different tasks; and recruitment (Pinciroli et al. 2009), where
robots of one type recruit robots of a different type. However, we know of no work where
swarms of different robot types mutually adapt to jointly self-organize to solve a task.

In terms of the task to be solved, our work is related to research on self-organized for-
aging in swarm robotics, where robots need to optimize a path to follow back and forth be-
tween a source and a target (Fujisawa et al. 2008; Garnier et al. 2007; Panait and Luke 2004;
Sharpe and Webb 1999; Sugawara et al. 2004; Vaughan et al. 2000; Wodrich and Bilchev
1997). All this work is inspired by pheromone guided foraging as observed in ant colonies.
All of these works are concerned with shortest path finding, but none of them studies traffic
spreading. A difficult issue in these systems is how to implement pheromone. Existing solu-
tions often require some ad hoc engineering of the environment, or are practically infeasible
or unrealistic, and do not scale well. Some authors use light projections (Garnier et al. 2007;
Sugawara et al. 2004) (a central computer follows robot movements with an overhead cam-
era, calculates pheromone trails, and communicates them to the robots using light projec-
tions) or a map in a shared memory (Vaughan et al. 2000), assuming that the issue of
pheromone implementation will be solved differently somehow in the future. Other au-
thors experiment with chemical pheromone traces, e.g. using alcohol (Fujisawa et al. 2008;
Sharpe and Webb 1999). In our system, one swarm of robots functions as pheromone for
another swarm, in the form of mobile stigmergic markers. This can be considered a prac-
tically feasible implementation of pheromone. One approach that is somehow reminiscent
of ours is pheromone robotics (Payton et al. 2001), which also stores pheromone on board
of robots. However, this work only uses homogeneous swarms. The use of heterogeneous
swarms gives more flexibility in pheromone deployment, and lets us avoid physical interfer-
ence between the robots storing pheromone and those using it. We also note that the latter
work did not study self-organized behaviors such as shortest path finding or traffic spreading.
Finally, also related are studies that use physical robot presence to play the role of stigmergic
signals, for example by forming a chain to connect a source and a target location (Werger
and Matarić 1996; Nouyan et al. 2008, 2009).
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From an application point of view, we point out the relation with existing work on sensor
network guided navigation (Batalin et al. 2004; O’Hara and Balch 2004; O’Hara et al. 2006;
Vigorito 2007). In these works, communicating sensor nodes are placed in the environment
and let cooperate to guide a single mobile robot to a target. Some works consider the use of
robots to place the sensors, or even to play the role of sensors (Batalin and Sukhatme 2004;
Corke et al. 2005; Sit et al. 2007; Witkowski et al. 2008). All these works are somehow sim-
ilar to our approach, in which eye-bots could be considered equivalent to the sensor nodes.
An important difference with our work is that most of these systems use network communi-
cation between sensor nodes to define robot navigation paths, assuming a one-to-one relation
between communication links and navigable path segments. This gives problems whenever
the environment for communication is not identical to that for navigation. In our work, we
precisely deal with this issue, allowing the entities that give navigational instructions (sen-
sor nodes or eye-bots) to be placed in a different environment from the robots that follow
the navigational instructions. This provides flexibility for the deployment of the swarms and
helps to avoid physical interference between them. Finally, we point out that these works do
not study self-organized shortest path finding (although (Vigorito 2007) considers the pos-
sibility of learning) or automatic traffic spreading, nor do they normally consider the case
of on-line adaptation of node positions to improve navigation (an exception is (Sit et al.
2007), where the sensor network is augmented with mobile robots to improve network node
density).

7 Conclusions

In this work we investigated how cooperation can emerge in a self-organized way from lo-
cal interactions and mutual adaptation between the robots of two heterogeneous swarms.
We considered the case in which the robots of each sub-swarm play distinct roles based
on their different characteristics, and the sub-swarms need to cooperate to jointly solve a
navigation task. To the best of our knowledge this is the first work addressing the issue of
self-organized cooperation in heterogeneous swarm robotics. We focused on a typical indoor
navigation task, consisting in moving back and forth between two assigned locations in a
cluttered, unknown, environment. We performed a simulation study based on robot mod-
els derived from the foot-bot and eye-bot robots being developed in the EU-funded project
Swarmanoid. We considered a scenario in which the task of the foot-bots is to move back
and forth between a source and a target location, while the role of the eye-bots is to guide
the foot-bots: they assume stationary positions attached to the ceiling and give local direc-
tional instructions to foot-bots passing by. The cooperation between the two sub-swarms is
made difficult by the presence of obstacles on the floor. Because of this, the local environ-
ment for eye-bots is different than for foot-bots, and paths that are feasible for the eye-bots
might not be for the foot-bots. Therefore, eye-bots need to rely on some form of feedback
from the foot-bots. Our solution is based on a process of mutual adaptation: the foot-bots
move toward the eye-bots they perceive and follow the navigation instructions that the eye-
bots locally broadcast, while the eye-bots observe foot-bot behaviors in order to learn an
effective navigation policy for the foot-bots and to adapt their positions. Interaction and
cooperation among the robots are based on a fully distributed approach, on minimal infor-
mation exchange, and purely broadcast-based local communications relying on short-range
radio signals and simple visual cues. In this way, our self-organized system can support
scalability and adaptivity, which are desired properties of a swarm system.
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The behavior of the system was designed after the mechanisms at the roots of the self-
organized stigmergic navigation processes of ants in nature. Eye-bots serve as discrete, mo-
bile stigmergic markers for foot-bot navigation, with a role that is similar to the one of
pheromone in ant navigation. Our use of the eye-bots can be seen as a practically feasible
implementation of pheromone in swarm robotics.

We investigated the effect of learning the navigation policy and adapting eye-bots po-
sitions in separate sets of experiments, and we showed the complementarity and the inte-
gration of these two core aspects characterizing a stigmergy-based approach. In the exper-
iments, we considered cluttered environments with different characteristics and we scaled
the number of used eye-bots and foot-bots. In a first set of experiments, in which the po-
sitions of the eye-bots were kept fixed, we have shown the ability of the heterogeneous
system to effectively discover and use navigable paths for the foot-bots. We have shown
that the system can increasingly profit from the presence of multiple distributed robots to
cooperatively learn over time navigation paths also in highly cluttered environments. In a
second set of tests, we have shown how the self-organizing cooperation between the two
sub-swarms allows to effectively find shortest paths in an experimental setting reminiscent
of early experiments conducted on foraging ant colonies. We have also shown that, in the
case of congestion due to the presence of a growing number of robots, the system shows
different behavioral phases, adaptively moving from the use of a single shortest path to the
use of multiple paths, conveniently spreading robot traffic over the available, less congested,
paths. Finally, we have shown that the integration of learning navigation policies and eye-
bot positions can improve system’s performance. This is particularly true when a limited
number of eye-bots is available to cover the area between the two end locations, or when
a relatively large number of obstacles is present in the environment. In both these cases,
the ability of the eye-bots to adaptively learn the best locations from where to broadcast
navigation instructions can result in improved navigation efficiency.

In this work, we focused on the mutual adaption between two sub-swarms of robots re-
lying on relatively simple/basic mechanisms for communications and interactions. This ap-
proach makes the proposed stigmergy-based solution portable across different robotic plat-
forms, and it fully supports system scalability and robustness. Moreover, it allows to directly
investigate the effect of self-organization in swarm robotics under conditions mimicking
those of swarm systems in nature. However, in general terms, relying on relatively unso-
phisticated mechanisms for communication and interaction might have some shortcomings
in terms of system performance. In this respect, one of the main weaknesses of the system
is the limited feedback provided by foot-bots for policy learning. The eye-bots only receive
an implicit feedback, provided by their observation of foot-bots behavior. This results in the
limitations discussed in Sect. 4.2, which could be avoided by including explicit feedback;
e.g., foot-bots could explicitly communicate information to eye-bots about the travel times
they have experienced (and/or also about the status of congestion along the traveled path, or
the number of obstacles encountered). However, in order to take these measures, and consis-
tently propagate and process them across the eye-bot network, additional complexity needs
to be added to the design and the working of the system. These issues will be investigated
in future work.
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