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Abstract When a complex mission must be undertaken, it often can be simplified by divid-
ing it into a sequence of smaller subtasks, which are then completed in order. This strategy
implicitly requires a system to recognize the completion of each subtask and make the deci-
sion to begin work on the next one. Decentralized multiple-robot systems can tackle many
tasks, but their behavior is typified by continuous responses to stimuli. Task sequencing,
however, demands a controlled, self-induced phase change in collective behavior—working
on one task one moment and then on a different task the next—which is nontrivial for an
emergent system. The main contribution of this study is a collective decision-making frame-
work for decentralized multiple-robot systems that enables such a system to cooperatively
decide that a current task has been completed and thus focus its attention on the next one
in a sequence using only anonymous local communication. Central to the framework is the
use of consensus, whereby task sequencing is delayed until a prespecified proportion of a
system’s robots agree that the current task is complete, reducing the likelihood of prema-
ture decisions. Two low-cost consensus estimation strategies are presented, both of which
are practical for the extremely simple robots that are expected to compose large decentral-
ized systems. Experiments in simulation and with real robots demonstrate that the proposed
decision-making framework performs as predicted. Although the specific application of col-
lective decision-making in this work is the cooperative task-sequencing problem, the pro-
posed decision-making framework potentially has many additional applications.
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1 Introduction

System-level decision-making is an important cognitive operation for multiple-robot sys-
tems and swarms. A multiple-robot system (MRS) is a robotic team in which the individual
robots cooperate to complete shared tasks. A particularly important class of MRS is the de-
centralized MRS (dec-MRS), in which none of the robots have authority over any of their
teammates, and thus all of the robots are considered equally important. Dec-MRS are at-
tractive because it is believed that they will be more immune to hazardous environments
and less affected by individual robot failures than centralized or hierarchical systems (Cao
et al. 1997). This is because none of the robots in a dec-MRS are critically important, so
the failure of any particular robot would be unlikely to bring about the failure of an en-
tire system. Furthermore, because the local, parallel operation of a decentralized system is
less affected by the computational and communicative bottlenecks common in centralized
systems, algorithms designed for them are likely to scale well to large robotic populations.

Dec-MRS design usually takes place at the microscopic level of the individual robots,
since it is their local peer-to-peer interactions that give rise to a system’s externally observed
macroscopic behavior. However, when a system is deployed to carry out a mission, it is
more convenient to consider the system macroscopically, as a single intelligent entity, as this
point of view simplifies mission specification. Algorithms that enable designers to abstract
away from the microscopic point of view provide the illusion of centralized control while
simultaneously retaining the flexibility and resilience of the decentralized architecture.

This work focuses on decision-making by entire dec-MRS, an operation whereby a sys-
tem cooperatively and unanimously makes an intelligent decision. Specifically, we describe
decisions in which a single proposed alternative to the status quo is collectively accepted
or rejected. Such unary decisions have many applications, including the sequencing of col-
lective behaviors by dec-MRS. Decision-making, however, is a fundamental operation for
autonomous systems, so the framework presented by this work is likely to find many uses
beyond the specific focus of this study. Unlike previous decentralized collective decision-
making strategies, the proposed approach yields collective decisions that are both unanimous
and episodic (i.e., they have clear beginnings and endings), and the results of the collective
decisions are known by the individual robots. Together, these characteristics mean that a
dec-MRS could make a decision and then move on with each member of the system able to
predicate its future actions on the collective decision’s outcome.

1.1 The task-sequencing problem

Stepping a decentralized multiple-robot system through a sequence of tasks, although
conceptually similar to sequencing multiple behavior-based controllers (Brooks 1991;
Kube and Zhang 1996) in a single robot, is much more complicated. Not only must the
individual robots step through a sequence of subtask controllers, but each robot also must
synchronize its own task transitions with those of its teammates. If the robots simply were
to base their individual decisions to continue working on the current task or begin the next
one on the responses of their own unique sensors, they would be unlikely to synchronously
transition through their collective mission’s sequence of tasks. On the contrary, some ro-
bots would likely begin subsequent tasks prematurely, whereas others would continue to
work on tasks for too long. Without some form of system-level coordination, the robots of
a dec-MRS will tend to spread themselves across a sequence of tasks. Not only would this
reduce the speed with which each task was completed, but also might lead to destructive in-
terference between robots working on different tasks in a sequence, degrading the system’s
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performance or leading to a complete mission failure (Parker and Zhang 2008). Instead, a
dec-MRS should make a collective decision to begin work on its next task, and it is this kind
of collective decision-making that we address in this work.

This work addresses the task-sequencing problem in decentralized systems by proposing
a general-purpose decision-making framework that enables a dec-MRS to make collective
decisions through the use of consensus estimation and quorum testing. Section 2 discusses
related work. The framework is described in Sect. 3, as is the experimental domain used
in this study: site preparation by blind bulldozing. A central component of our approach
is the use of consensus to guide collective decisions, and Sect. 4 outlines two low-cost
consensus estimation strategies. Experiments applying our decision-making framework to
an instance of the task-sequencing problem are described in Sect. 5, and results of this
empirical investigation are presented in Sects. 5.1 and 5.2. The work then closes with some
summarizing conclusions in Sect. 6.

2 Related work

The decision-making framework presented in this work is based on the behaviors of honey-
bees and Temnothorax ants. Such biological inspiration has a long history in MRS research,
dating back to Grey Walter’s robotic tortoises (Holland 1997). More recently, the collec-
tive decision-making of natural social systems has inspired decision-making strategies for
dec-MRS. Wessnitzer and Melhuish (2003) presented a biologically inspired behavior that
enabled a swarm of robots to decide which of a pair of targets to collectively pursue. Garnier
et al. (2005) applied cockroach social aggregation to dec-MRS. The robots were able to col-
lectively choose a site at which to gather that was large enough to shelter all of them using
simple local behaviors. Schmickl et al. (2009) described a different aggregation strategy in-
spired by honeybee behavior. Our previous works also have investigated collective decision-
making in dec-MRS, focusing on decisions in which the single best alternative from a set
of candidates is unanimously selected by an entire system (Parker and Zhang 2004, 2009).
Those works, like the current one, were inspired by honeybee and Temnothorax ant behav-
iors. What sets our proposed decision-making behavior apart from those of other works
is that the group decisions do not continually evolve but eventually terminate. Furthermore,
following the completion of a collective decision using our proposed framework, each of the
robots knows the decision’s outcome, and thus it can be used to synchronize their individual
behaviors with the collective state of their system.

Collective decision-making in large systems is constrained very differently than in
smaller systems in which centralized/hierarchical architectures sometimes can be more prac-
tical. Decision-making by smaller MRS is exemplified by play selection in robotic soccer
teams. In this high-speed non-episodic robotic team sport, it is important for the robots to
agree on the particular play to implement (Bowling et al. 2004; Vlassis et al. 2004). The
small sizes of robotic soccer teams allows them to employ centralized control strategies
or high-bandwidth communication to optimize play selection. Computational and commu-
nicative bottlenecks make such approaches impractical for system-level decision-making in
large dec-MRS. As a result, it is unlikely that advances made in the coordination of small
MRS could be applied to the kinds of systems upon which we focus in this work.

Dynamic role-assignment within a dec-MRS is another form of collective decision-
making that can be applied to large systems. Here, the collective task can be decomposed
into a parallel set of simpler roles rather than a sequence. For example, the robots of Ijspeert
et al. (2001) cooperatively removed long pegs from the floor holes of their environment.
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Because the pegs were too long for a single robot to remove, another robot would have to
provide a peg’s initial lifter with assistance. The pulling and assisting roles were not sta-
tically assigned but adopted by the robots in response to the local needs of the collective
task. A more sophisticated implementation of dynamic role assignment was described by
Chaimowicz et al. (2002) in a collective foraging/transport domain. In that work, a team of
robots searched their environment for objects to return to a goal area. However, similarly
to the work of Ijspeert et al. (2001), the objects were too massive for an individual robot to
move. By decomposing the individual robots’ controllers into a series of subcontrollers that
were switched on and off in response to their own sensory perception and messages from
teammates, the system was able to tailor the allocation of robots to roles in response to the
current state of the collective task. Nouyan et al. demonstrated that a system composed of
many identical (i.e., homogeneous) robots could distribute its individual members amongst
several heterogeneous roles to complete a complex collective mission (Nouyan et al. 2009).
This work is particularly noteworthy as, like ours, their results were demonstrated with real
robots. Other works have presented market-based strategies (e.g., auctions) to dynamically
allocate roles amongst the robots (or other kinds of agents) in a cooperative system (Dias
et al. 2006). Roles are “bought” and “sold” by the individual robots, who bid on them. Ro-
bots that have purchased a particular role, allocating a portion of their finite resources to its
execution, are free to auction it off to other robots that can complete it at a lower cost. As
a result, a matching of robots to roles will evolve that maximizes the performance of the
individuals while minimizing their costs with respect to the economic rules set out by the
system’s designer.

The matching of robots to roles that emerges out of a market-based strategy is a kind
of collective decision, but the individual robots cannot predicate their own decisions on the
result of the entire collective decision since they have only incomplete knowledge of it.
Furthermore, the available tasks are executed simultaneously in the task allocation domain.
In this work, collective decisions serve to synchronize the execution of a particular task (or
set thereof) by an entire dec-MRS. In the task-sequencing domain, tasks are executed one
at a time, and all of the robots work on the same task simultaneously. Of course, it need not
be a question of task sequencing or task allocation, since both are important and might be
present in a single system. Tasks in a mission’s sequence could be decomposed further into
several parallel roles, necessitating dynamic role assignment to allocate the individual robots
appropriately. In this scenario, a collective task transition would signal to the individual
robots a change in the set of tasks to dynamically allocate.

3 Collective unary decision-making applied to the task-sequencing problem

Our focus in this work is on collective decisions to reject aspects of the status quo, decisions
that we refer to as unary decisions. Collective unary decision-making allows the individual
robots of a dec-MRS to update their shared knowledge in a coordinated fashion, enabling
them to proceed as a cohesive entity in a dynamic environment. For example, rejecting the
belief that the Sun is above the horizon might trigger the individual robots to begin nighttime
operations. Rejecting the hypothesis that the current group task is incomplete signals that
work on the next task should commence. The decision-making behavior proposed by this
work makes collective unary decisions by pooling many robots’ opinions, resulting in a
more stable collective behavior.

All inter-robot communication by the individual robots over the course of a collective
unary decision is assumed to be very short range, and we further assume that the robots are
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Fig. 1 The cooperative task sequencing framework proposed by this paper inserts two additional behavioral
states between each task in a sequence that has been assigned to a dec-MRS: deliberating and committed.
When a robot working on the current task decides that the task is complete, it enters the deliberating state.
Deliberating robots query their teammates to estimate the proportion of them that also believe that the current
task is complete. Once a deliberating robot believes that a quorum of its teammates agree that the current
task is complete, it enters the committed state. Committed robots instruct encountered teammates to enter the
committed state. Once a committed robot no longer can find uncommitted teammates, it exits the committed
state and begins to work on the next task

free to wander about amongst each other. By using very local transmissions, the commu-
nication graph of a dec-MRS will be very disconnected, with single-hop peer-to-peer links
between random pairs of robots stochastically being made and then broken as robots en-
counter each other and then move apart. In the unlikely event that a robot simultaneously
receives messages from two or more of its teammates, we assume that the messages col-
lide destructively and that neither will be heard, although assumptions about the nature of
message collisions do not significantly alter the overall behavior of the proposed decision-
making framework.

Unary decisions are made with the addition of two robot behavioral states: deliberating
and committed. A decision begins once one of the robots in a dec-MRS decides that some
component of the shared state of its system is no longer true. In the context of collective
task-sequencing, the piece of shared knowledge in question is the assumption that the current
task is incomplete. Refer to Fig. 1. As the individual robots work on the current task, they
continually estimate its progress. As individual robots come to believe that the current task
is complete,1 they enter the deliberating state. Because each robot monitors the progress
of the current task independently, they will tend to enter the deliberating state at different
times.

Deliberating robots anonymously communicate with the teammates that they encounter
one-by-one, asking them whether or not they also believe that the current task is complete.
Queried robots respond to these messages either affirmatively or negatively. Each deliberat-
ing robot uses the responses to its queries to estimate the proportion of its teammates that
also agree that the current task is complete. Once a deliberating robot believes that a quorum
of its teammates believe that the current task is complete, it will enter the second of the two
decision-making states: committed.2

1That is, they adopt the belief that the collective assumption that the current task is not yet complete (the
status quo) is false.
2Note that a second quorum test could be employed to make the transition from deliberation to commitment
more robust, by preventing a deliberating robot from committing until it believes both that a quorum of its
teammates agrees that the current task is complete and that a quorum of its deliberating teammates agree that
the first quorum has been satisfied. Such compound quorum testing is discussed in greater detail in Parker
(2009).
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Committed robots do not query their teammates for their opinions like deliberating ro-
bots, since they are committed to the belief that the current task indeed is complete and
that work on the next task should commence. Their goal is to ensure that all of their team-
mates know that the current task is complete and commit before they themselves begin to
work on the next one. They do this by sending commit-messages to each teammate that
they encounter. Robots still working on the current task or in the deliberating state that re-
ceive a commit-message immediately enter the committed state and respond to the commit-
message with an acknowledgement. Robots already in the committed state ignore altogether
any commit-messages that they receive. Once one robot enters the committed state, commit-
messages will flood system-wide via peer-to-peer spatial gossip (Kempe et al. 2001).

As more and more robots enter the committed state, fewer acknowledgements to commit-
messages will be sent, ceasing altogether once all of the robots have committed. Committed
robots measure the amount of time that elapses from the reception of one acknowledgement
to the next. A committed robot will exit the committed state and begin to work on the next
task once the time since it last received an acknowledgement to a commit-message exceeds a
preset limit called the commitment timeout, denoted TC . The commitment phase of a unary
decision serves to synchronize a dec-MRS’s transition from the current task to the next,
whereas the consensus estimation and quorum testing of the deliberation phase delay the
collective transition until a sufficiently large proportion of the robots agree that the current
task is complete.

This decentralized approach to collective decision-making, like our earlier work on best-
of-N decision-making described in Parker and Zhang (2009), was inspired by the colony-
level decision-making of Temnothorax ants and honeybees (Franks et al. 2002). However, in
a unary decision, there are no alternatives to compare as there are in a best-of-N scenario.
Instead, the goal is to collectively decide “whether or not” a proposed alternative to the status
quo should be adopted by the entire system, an operation that necessitates a modification to
the deliberating behavior. We also more closely examine the performance of the commitment
phase of a collective decision in this work than we did in our previous studies.

3.1 Site preparation by blind bulldozing

Site preparation, a collective task described by Huntsberger et al. (2000), consists of clearing
an area of debris to allow other operations to take place. Because it is a relatively coarse task,
site preparation work should end before work on subsequent tasks commences. Blind bull-
dozing (Franks and Deneubourg 1997) is a site preparation algorithm for dec-MRS that was
inspired by the nest construction behavior of Temnothorax ants (Parker and Zhang 2006).
An initial clearing is expanded by a dec-MRS as the individual robots repeatedly push back
the debris surrounding the clearing, reorienting to a random heading whenever the force of
debris on their plows exceeds a preset threshold or a teammate is encountered. Each push
against the debris at the edge of the clearing expands the prepared site somewhat, and the
subsequent random reorientations of the robots uniformly distribute their plowing around
the clearing’s perimeter. As a result, the cleared area swells, adopting a circular shape.

The task is complete once the prepared site achieves a desired size, after which blind
bulldozing should cease and subsequent work begin to prevent cross-task interference. Site
preparation and secondary construction thus are mutually exclusive tasks (Parker and Zhang
2008). The individual blind bulldozing robots can estimate the size of the cleared area by
measuring the distance that they travel between each reorientation (Parker and Zhang 2006).
For example, if a robot can travel a given distance in a straight line without encountering an
obstacle, it can conclude that the diameter of the site is at least as long as its path. However,
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the robots’ paths are random, and so each one will tend to conclude that the site preparation
task is complete at a different time.3 A collective decision to halt site preparation and begin
work on the subsequent task would solve this problem.

4 Consensus estimation and quorum testing

Central to our proposed task sequencing framework is the use of consensus4 as a social
cue to guide collective task transitions. The individual deliberating robots estimate the pro-
portion of their teammates that agree that the current task is complete and compare their
estimates to a threshold called the quorum. Without knowing how many teammates it has, a
robot cannot include its own opinion in its estimate of consensus (Parker and Zhang 2009).
Consequently, the deliberating robots compute estimates of what we call the apparent con-
sensus. This is defined by (1), in which Ca is the apparent consensus, N is the population
size of the dec-MRS, and Nd is the number of robots that believe that the current task is
complete:

Ca ≡ Nd − 1

N − 1
. (1)

Note that apparent consensus is strictly less than true consensus, Ct ≡ Nd

N
, when Nd < N ,

but that both quantities vary over the same range, [0,100%]. In general, the difference be-
tween Ca and Ct is insignificant for all but the smallest systems. Deliberating robots test
quorum by computing estimates of Ca and then comparing their estimates to the quorum
threshold, Q ∈ [0,100%]. Each individual robot’s estimate of apparent consensus is inde-
pendent of its teammates’ estimates. We use C̃a to denote a particular estimate of apparent
consensus in order to differentiate it from Ca as defined by (1). The remainder of this section
describes two low-cost strategies to compute C̃a using anonymous local communication and
closes with a comparison of the two strategies with respect to their performance. A precursor
to analog consensus estimation as presented here was described in Parker and Zhang (2008),
whereas digital consensus estimation was introduced in Parker and Zhang (2009).

Quorum testing to regulate collective behavior is very common in natural decentral-
ized systems, and so its use by behavior-based robots makes good sense. Honeybees and
at least two species of Temnothorax ant employ quorum tests to guide the collective deci-
sions that their colonies use to select a new nest site (Franks et al. 2002; Pratt 2005; Seeley
and Visscher 2003). Indeed, it is the reported behavior of these insects that inspired our
decision-making research detailed in Parker (2009). Even simple bacteria are now known
to employ quorum tests to regulate their collective behaviors (Miller and Bassler 2001;
Waters and Bassler 2005). In Temnothorax ants, it appears that the individual ants estimate
consensus via their rate of encounter with their teammates (Pratt 2005), and it is this strat-
egy that we propose here with some modifications to better suit it to the somewhat different
strengths and weaknesses of the simple mobile robots that often compose dec-MRS. Bio-
logically inspired quorum testing has also been applied to ad-hoc networking problems by
Peysakhov et al. (2006).

3Factors such as wheel slippage and irregularities in the shape of the cleared area introduce additional sources
of error into the individual robots’ evaluation of task completion.
4Note that our use of the term consensus differs somewhat from the manner in which it is used in works such
as Olfati-Saber et al. (2007).
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4.1 Well-stirred systems

It is assumed in this work that a dec-MRS implementing the proposed decision-making
framework will be well-stirred, meaning that the individual robots that compose the system
will be equally likely to encounter any of their teammates as they wander about and that
each teammate encounter is a statistically independent event (Parker and Zhang 2009). This
is a simplifying assumption made for the purpose of analysis. Strictly speaking, most real
systems are not perfectly well-stirred, as the probability of a robot encountering a particular
teammate in the near future will be higher if that teammate recently was encountered by the
robot. However, the interactions of a poorly stirred system can be made more uniformly ran-
dom by instructing the individual robots to ignore teammates that are encountered too soon
after the time of their last teammate encounter, thereby allowing more time for the robots
to relocate between those encounters that are counted. In other situations, a system might
be well-stirred only at a specific location, such as a rendezvous point to and from which the
robots asynchronously arrive and depart. The goal location in the collective foraging domain
of Goldberg and Matarić (1997) is one example of such a rendezvous point.

Many natural decentralized systems stir themselves. This is observed in many social in-
sect species, and stirring is commonplace in schools of fish (Krause and Ruxton 2002).
Stirring can even take place in more rigid formations. For example, consider the familiar
vee of geese migrating for the winter. Flying in a vee increases the energy efficiency of the
group, but the lead goose encounters greater drag than its followers. In response, the geese
take turns flying in the lead position, thereby sharing the load (Anderson and Franks 2001;
Badgerow 1988). As a result, the formation stirs itself. The noise injected into a group by
this stirring could be used to power cognitive operations, including the collective decision-
making described in this paper. The use of physical movement to power collective cognitive
operations makes particularly good sense for swarms of very small robots, for which Camp-
bell et al. (2005) showed that moving can be more energy-efficient than explicit computa-
tion.

4.2 Analog consensus estimation

The first of the two consensus estimation strategies described in this work is referred to as
analog consensus estimation (ACE). An analog implementation might at first seem quaint or
outdated, but note that analog circuitry often can be made more compact and energy efficient
than computationally equivalent digital circuitry, enabling even the simplest and smallest of
robots (e.g., micro- or nano-robots) to take advantage of the contributions of this study.

We begin with a pair of exponentially decaying signals maintained within each robot:
q(t) = q(to)e

−t/τ and k(t) = k(to)e
−t/τ . These signals are referred to respectively as the

quorum index and kin index. Unperturbed, both will decay to zero at a rate proportional to
their instantaneous amplitudes and their shared time constant τ . If they are incremented at
a regular interval by some constant, Δ, then their amplitudes will adopt the form of saw-
toothed waves. The amplitudes of the indices will approach equilibria, the peak values of
which depend only on the decay rate of the indices, the amount by which the indices are
incremented, and the frequency with which these increments are made. Because k(t) and
q(t) decay at the same rate and are incremented by the same amount, they can differ only
in response to the rates at which they are incremented. As implied by its name, a robot will
increment its kin index every time that it encounters a teammate (i.e., one of its kin). The
quorum index is incremented only by deliberating robots, and only after they encounter a
teammate that agrees that the current task is complete.



Swarm Intell (2010) 4: 199–220 207

Fig. 2 This figure illustrates the principle behind analog consensus estimation (ACE). Each robot maintains
its own quorum and kin index, both of which decay exponentially at the same rate. A robot increments its
kin index every time that a teammate is encountered. The quorum index is incremented only by deliberating
robots, after they have encountered a teammate that agrees that the current task is complete. The ratio of the
peak equilibria of a robot’s quorum and kin indices approximates the apparent consensus

Assume that each robot in a well-stirred dec-MRS will encounter one of its teammates
every T0 seconds on average. Each robot therefore will increment its kin index approxi-
mately every T0 seconds. Each deliberating robot will tend to encounter an agreeing team-
mate every T0/Ca seconds on average, and so they will increment their quorum indices at
this rate. It was shown in Parker (2009) that the peak equilibria of the quorum and kin indices
(qequ and kequ, respectively) are given by

qequ = Δ

1 − e
−T0
τCa

≈ Δ
τCa

T0
,

(2)

kequ = Δ

1 − e
−T0

τ

≈ Δ
τ

T0
.

The ratio of a deliberating robot’s two indices’ peak values at equilibria, qequ
kequ

, approxi-
mates the apparent consensus, Ca . In Fig. 2, the quorum index is incremented half as often
as the kin index; its peak value at equilibrium is approximately 50% of that of the latter.
The accuracies of the rightmost terms of (2) increase with τ , making the deliberating ro-
bots’ estimates of Ca more precise as the indices are made to decay more slowly relative to
the average rate at which teammates are encountered. The price of the improved accuracy
achieved by increasing τ is that indices will take longer to reach their equilibria, increas-
ing the amount of time required to compute C̃a . Note that Fig. 2 is intended to illustrate
the principle behind ACE. A robot’s two indices would not in practice be incremented at
perfectly regular intervals. In practice, the kin index should be allowed to reach equilibrium
before beginning to collect teammate opinions. Otherwise, if the first teammate encountered
by a robot also was deliberating, the robot’s first estimate of apparent consensus would be
100%,5 guaranteeing commitment regardless of the actual value Ca .

5Both k(t) and q(t) would have been zero prior to the reception of the opinion, and then both would be

incremented by Δ, yielding C̃a = Δ
Δ

= 100%.
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All that remains for a deliberating robot to test quorum is to compare q(t)

k(t)
to the quorum

threshold, Q. Equivalently, the quorum index could be compared to the kin index scaled by
the quorum threshold (e.g., to test a quorum of 50%, q(t) would be compared to 0.5k(t)),
an operation easily implemented in an analog system with a single operational amplifier
in the form of a comparator. q(t) and k(t) could be represented by the voltages across the
capacitors in a pair of identical RC circuits, and the voltages across the capacitors could
be increased by Δ following appropriate teammate encounters by connecting them to a
constant current source for a fixed period of time. The scaling of k(t) by the quorum index is
trivial, requiring only a resistive voltage divider. The elegant simplicity of analog consensus
estimation and quorum testing is within the means of any mobile robot.

4.3 Digital consensus estimation

The second approach to consensus estimation described in this work is referred to as digital
consensus estimation (DCE). The advantage of this strategy, beyond the fact that it is more
readily implemented using a digital controller than ACE, is that the estimate of apparent
consensus computed by it is not affected by variations in the rates at which the robots en-
counter each other. As was the case for ACE, the digital approach requires the individual
deliberating robots to gather opinions from their teammates regarding the state of the cur-
rent task (complete or not) as they are randomly encountered. Each teammate’s opinion is
treated as a binary variable: 1 if a queried teammate agrees that the current task is complete
(e.g., it is in the deliberating or a later state), or 0 if the queried teammate is still working
on the current task. Rather than being used to increment decaying indices, the opinions are
inserted into a circular queue of size n, overwriting the oldest one. Each deliberating robot
computes its own estimate of apparent consensus as the mean of the n values stored in its
queue.

For example, consider a robot estimating Ca using the n = 5 most recently acquired
teammate opinions. If the collected teammate opinions (from most to least recent) were 1,
0, 1, 0, 0, then the robot would compute C̃a = 2

5 = 40%. If the next teammate that this
hypothetical robot were to encounter believed that the current group task was complete,
a 1 would be inserted into the queue, and the new estimate of apparent consensus would
be 60%. More teammate opinions will be averaged to estimate apparent consensus as n is
increased, and thus the precision of C̃a will increase with n. However, increasing n also
means that older opinions will be included in each estimate of Ca for longer, so each robot’s
C̃a will tend to lag the actual value of apparent consensus at any given moment. As in ACE,
each deliberating robot independently tests quorum by comparing its own C̃a to the quorum
threshold. A robot will conclude that quorum has been satisfied once it computes C̃a ≥ Q.
The probability of a particular robot concluding that quorum has been satisfied based on n

teammate opinions randomly sampled with replacement (uniformly distributed across all of
the opinion-gathering robot’s teammates) is given by

P (C̃a ≥ Q) =
n∑

i=�Q·n�

[(
n

i

)
(Ca)

i(1 − Ca)
n−i

]
. (3)

Refer to Parker and Zhang (2009) for a derivation of (3). It is important to remember that
each of the Nd deliberating robots simultaneously estimates apparent consensus and tests
quorum. The commitment phase of a collective decision will commence as soon as one of
the deliberating robots computes C̃a ≥ Q. The likelihood of commitment occurring after
each of the Nd robots collects n teammate opinions depends both on the population size of a
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Fig. 3 Given the
parameterization of a quorum test
(n and Q), the likelihood of at
least one robot committing
increases with the population of a
dec-MRS. This occurs because
more robots estimate apparent
consensus simultaneously as N

increases (for a given Ca ), and
thus the probability of at least
one robot overestimating Ca will
increase. As this plot illustrates,
n = 15 and Q = 80% would be a
good parameterization to test a
quorum of 40%, since the
probability of commitment is low
for Ca < 40%

dec-MRS (N ) and the apparent consensus. This overall probability of commitment is given
by

P (≥ 1 robot commits) = 1 −
∏

i∈{Nd }

(
1 − P (C̃ai

≥ Q)
)

= 1 −
[

1 −
n∑

i=�Q·n�

(
n

i

)
(Ca)

i(1 − Ca)
n−i

](�Ca(N−1)	+1)

, (4)

where {Nd} is the set of all deliberating robots and C̃ai
is the ith deliberating robot’s estimate

of apparent consensus (note that the various C̃ai
are independent and identically distributed

random variables).
The relationship between the probability of commitment, N , and Ca is illustrated graph-

ically by Fig. 3 for fixed values of n and Q. As N is increased, the probability of the com-
mitment phase beginning at a lower value of apparent consensus increases. In this figure,
n = 15 and Q = 80%, yet the probability of commitment begins to rise once Ca exceeds ap-
proximately 40%. Increasing n or Q increases the effective quorum employed by a system
(e.g., the apparent consensus at which a positive quorum test would be likely).

Given Fig. 3, an external observer of the deliberation phase likely would conclude that
the quorum tested by the robots was less than the quorum threshold, Q. However, the dis-
crepancy between the apparent consensus at which commitment becomes likely and the
actual value of the quorum threshold is not a failure of the approach to consensus estimation
and quorum testing presented by this work. Estimates of apparent consensus will always be
somewhat noisy, with each of the Nd robots overestimating Ca approximately half of the
time. The variance of a particular estimate of Ca inversely depends on n. Because a quo-
rum test is a thresholding operation that induces a phase change in dec-MRS behavior (the
beginning of the commitment phase of a collective decision), Q should be chosen to take
the expected noise in C̃a into account. Therefore Q should be made larger than the desired
quorum to make premature commitment sufficiently unlikely.

4.4 Performance of analog and digital consensus estimation

Sections 4.2 and 4.3 describe two different approaches to the measurement of apparent con-
sensus, ACE and DCE. In this section, we show that the two approaches are largely equiva-
lent in their performance when speed and accuracy are considered. The TeamBots simulator
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Fig. 4 This graph plots the tradeoff between the accuracy with which the robots estimate Ca and the time
required by them to compute their estimates for different values of n or τ (increasing from left to right). This
data was gathered from 40 simulations of a 15-robot system in which the apparent consensus was constant
at 50%. DCE and ACE exhibit nearly the same accuracy for a given measurement time. Increasing n or τ

increases the accuracy of C̃a , but these increases incur the cost of an increasingly greater measurement time

(TeamBots 2005) was used to investigate the relationship between the time required for
and the accuracy of apparent consensus estimation by robots in a dec-MRS. The simulation
consisted of 15 robots randomly wandering about a circular environment. The deliberating
population was fixed at eight robots (i.e., Nd = 8), thereby setting Ca = 50%. Each of the
deliberating robots’ initial estimates of apparent consensus was 0%,6 and these evolved as
opinions were collected one-by-one from the teammates that were encountered. The sim-
ulation was repeated using several different values of n (for DCE) and τ (for ACE), and
each configuration was repeated 40 times. For each configuration, the time required for each
deliberating robot to estimate Ca and the accuracies of the robots’ estimates were computed.
Measurement time for each deliberating robot was computed as the amount of time required
for its estimate of apparent consensus to reach the actual value of Ca = 50%. The average
accuracy of a robot’s estimate of apparent consensus in the period after it first reached Ca

was computed as

C̃a Accuracy =
(

1 − 1

m

m∑

i=1

|C̃a[i] − 0.5|
0.5

)
× 100%, (5)

where C̃a[i] is the ith estimate of apparent consensus computed by the robot over this pe-
riod. (5) assumes that the robot collected m teammate opinions in the period following the
initial rise of its estimate of apparent consensus to 50%.7 The average accuracy of apparent
consensus estimation is plotted against the mean measurement time in Fig. 4 for both ACE
and DCE.

The relationship between consensus estimation time and accuracy essentially is the same
for ACE and DCE. The accuracy of C̃a rises rapidly with τ and n when these parameters
are small. However, each increase in consensus estimation accuracy comes at the cost of

6When Ca was estimated via ACE, the robots were allowed to wander about for an initial period during
which Nd = 0 to allow their kin indices to equilibrate.
7One estimate of apparent consensus is computed following the reception of each teammate opinion.
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an increasingly longer measurement time. There also appears to be an equivalence between
ACE and DCE with regards to n and τ . The accuracy/time-cost tradeoff of ACE with a given
value of τ is very close to that of DCE when n = τ/TE , where TE is the median period of
time between consecutive teammate encounters by a robot. This equivalence makes sense,
since a robot would be able to collect n teammate opinions in τ/TE seconds on average, and
so both approaches will tend to base their estimates of Ca on an equal number of teammate
opinions when equivalently calibrated in this way. As a result, the conclusions drawn from
Fig. 3 regarding the effective quorum for a given parameterization of consensus estimation
is likely to apply equally well to both ACE and DCE. For more information, refer to Parker
(2009).

5 Experiments

A series of experiments were conducted both in simulation and using real robots to examine
the performance of the proposed decision-making framework using blind bulldozing as the
“current task.” The experimental environments (both simulated and real) were convex arenas
of a fixed size that resemble a blind bulldozing domain as the task neared its completion, the
point at which its size would have ceased to expand. This static environment was chosen for
our experimental trials because in it the robots’ movements resemble those of a well-stirred
system.

The simulated environment was a circular arena, 12 meters in diameter, whereas the
physical environment was hexagonal with sides 2.75 meters in length. A photograph of the
physical environment containing the robots is shown in Fig. 5(a). Throughout each collective
decision, the robots moved according to the blind bulldozing behavior described earlier,
driving in straight lines until they encountered an obstacle (either the arena’s wall or another
robot), at which point they would reorient to a new heading before resuming straight-line
motion.

In the simulations, implemented using TeamBots, a robot (circular hulls, 0.5 meters in
diameter) working on the blind bulldozing task would enter the deliberating state once it had
traveled a path 11 meters in length without reorienting since its previous reorientation. The
real robots (circular hulls, 0.3 meters in diameter) transitioned to the deliberating state after
they had followed a 4-meter straightline path without reorienting. Note that our goal was not
to duplicate the conditions of the simulated trials in physical domain. Indeed, the differences
in the number of robots involved, their sizes relative to their environment, and the lengths of
paths that initiate deliberation should alter the rate at which apparent consensus evolves, but
not the overall success of the collective decisions. Both ACE and DCE were implemented
in the simulated trials with n, τ , and Q varied over several values. The commitment time-
out also was varied in a set of simulations to elucidate its impact on the unanimity of the
commitment phase. Only DCE was used in the physical trials, since, as it has been and will
again be seen, ACE and DCE behave similarly.

Teammate opinions were gathered and commitment spread by the individual robots dur-
ing each decision using explicit local communication. Deliberating robots would send the ro-
bots that they encountered query-messages, the responses to which are called vote-messages:
“yes” if the queried robot agreed that the current task was complete and “no” if it did not.
Committed robots sent every robot that they encountered a commit-message, which would
induce the recipient to enter the committed state unless it already had exited the collective
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Fig. 5 The experimental environment for the trials involving real robots was a hexagonal enclosure with
sides 2.75 meters long. It is shown here (left) during a trial using 11 robots. The environment is static, convex
form mimics a blind bulldozing domain near the completion of the task, when the expansion of the cleared
area would have nearly halted. The simulated experiments were carried out in a similar environment, except
that it was circular and contained 15 robots. The robots used to carry out the physical experiments described
in this paper were custom built for our study of collective decision-making. Each robot (right) used its 360◦
bumper sensor to detect encounters with its teammates. At the rear of each robot is its 802.11B wireless
interface, used for inter-robot communication

decision.8 If an uncommitted robot (i.e., a robot in the current task or deliberating states) re-
ceived a commit-message, it also would respond with an acknowledgment. Robots that had
exited a decision (i.e., in the next task state) ignored any messages that they might receive.

Very local broadcast communication was used by the simulated robots, so they needed to
be very close (0.05 meters, measured hull-to-hull) to each other to be able to communicate.
Despite being anonymous and omnidirectional, the transmissions’ extremely short range
meant that most messages were received by a single teammate. Simultaneous responses
to a message were discarded, simulating destructive collisions. The real robots, however,
were restricted to using 802.11B wireless transceivers to communicate with each other. The
range of the robots’ radios was global in our experimental environment. Local communica-
tion therefore had to be simulated. Conceivably, a centralized server could have been used to
coordinate the individual robots’ communication so that a robot actually would communi-
cate with the teammate that it had encountered, but this approach was deemed unnecessarily
complex. Instead, each robot’s program included a list of its teammates’ IP addresses. When
a robot encountered a teammate and communication was appropriate, it would select a team-
mate’s IP at random (uniformly distributed across all of its teammates) and send it a message
using TCP. The recipient of the message would respond, if necessary, to the original sender.
As a result, two robots might not be in close proximity to each other when they communi-
cated. Nonetheless, the overall pattern of the robots’ random peer-to-peer exchanges (Parker
and Zhang 2007) closely resembled those of the simulated robots that used short-range local
communication.

8In a general task-sequencing context, it cannot be assumed that the robots that have begun to work on the
next task will remain at the site of the current task, and thus in general they would not be present to respond
to their deliberating or committed teammates’ messages.
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5.1 Simulation results

In this section, the results of the simulated experiments are presented and discussed. The
real robots’ performance is presented in Sect. 5.2.

5.1.1 Consensus at time of commitment

It is important to restate that the individual robots do not know the actual value of the ap-
parent consensus, Ca . Each deliberating robot’s behavior is predicated upon C̃a , its estimate
of it. Even though the individual deliberating robots compare their estimates of apparent
consensus to the quorum threshold Q, the actual apparent consensus that coincides with the
beginning of the commitment phase will tend to be less than Q. The consensus that coin-
cides with the beginning of commitment is called the observed quorum to distinguish it from
the value of the quorum threshold.

Figures 6 and 7 plot the observed quorum as a function of the quorum threshold for
ACE and DCE, respectively, for several different values of τ and n. Regardless of the value
of these parameters, increasing the quorum threshold increases the observed quorum. This
demonstrates that the desired consensus necessary to trigger a collective task transition can

Fig. 6 The observed quorum for
a collective decision is the true
consensus that coincides with the
onset of commitment. Increasing
the quorum threshold or the value
of τ increases the observed
quorum of a collective decision
when ACE is used to estimate the
apparent consensus

Fig. 7 This figure demonstrates
that DCE is as effective as ACE
(see Fig. 6). Not only does
observed quorum increase with
the quorum threshold, but also
with n, the number of opinions
used by each robot to
compute C̃a . Increasing the
observed quorum has the effect
of predicating a collective task
transition on a greater number of
independent assessments of the
current task’s state, making the
collective decision more reliable
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be varied via the quorum threshold. The slopes of the regression lines are less than unity,
however. One explanation for this discrepancy is a subtle difference between the quorum
threshold and the observed quorum. The individual robots test quorum by comparing their
estimates of apparent consensus to the quorum threshold, whereas the observed quorum
measured in terms of true consensus. The relationship between true and apparent consensus
is given by

Ct = Ca(N − 1) + 1

N
. (6)

If the robots’ estimates of apparent consensus were 100% accurate and could be com-
puted instantaneously, Figs. 6 and 7 would be straight lines from (0, 6.7%)9 to (100%,
100%). This clearly is not the case, and thus some other phenomenon is at work.

It is the interaction of the noise in the robots’ estimates of apparent consensus, the time
required by a robot to collect enough teammate opinions to compute its estimate of apparent
consensus, and the rate at which the robots transition from blind bulldozing to the deliberat-
ing state that explains the appearances of Figs. 6 and 7.

The median period of time separating a robot’s encounters with teammates in the simu-
lations was TE = 21.5 seconds. Each deliberating robot was able to query for a teammate
opinion approximately every TE seconds, regardless of the state of a decision. However,
the rate at which robots entered the deliberating state was proportional to the number of
robots still working on the current task, and thus the size of the deliberating population in
our experimental domain prior to the onset of commitment is given by

Nd(t) = N
(
1 − e−t/τd

)
. (7)

τd for the simulated experiments (N = 15) was found to be 951.2 seconds using a least
squares fit. Nd grew most quickly early in each trial, and so C̃a as computed by deliberating
robots early in the trials tended to be less than Ca , lagging it significantly and thus elevat-
ing the observed quorum for low quorum thresholds. Increasing the accuracy of apparent
consensus estimation by increasing τ or n makes this effect more pronounced. As a trial
progressed, however, the growth of the deliberating population slowed relative to TE , but
more robots simultaneously were testing quorum. It therefore became more likely that the
first robot to commit would do so prematurely due to noise in its estimate of Ca . There-
fore, the relationship between the observed quorum and the quorum threshold illustrated
by Figs. 6 and 7 is precisely what should be expected. Once the growth of the deliberating
population had slowed relative to TE , the observed quorum reported by Figs. 6 and 7 agrees
with our earlier analysis. For example, a system composed of robots that compute C̃a using
n = 15 and tests quorum by comparing C̃a to Q = 80% will be 50% likely to commit once
the observed quorum reaches 63% (determined by interpolating the N = 15 curve of Fig. 3
and mapping to true consensus via 6). The mean observed quorum in the n = 15, Q = 80%
trial was 67.9 ± 8.5%, which agrees well with its predicted value.

5.1.2 Deliberation time

Increasing the quorum threshold, and as a result the observed quorum of a given collective
decision, increases the consensus necessary within a dec-MRS to induce commitment, but it

9When Q = 0, the commitment phase will begin as soon as one of the robots detects the completion of the

current task and enters the deliberating state. Therefore, the observed quorum for Q = 0 will be 1
N

× 100%,
which is 6.7% for a 15-robot system.
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Fig. 8 Increasing the quorum
threshold increases the observed
quorum (Figs. 6 and 7), which
delays the commitment phase
until more robots agree that the
current task is complete.
Increasing the accuracy of
consensus estimation (by
increasing τ when using ACE)
also increases the length of the
deliberation phase because it
makes the robots less likely to
commit prematurely

Fig. 9 As was the case for the
ACE (see Fig. 8), deliberation
time when using DCE increases
with the quorum threshold, and
the rate at which it increases with
n (analogously to τ in ACE). The
curves corresponding to the
different values of n share a
common y-intercept because
quorum always is satisfied when
Q = 0, regardless of the accuracy
with which the individual robots
estimate apparent consensus

also increases the amount of time that a system will take to deliberate prior to commitment.
The deliberation time of a collective decision is defined as the amount of time that passes
from the beginning of a trial until the beginning of the commitment phase. The mean delib-
eration times are plotted for several calibrations of ACE and DCE in Figs. 8 and 9. Variance
is omitted for clarity, but standard deviations of 20% to 30% of the means were observed.
The deliberation time when Q = 0% is constant regardless of the accuracy with which C̃a

was computed, since a quorum of zero is always satisfied. In these figures, the deliberation
time at the y-intercept is not zero as might be expected because the manner in which the
deliberation time is defined includes the brief period at the beginning of each trial before
any of the robots entered the deliberating state.

Increasing the quorum threshold Q increases the number of robots that must be in the
deliberating state to induce commitment, and thus the length of the deliberation phase will
increase as more time will be required for these additional robots to independently decide
that the current task is complete. By increasing τ or n, the accuracy of consensus estimation
is increased, which decreases the likelihood of one of the deliberating robots overestimating
the apparent consensus and prematurely committing. It is because a more accurate quorum
test reduces the probability of premature commitment that the deliberation time increases
more rapidly with the quorum threshold for systems that employ a greater τ or n. It is not
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that the increased accuracy actually makes the deliberation more expensive per se. Instead,
increasing these parameters increases the degree to which the observed quorum will resem-
ble the quorum threshold employed by the individual robots.

5.1.3 Performance of the commitment phase

The final phase of a collective decision using the proposed framework is commitment. The
role of commitment is to ensure the unanimity of a decision, so that all of the robots will
begin to work on the next group task at approximately the same time. Earlier, mutual exclu-
sivity of tasks was discussed: the constraint that certain pairs of adjacent tasks in a sequence
cannot be worked on simultaneously. Indeed, it was the problem of mutual exclusivity that
initially prompted our investigation of cohesive, decentralized task sequencing in dec-MRS.
If it is assumed that robots halt their work on the current group task as soon as they enter the
deliberating state and do not begin their work on the next group task until they have exited
the committed state, then mutual exclusivity will be satisfied as long as all of the robots
of a dec-MRS have entered the deliberating or committed states before any of the robots
enter the next task state. Not all pairs of adjacent tasks are mutually exclusive. For adjacent
tasks that are not mutually exclusive, the commitment phase would be said to succeed only
if it was unanimous. By unanimous, we mean that once the commitment phase begins, the
number of committed robots remains greater than zero until all of the robots have begun to
work on the next task (i.e., the robots transition from the current task and deliberating states
through commitment to the next task in a single wave). Unanimous commitment ensures
that a system will not divide itself across adjacent tasks.

The behavior of the commitment phase of a decision is controlled by the commitment
timeout, the amount of time that a committed robot will remain in the committed state with-
out receiving an acknowledgment to one of its commit-messages. The percentages of the
simulated trials that satisfied either unanimity or mutual exclusivity as the commitment

Fig. 10 Increasing the commitment timeout increases the likelihood that a collective decision to begin work
on the next task will be unanimous. It also increases the probability of a decision satisfying mutual exclusivity,
meaning that there will not be robots working on adjacent tasks simultaneously. Because committed robots
send a commit-message to every teammate that they encounter, the amount of energy consumed by their
transmissions will increase with the commitment timeout, as will the time that they spend wandering about
before beginning work on the next task. The cost of increased reliability must be considered when choosing
a value for the commitment timeout
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timeout was varied (each data point was computed from 40 trials) are plotted in Fig. 10.
Both curves exhibit the same behavior. Initially, increasing the commitment timeout yields
an increasingly greater likelihood of these conditions being satisfied, with the satisfaction of
mutual exclusivity lagging that of unanimity slightly. Diminishing returns are encountered,
however, leading to the curves’ S-shaped nature. Note that the additional cost of satisfying
mutual exclusivity beyond that of unanimity is minor, requiring the commitment timeout to
be increased by approximately TE seconds to achieve the same reliability for this stricter
criterion. Recall that TE is the median period of time between robot’s encounters with team-
mates, and so increasing the commitment timeout by this amount would allow each com-
mitted robot to send one more commit-message on average before beginning work on the
next task.

The overall cost of the commitment phase in terms of the time delay between the satis-
faction of quorum and the completion of the transition to the next task is roughly linear with
the commitment timeout (Parker 2009). Robots remain in the committed state for a period
of time that is linear with the commitment timeout, and each committed robot communi-
cates with its teammates at a relatively constant rate. As a result, increasing the commitment
timeout results in a linear increase in the energy expended by the robots (wandering about
and sending commit-messages) for a decreasing gain in the reliability of the commitment
phase. It would depend on the nature of the task at hand where the best trade-off between
cost and reliability would be made.

5.2 Experiments with real robots

Because ACE and DCE behaved so similarly in the simulated trials, as was predicted earlier
in Sect. 4.4, only DCE was implemented on the real robots. The robots that were used to
carry out these experiments were custom built for the research that we have been carrying
out investigating system-level decision-making in dec-MRS. A photograph of one of the
robots can be seen in Fig. 5(b). Refer to Parker and Zhang (2009) and Parker (2009) for a
more detailed description of this hardware. The remainder of this section presents the results
of the decision-making experiments that were carried out with the real robots.

Figure 11 plots the mean observed quorum versus the quorum threshold for the real ro-
bots. Variance is omitted from this figure for clarity, but a nearly constant standard deviation
of approximately 11% was present about each mean when n = 5, whereas the standard de-
viation in the n = 15 trials decreased steadily from 16% when Q = 20% down to 5% when

Fig. 11 This figure plots the
relationship between the
observed quorum and the quorum
threshold observed in the
experiments with real robots. As
was the case in the simulations,
the observed quorum increases
both with the quorum threshold
and the number of teammate
opinions used to compute C̃a
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Q = 100%. As was observed in the simulated trials, increasing the quorum threshold in-
creased the observed quorum. Increasing the number of teammate opinions used by each
robot to estimate Ca also increased the observed quorum in a given trial. In the physical
experiments, the deliberating population tended to grow more rapidly relative to the rate at
which the individual robots encountered their teammates than it did in the simulated trials.
In the experiments with the real robots, TE = 9.0 seconds and τd = 140.4 seconds. Early
in each of these trials, the deliberating population grew at twice the rate that it did in the
simulations (0.70 robots/TE versus 0.34 robots/TE), causing C̃a to lag Ca to a greater de-
gree. In other words, while the real deliberating robots were gathering teammate opinions,
the apparent consensus increased more rapidly than it did in the simulated trials, resulting
in the greater observed quorums for given n and Q.

The specific nature of the tasks at hand and the environments in which they are carried out
will influence the rate at which the robots enter the deliberating state (and whether or not it
is appropriate for robots to revert from the deliberating state back to working on the current
task, thereby decreasing Ca). Therefore the precise mapping of quorum threshold to ob-
served quorum reported by our experimental results should not be taken as absolute. Rather,
our results demonstrate that a decision’s observed quorum will tend to increase with Q.
This occurs because increasing Q causes the individual robots to delay commitment until a
greater number of them have entered the deliberating state. Increasing n when using DCE
(or τ in the case of ACE) to compute C̃a tends to increase the observed quorum of a decision,
but for a subtly different reason. Increasing n (or τ ) increases the precision of each robot’s
estimate of Ca . In domains in which Ca monotonically increases (such as the site prepara-
tion domain described in this work), an increased precision of consensus estimation reduces
the probability of premature commitment due to overestimation of Ca , thereby increasing
the observed quorum.

The deliberation time versus the quorum threshold of the real robots is plotted in Fig. 12,
displaying the same relationship observed in the simulated trials. Increasing the quorum
threshold increased the duration of the deliberation phase of the collective decision, and in-
creasing n increased the slope of the deliberation time versus quorum threshold relationship.
Once again, because the initial period in each trial before any of the robots had detected task
completion is included in the measurement of the deliberation phase’s length, the common
y-intercept of the two curves is slightly greater than zero.

Fig. 12 The deliberation time
for the real robots plotted here as
a function of the quorum
threshold is very similar to the
relationship observed in the
simulations. As the quorum
threshold is increased, and with it
the observed quorum, the
deliberating robots delayed their
commitment until more of their
teammates agreed that the current
task was complete
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6 Conclusions

Behavior-based dec-MRS have been shown by many previous works to be capable of a va-
riety of useful behaviors. However, designing behavior-based controllers for complex tasks
can be very difficult, especially if robust collective behavior is required. By dividing com-
plex tasks into sequences of more elementary behaviors, the controller design problem is
greatly simplified. To take advantage of this attractive divide-and-conquer strategy, however,
a system must be able to shift from one collective behavior to the next. In many scenarios,
the task transitions must be synchronized, necessitating a collective coordination mechanism
like the unary decision-making framework proposed by this work.

By measuring the consensus amongst their teammates and testing quorum, the robots
that compose a dec-MRS can pool their individual decisions regarding the state of the cur-
rent task to make a more reliable collective decision to begin the next one. The deliberating
phase of the proposed decision-making framework delays collective task transitions until a
quorum of robots agree that the current task is complete. Once the deliberating population
has satisfied the quorum, the commitment phase induces the entire dec-MRS to transition
to the next group task, preventing those robots that had yet to detect the completion of the
current task from continuing to work on it after the rest of the robots had moved on. This
collective decision-making strategy, inspired by the collective decision-making of ants and
honeybees, provides the illusion of centralized control by making a dec-MRS behave as
though is a single intelligent individual (a superorganism) while retaining all of the scala-
bility and robustness of a decentralized architecture.

Two low-cost consensus estimation strategies were presented in this work, and both were
shown to perform well. Consensus estimation and its use as a social cue have potential ap-
plications in other scenarios beyond task sequencing and collective decision-making, and
we believe that consensus estimation and quorum testing are fundamental operations within
dec-MRS and swarms. Experiments conducted in simulation and with real robots demon-
strated that the proposed decision-making framework indeed enables a dec-MRS to make
system-level decisions cooperatively.
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