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ABSTRACT Real-time perception of rock conditions based on continuously collected data to meet the requirements of
continuous Tunnel Boring Machine (TBM) construction presents a critical challenge that warrants increased attention. To
achieve this goal, this paper establishes real-time prediction models for fractured and weak rock mass by comparing 6
different algorithms using real-time data collected by the TBM. The models are optimized in terms of selecting metric,
selecting input features, and processing imbalanced data. The results demonstrate the following points. (1) The Youden’s
index and area under the ROC curve (4UC) are the most appropriate performance metrics, and the XGBoost Random
Forest (XGBRF) algorithm exhibits superior prediction and generalization performance. (2) The duration of the TBM
loading phase is short, usually within a few minutes after the disc cutter contacts the tunnel face. A model based on the
features during the loading phase has a miss rate of 21.8%, indicating that it can meet the early warning needs of TBM
construction well. As the TBM continues to operate, the inclusion of features calculated from subsequent data collection
can continuously correct the results of the real-time prediction model, ultimately reducing the miss rate to 16.1%.
(3) Resampling the imbalanced data set can effectively improve the prediction by the model, while the XGBRF
algorithm has certain advantages in dealing with the imbalanced data issue. When the model gives an alarm, the TBM
operator and on-site engineer can be reminded and take some necessary measures for avoiding potential tunnel collapse.
The real-time predication model can be a useful tool to increase the safety of TBM excavation.

KEYWORDS Tunnel Boring Machine, fractured and weak rock mass, machine learning model, real-time early warming,
tunnel face rock condition

1 Introduction also encounter problems when encountering adverse

geological conditions, such as machine jamming and rock

The construction of long tunnels is often a key control
project in large-scale infrastructure construction such as
water conservancy, railways, and highways. For example,
the Ya’an to Linzhi section of the Sichuan—Tibet Railway
has a total length of 1011 km, of which the tunnel length
is 851 km, including 72 tunnels. Compared with tradi-
tional drill and blast methods, the use of Tunnel Boring
Machine (TBM) construction has many advantages such
as safety, efficiency, environmental protection, automa-
tion, and high degree of informatization. Although the
TBM construction method has many advantages, it can
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collapse. Therefore, perception technology of the tunnel
face rock condition in the TBM construction process
presents a bottleneck and an urgent problem that needs to
be solved in order to ensure safe and efficient excavation
of TBM in complex geological conditions [1-3].

Almost all tunnel engineering projects encounter weak
and fragmented rock masses and fault zones. During
route planning, designers will try to avoid obvious and
large-scale adverse geology based on preliminary
geological survey data. However, due to the limitations of
project budgets and timelines, preliminary geological
survey data are often at the macroscopic level, and
therefore the situation on the tunnel face is unknown until
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TBM construction. In addition, the TBM cutterhead and
shield are huge, making it difficult for construction
personnel to directly observe the specific situation on the
tunnel face. In this situation, traditional detection, and in
situ testing techniques [4—8] do not meet the requirements
for TBM’s continuous and efficient excavation. There-
fore, real-time surrounding-rock perception technology
has become a key technology for TBM construction.

TBM excavation is a process of interaction between the
TBM cutterhead and the rock. Therefore, TBM excava-
tion can be seen as a large-scale torsion-shear test, which
means that a series of parameters are recorded by sensors
as the TBM excavates under different rock conditions [9].
These parameters include TBM operating parameters,
response parameters, and on-site conditions recorded by
geologists, which largely provide rock mass information.
Use of real-time data during the TBM excavation process
to perceive the current conditions of the tunnel face offers
significant advantages.

Many models for predicting TBM performance have
been proposed [10—12]. Many early models were theore-
tical models based on laboratory indentation tests and
linear cutting tests [13—17]. For example, these studies
have revealed the mechanism of rock fracture in disc
cutters. In addition, many scholars have applied these
theoretical models to specific projects and have devel-
oped TBM excavation models that are suitable for current
projects based on rock characteristics, including rock
strength, rock integrity, and rock brittleness [18-23].
These models can be called semi-empirical and semi-
theoretical models. However, the application of these
models is limited due to the difficulty in obtaining a large
amount of experimental data on rock characteristics and
the complex and varied geological conditions of different
tunnels or even of the same tunnel.

In addition to the models mentioned earlier, there are
also artificial intelligence algorithms that can analyze the
large amount of data collected by TBM sensors, in order
to construct models for predicting the surrounding rock
conditions. Compared to traditional statistical regression
methods, artificial intelligence methods have obvious
advantages in solving complex nonlinear problems
[24-28]. The widespread availability of commercial
codes for various machine learning algorithms have
provided opportunity for researchers to approach this new
area. Zhang etal. [29] proposed a rock mass type
classifier with a prediction accuracy of 98% using the
support vector classifier (SVC) algorithm and preproce-
ssed TBM operation data. Zhu etal. [30] used a new
performance evaluation index to evaluate the training
effect of three types of classification algorithms on the
imbalance data set of rock mass classification, including
binary classifier, multi-class classifier and error-
classification cost-sensitive classifier. Meanwhile, Hou
etal. [31,32] proposed two models, one using random
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forest algorithms and the other using long short-term
memory network algorithms, with good performance for
rock classification problem and collapse problem based
on the TBM data set collected during the YinSong
project.

Despite the good performance of these studies, there is
an important issue that needs to be addressed. How can
real-time and rapid predictions be made based on the data
continuously collected by TBMs to meet the requirements
of continuous TBM construction?

To achieve real-time perception of the rock condition in
the tunnel face, this paper establishes real-time prediction
models for fractured and weak rock mass (FWM) by
comparing 6 different algorithms using real-time data
collected by the TBM. The models are optimized from
the perspectives of metric selection, input feature
selection, and imbalanced data processing.

The flowchart and structure of this study is shown in
Fig. 1, and is as follows. Section 2 presents a brief project
overview and describes the data collection, including the
adverse geological information, raw TBM data proce-
ssing, label definition for classification, and feature
extraction. Section 3 details the model building process,
including selection of appropriate input features, optimal
hyperparameter combinations, and evaluation metrics
selection. Finally, Section 4 discusses the comparison
results and prediction effects of the models.

2 Project overview and data collection

With the development of sensor technology, various types
of sensors have been installed on TBM, and the data
generated during the rock breaking process can be stored
in real time. Supported by the Chinese 973 program, the
high-quality TBM construction data from the YinSong
water diversion project has provided the possibility for
development of TBM rock mass real-time perception
technology. This section mainly introduces the basic
geological and data information of the project.

2.1 Geological conditions and Tunnel Boring Machine
data profile

This study is based on the TBM construction data from
the TBM3 Lot of the YinSong project, a large-scale water
diversion project aimed at solving the urban water supply
problem in the central region of Jilin Province, China.
The TBM3 Lot tunnel is 23 km long, with a diameter of
7.9 m and an overburden depth of 40-250 m. The open
TBM used in the TBM3 Lot was manufactured by the
China Railway Engineering Equipment Group Co., Ltd.
(CREG), with a maximum cutterhead diameter of 7.93 m,
56 disc-cutters, and a maximum thrust cylinder stroke of
1.8 m.
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Fig. 1 Flowchart and structure for this study.

The data used in this study was collected from the area information, reinforcement support locations, and

of chainage numbers 71476-51475 along the TBM
tunneling direction. Figure 2 illustrates the geological
situation of some areas. The adverse geology encountered
during TBM tunneling mainly includes fault zones,
caverns, weak surrounding rock, and water inrush. These
geological factors can cause various difficulties during
TBM construction. Neglect of timely support measures
can lead to collapse and machine jamming accidents.
Detailed records of these unfavorable geological

multiple collapse locations are documented in the
construction logs. In addition to this geological informa-
tion, data collected by the TBM sensors are saved in csv
format files daily. The csv files contain information and
characteristics of the TBM recorded at 1 s interval. In
total, 802 d of valid excavation data were collected during
the tunneling process of the TBM3 Lot.

The selection of TBM control parameters is typically
based on the rock mass conditions at the tunnel face and
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is made by the TBM operator. This selection process
includes determination of the cutterhead advance speed v
(mm/min) and cutterhead rotation speed n (r/min). Once
the control parameters are set, the tunneling response
parameters, such as cutterhead torque 7' (kN-m) and total
thrust force F' (kN), typically vary with the rock condi-
tions. These four parameters are basic in the rock
breaking process of TBM construction and depend on the
rock conditions.

Figure 3(a) shows the basic data recorded by TBM in
one day, consisting of 10 working steps. Since the thrust
cylinder of the TBM has a limited stroke and timely
support requirement, the actual TBM tunneling process is
performed step-by-step. In this study, a tunneling cycle is
defined as a working step in the TBM tunneling process,
and the data recorded in a tunneling cycle covers the
entire rock breaking process of the TBM from start-up to

<
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shut-down. A total of 12570 tunneling cycles were
extracted from the raw data for the TBM3 Lot for this
research.

As shown in Fig. 3(b), based on the loading process of
the electric motor, the rock fragmentation data in a
tunneling cycle can be divided into four phases: free
running, loading, stable boring, and ending the boring.
During the loading phase, the TBM cutterhead advances
and contacts the tunnel face. Penetration is defined as the
cutting depth of the disc cutters for each turn of the
cutterhead, as shown in Eq. (1):

p=-, (1

n

where n is usually set at a fixed value, while v is
gradually increased to the operator’s intended value, and
p gradually increases and is then maintained at a stable
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value during the loading phase.

Therefore, the loading phase can be viewed as a
continuous torsional shear test of TBM equipment at
various penetration levels, providing rich geological
information. In addition, the loading phase typically lasts
200 s, making it ideal for real-time rock condition
perception.

2.2 Definition labels

As shown in Fig. 2, the geological profile record is a very
detailed construction log that records information such as
rock mass classification, whether collapse occurred,
whether support was strengthened, and groundwater
conditions during the construction process, based on the
chainage number.

In this study, each sample was labeled based on the two
conditions of “whether collapse occurred” and “whether
support was strengthened” as provided by the full
geological profile records. For our convenience, the rock
mass that may cause collapse if not supported in time is
called FWM. To solve the problems of collapse caused by
FWM, this study labeled the original data samples as
FWM or non-FWM based on the geological profile
records.

In the following sections, serious supervised learning
algorithms will be employed to predict FWM. This is a
binary classification problem, so we denote the labels of
the two categories, non-FWM and FWM, as 0 and 1,
respectively, as shown in Eq. (2):

2

1, FWM,
Label = {O, non-FWM.

2.3 Feature extraction

Appropriate feature selection often directly determines
the performance of a model. The YinSong project
includes 199 sensor parameters, many of which are
constant, low variance, and highly correlated data [33].
Obviously, data with such characteristics should not be
selected as input features. In many studies, only four
basic parameters are used as input features for the model
[29,34,35], while some studies have used some physically
meaningful rock breaking indicators such as torque
penetration index (7PI) and field penetration index (FPI)
[19,36,37].

To further validate the impact of feature selection on
the model performance, Table1 summarizes the
commonly used parameters as candidates, based on
previous studies. The specific details of the feature
selection scheme are elaborated in Subsection 3.1.

The basic fracture parameters (7, F, n, v) are accessible
from raw data. Since the data in the stable boring phase
fluctuate less, the mean value (Mean(X)) and the
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coefficient of variation (C.V(X)) in the stable boring
phase are selected as input features. The calculation
methods are shown in Eqgs. (3)—(5). In addition, the key
rock fracture indices can be calculated by Egs. (6)—(10),
incorporating TP/, FPI, work ratio (WR), the parameters
in an F—p relationship proposed by Jing et al. [38], and
the parameters in a 7—p—F relationship. Here, Egs. (9)
and (10) are used to fit the loading phase data to calculate
AF, BF, R*(A), I, I, and R*(B). The Mean(X) and C.V(X)
of other indices are calculated separately in the loading or
the stable boring phases (as shown in Table 1).

Statistical analyses were performed on these 26 features
of two class samples and the results are shown in Table 1.
Among them, X,—X; belong to the basic rock fracture
parameters and are input features for data-driven models.
Xy—X, belong to the key rock fracture indicators and are
input features for knowledge-driven models. It is
important to note the timeliness of parameter acquisition.
In TBM construction, the duration of the loading phase is
short and X,s—X,, can usually be obtained within a few
minutes after the disc cutter contacts the rock mass,
whereas the parameters X,—X,; calculated over the stable
boring phase can usually not be obtained until the
excavation is complete.

1
Mean (X) = - Z X, 3
\/ " (X~ Mean (X))
Std(X) = — - , “4)
_Sud(X)
CVX) = Mean (X))’ Q)
T
TPI = —, (6)
p
F
FPI = —, (7
p
T -n
WR =2nx 10 e (®
F =AF-p+BF, 9)
T=I-p+I-F, (10)

where X represents a parameter, such as 7, F, n, v, TPI,
FPI, and WR. m is the total amount of data in the loading
or stable boring phases. The fitting coefficients for the
loading phase data using Eqs. (9) and (10) are denoted as
AF, BF, I, and I, which represent the weights of each
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Table 1 Statistical description of features
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input variables calculation method feature No. feature FWM non-FWM
mean std. mean std.

basic rock fracture parameters calculate from stable boring phase data X, Mean (7) 1482.2 757.8 2338.1 689.1
X, CV (D) 0.052 0.032 0.036 0.021
X, Mean (F) 8601.0  2986.3 11318.8 33434
X, CV (F) 0.04 0.02 0.044 0.021
X Mean (v) 63.7 12.1 65.2 11.5
X CV(®) 0.075 0.019 0.086 0.019
X; Mean (n) 5.3 0.9 6.3 0.9
Xy C.V (n) 0.010 0.021 0.008 0.017

key rock fracture indices calculate from stable boring phase data X, Mean (7PIs) 130.3 78.7 236.1 89.4
X0 C.V (TPIs) 0.092 0.026 0.093 0.021
X1 Mean (FPIs) 760.5 374.1 1267.1 5252
X C.V (FPIs) 0.092 0.024 0.104 0.024
X3 Mean (WRs) 90.0 32.9 117.8 23.6
X C.V (WRs) 0.094 0.025 0.096 0.020

calculate from loading phase data Xis Mean (TPIu) 116.6 65.8 207.6 78.8

X6 C.V (TPIu) 0.234 0.153 0.229 0.097
X7 Mean (FPlu)  1033.3 533.5 1697.6 714.2
Xig C.V (FPlIu) 0.324 0.139 0.325 0.120
Xio Mean (WRu) 90.5 34.1 121.5 27.2
X5 C.V (WRu) 0.250 0.174 0.224 0.108
X AF 2232 218.7 510.3 317.0
X5 BF 5999.1  1260.5 7021.0 1838.8
X R¥(A) 052 029 0.61 0.24
X4 1, 88.9 88.1 171.0 102.4
Xos Iy 0.038 0.076 0.025 0.055
Xg R’(B) 0.69 0.25 0.78 0.16

Notes: Mean (X) and C.V (X) represent the mean and coefficient of variable X, respectively, in each boring phase; TPlu, FPIu, and WRu are the TPI, FPI,
and WR in the loading phase, respectively; TPIs, FPIs, and WRs are the TPI, FPI, and WR in the stable boring phase, respectively.

variable in the regression equations. RZ(A) and RZ(B)
measure the degree to which Egs. (9) and (10) fit the
loading phase data.

3 Methodology

In Section 2, we prepared the raw data set, this section
presents the main training process of classifier for
fractured and weak surrounding rock with the flowchart
and structure being depicted in Fig. 4. The primary
process comprises three stages: (a) selecting appropriate
input features from the raw data set and dividing them
into training and test data sets; (b) determining the
optimal combination of hyperparameters by training and
validating the model on the training data set using 5-fold
cross-validation; (c) retraining the model on the training

data set using the optimal hyperparameters combination
and evaluating the final classifier’s performance on the
testing data set.

3.1 Test scheme for input feature selection

From the perspective of data-driven and knowledge-
driven approaches, the 26 features can be divided as
follows. (1) The basic rock fracture which is original data
collected by the TBM, X, to Xg; (2) the key rock fracture
indices which is feature cross of rock fracture parameters
based on human understanding of the rock fracture
mechanism, X, to X,.. To compare the performance of the
data-driven and knowledge-driven approaches, the
corresponding features were selected as inputs, denoted
as scheme 1, as shown in Table 2.

In TBM construction, the duration of the loading phase
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Fig. 4 Flowchart of building the FWM classifier.

is short and X, to X, can usually be obtained within a
few minutes after the disc cutter contacts the rock mass.
To establish a real-time perception model, feature
selection is performed according to scheme 2 in Table 2.

The new data set is formed according to the schemes in
Table 2, and split it into 80% training data set and 20%
test data set. The results of this part will be shown in
Subsection 4.3.

3.2 Imbalanced data processing method

For classification tasks, the balance of different categories
of sample sizes is an issue that needs to be considered.
According to the construction records of the YinSong
project, there were 848 tunneling cycles labeled as FWM
and 11720 tunneling cycles labeled as non-FWM, with a
ratio of 1:13.8 between the two sample categories. When
training a model on an unprocessed data set, there is a
risk of high overall accuracy but poor prediction

Table 2 Test scheme for feature selection

No. model input features
scheme 1 data-driven model X=X
knowledge-driven model Xg—Xy
scheme 2 real-time perception model Xi5Xo6
dual-driven model X=Xy

performance on FWM samples, as discussed in
Subsection 4.2. This is because the model has learned
prior information that “the number of non-FWM samples
is much larger than the number of FWM samples”.
Relying on this information, the model can achieve a
seemingly good performance by classifying as many
samples as possible as non-FWM, which deviates from
the safety requirements of construction. In TBM
construction, collapse can cause significant economic loss
and personnel injury, so we expect the prediction model
to pay more attention to FWM samples.
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To address this issue, this paper adopts a comprehen-
sive resampling technique to process the training data set
samples. On the one hand, this technique uses the
Synthetic Minority Over-sampling Technique (SMOTE)
method to expand the FWM samples. The basic idea of
the SMOTE algorithm is to generate a new sample by
considering its k nearest neighbors. On the other hand, an
under-sampling method called Edited Nearest Neighbors
(ENN) will remove some non-FWM samples that do not
meet the requirements of the method.

One detail to note is that this paper only processes the
training set data, which can avoid another issue that needs
to be considered in machine learning: “data leakage”.
This is because the final trained model needs to be
validated using a data set that better reflects the real
situation.

3.3 Model training and validation

In this stage, different algorithm models are trained and
validated. When evaluating different settings (“hyperpara-
meters”) for algorithm, there is a risk of overfitting on the
test data set because the parameters can be tweaked until
the estimator performs optimally. This way, information
about the test data set can “leak” into the model and the
evaluation metrics become no longer credible. To find the
optimal hyperparameters, 5-fold cross-validation is
applied to the training data set. This method splits the
training data set into sub-training data set (64% of the raw
data set) and validation data set (16% of the raw data set),
then trains the model on the sub-training data set, and
finally evaluates it on the validation data set.

raw data set (D)

bootstrap sample 1 (D') .

§:) D)= D'+ XGBY(D")
D, D))

Y €:) D = Dy, + XGB\(Dy,)

0€:) D= Dy, + XGBy(Dy,)
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3.3.1 Algorithm introduction

In this paper, 6 algorithms are used to predict the rock
condition in tunnel face, including Decision Tree (DT),
Random Forest (RF), Extreme Gradient Boosting
Decision Trees (XGBoost), and XGBoost Random Forest
(XGBREF) algorithm which combines RF and XGBoost.
Due to the popularity of the neural network algorithms,
we also compared the results of ANN and ResNet18. The
main purpose of this paper is to apply these algorithms to
predict the rock mass. DT, RF, XGBoost, and ANN
algorithms are not introduced further in this paper, and
the principles can be referred from Refs. [39,40].

DT and RF are implemented by the scikit learn package
for Python. XGBoost and XGBRF are implemented by
the XGBoost package for Python. ANN and ResNetl8
are implemented by the Pytorch package with Python.
Moreover, the training and testing of all classifiers were
processed by a computer with a CPU of Intel I ColTM)
17-10875H @ 2.30 GHz in a Windows environment.

(1) XGBoost Random Forest

The XGBRF algorithm combines the benefits of both
RF and gradient boosting. As is the case for RFs,
XGBoost RF builds multiple DTs on random subsets of
the training data and features, which helps to reduce
overfitting and increase accuracy.

But unlike the traditional RFs, XGBRF builds DTs
sequentially, as in a gradient boosting process. At each
iteration, the algorithm fits a DT to the residual errors of
the previous iteration and adds it to the ensemble of trees.
This process continues until a specified number of trees
or a stopping criterion is reached. Figure 5 shows the
structure of the XGBRF algorithm.

bootstrap sample n (D)

V(@) Dy =D"+ XGBy(D")

Dy Dy,

il

fe) 0 = D, + XGB(D;)  (@XER) D: =D, + XGBYDy)

D, D, D, D, D, D1, D, D,
XGB!, JuSl XGB!, §o} XGBS J XGB; W XGB; Wil XGB; I XGB; B XGB; W
| FWM FWM FWM  non-FWM | | FWM non-FWM FWM FWM |
\ FWM FWM |
FWM

Fig.5 Diagram of XGBRF model structure.



Lei-jie WU et al. Real-time perception rock conditions

XGBREF also uses a gradient boosting-like loss function
to optimize the objective during the training process. This
loss function takes into account the prediction errors of
the previous iterations to improve the accuracy of the
model.

(2) Modified ResNet18

ResNet18 is an optimized convolutional neural network
(CNN) architecture that was introduced by He et al. [41].
The name ResNet stands for “Residual Network” which
refers to the network’s use of residual connections to
address the problem of vanishing gradients in deep neural
networks.

The ResNetl8 architecture consists of 18 layers,
including a convolutional layer, a max-pooling layer, and
several residual blocks. Each residual block contains two
convolutional layers, and the input to each block is passed
through a skip connection that allows the network to learn
residual representations. The skip connection also allows
gradients to flow more easily through the network, which
can help prevent vanishing gradients.

In our study, we employed ResNetl8 as the backbone
architecture for our specific task. However, we made
notable modifications to the original architecture to
accommodate the unique characteristics of our dataset.
We replaced the standard two-dimensional convolutional
layers with one-dimensional convolutional layers to
handle our input, which is represented as a two-
dimensional array. Additionally, we incorporated batch
normalization and ReLU activation functions within each
residual block to enhance the model’s learning
capabilities and enable better convergence.

The utilization of ResNet18 in our research highlights
its effectiveness in extracting meaningful features and

B: basic block

ResNet18
input: n x 1 x 28 x

v
1 x 7 conv, 64
1 x 3 max-pool

~ | m
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capturing intricate patterns within our specific domain.
By leveraging the power of residual connections and our
tailored modifications, we aimed to achieve superior
performance and accurate predictions for our target task.

For a visual representation of the modified ResNet18
architecture, please refer to Fig. 6, which provides a
comprehensive overview of the network’s structure and
the flow of information within its layers.

3.3.2 Hyperparameters space for various algorithm models

In the field of machine learning, hyperparameters are
parameters that are preset before model training and
cannot be learned from the data. Their purpose is to
govern various aspects of the training process and can
significantly impact the performance of the models.

This study aimed to compare the predictive performa-
nce of various algorithms in FWM prediction. Although
hyperparameter tuning was not a primary focus of the
study, Table 3 presents some of the hyperparameters for
the six models considered, while other hyperparameters
were kept at their default values.

To search for the best hyperparameter, the Optuna
library was utilized. This library offers efficient hyperpara-
meter optimization by performing multi-dimensional
searches in the hyperparameter space, incorporating
advanced techniques such as pruning and early stopping
to ensure computational efficiency [42].

3.3.3 Evaluation metrics

After training a model on a sub-training data set, it is

R: residual block

1 x 1 conv

-

SI2EPIHE

output: n x 2

Fig. 6 Diagram of ResNet18 model structure.
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Table 3 Hyperparameter space for various algorithm models
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algorithm parameters value range algorithm parameters value range
XGBoost n_estimators [10, 400], step =2 XGBRF n_estimators [10, 400], step =2
learning_rate [107,107'], step=10" learning_rate [107, 107", step=10"
max_depth [5, 100], step=1 max_depth [5, 100], step=1
gamma [0, 1], step = 0.1 gamma [0, 1], step = 0.1
reg_alpha [0, 1], step = 0.01 reg_alpha [0, 1], step = 0.01
reg_lambda [0, 1], step = 0.01 reg_lambda [0, 1], step = 0.01
DT max_depth [5, 100], step=1 RF n_estimators [10, 400], step =2
max_features [‘sqrt’, *log2’, ‘auto’] max_depth [5, 100], step =1
class_weight [None, ‘balanced’] max_features [‘sqrt’, ’log2’, ‘auto’]
ANN epochs 50 class weight [None, ‘balanced’]
Ir [1075, 1071], log-uniform sampling ResNet18 epochs 50
batch_size [16, 32, 64] Ir [1073,107"], log-uniform sampling
optimizer [‘Adam’, ‘SGD’] batch_size [16, 32, 64]
momentum [0, 1], step=0.1 optimizer [‘Adam’, ‘SGD’]
activation function ReLU momentum [0, 1], step = 0.1

loss function cross entropy loss

number of hidden layers [1,5],step=1

number of nodes per hidden layer [32, 64, 128]

activation function ReLU

loss function cross entropy loss

Notes: The parameter names correspond to the libraries of machine learning algorithms as introduced at the start of Subsubsection 3.3.1; the libraries can

be found on the official websites of each algorithm.

common to validate the trained model using a separate
validation data set. An accurate evaluation metric is
crucial for determining optimal hyperparameters. Thus,
this paper compares the impact of various metrics on the
final model’s performance, and the specific results can be
found in Subsection 4.1.

For binary classification, the classifier’s prediction
results consist of four possible scenarios, true positive
(TP), false negative (FN), false positive (FP), and true
negative (TN). Table 4 presents some commonly used
evaluation metrics, among which true positive rate (TPR),
also known as recall, signifies the proportion of actual
positive samples correctly predicted as positive. False
positive rate (FPR), also referred to as the false alarm
rate, indicates the proportion of actual negative samples
incorrectly predicted as positive. False negative rate
(FNR), alternatively termed miss rate, denotes the
proportion of actual positive samples erroneously
predicted as negative. The prediction result of the
classifier for a certain sample is in the form of the
probabilities of two categories, ‘non-FWM’ and ‘FWM’.
For instance, if a classifier predicts [0.6, 0.4] for a
sample, the probability of it being FWM is 0.4. Typically,
if the classification threshold is 0.5, the sample is
classified as ‘non-FWM’. However, if the threshold is set
to 0.3, the sample is classified as ‘FWM’.

Different classification thresholds correspond to diffe-
rent predictions made by the classifier. A Receiver

Operating Characteristic (ROC) curve is generated by
plotting the TP rate and the FP rate at various threshold
settings. The Youden’s index is a measure for
determining the optimal classification threshold value,
which is obtained when the index reaches its maximum
value, i.e., the optimal threshold value. Moreover, the two
more effective metrics for imbalanced data are Matthew’s
Correlation Coefficient (MCC) and Area Under the ROC
Curve (AUC). In this paper, MCC is used with optimal
threshold. Table 4 presents these metrics along with their
calculation equations.

3.4 Retraining and evaluation of model

At this stage, to assess the classifier’s ability to
generalize, the model is retrained using the training data
set and the optimal hyperparameters, and subsequently
evaluated using the test data set. The results presented in
the next section are based on the classifier’s performance
on the test data set.

In addition to the three metrics mentioned in Subsub-
Subsubsection 3.3.3, two metrics that more directly
reflect construction safety are of particular interest to
construction workers: the false alarm rate and the miss
rate. According to Eq. (10), the Youden’s index is
negatively correlated with the sum of the FP and FN
rates; i.e., the larger the Youden’s index, the better the
predictive performance of a model.
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4 Real-time perception modeling of rock
condition

In the preceding sections, we have described the
necessary preparations for developing a rock mass condi-
tion perception model, including data set preparation,
algorithm selection, and evaluation metric establishment.
In this section, we first demonstrate the impact of
different metrics on hyperparameter selection results and
compare the performance of various algorithmic models.
Subsequently, we compare the differences in the model’s
predictive performance before and after addressing the
problem of sample imbalance. Finally, we investigate the
effects of different inputs on the model’s predictive
performance and develop a real-time perception model
for FWM.

4.1 Prediction performance of various algorithms

During the 5-fold cross-validation process, the selection
of hyperparameters was performed simultaneously with
the evaluation of model’s performance. Initially, we
selected a specific evaluation metric, denoted as Y to
assess the model’s predictive ability on the validation
data set. The evaluation metric Y included Youden’s
index (J), AUC, and MCC. Through the comparison of
the average Y scores obtained from the validation results
of the 5 folds, we were able to identify the optimal
hyperparameter combination, denoted as HPC (Y), for a
particular algorithm within its corresponding hyperpara-
meter space (refer to Table 3 for details). Subsequently,
we retrained the algorithm model using the HPC (Y) and
obtained the evaluation scores on the test data set, which
are presented in Table 5.

4.1.1 Influence of different metrics on hyperparameter
selection results

To explore the influence of three metrics on the selection

of hyperparameters and corresponding model performa-
nce, Figs. 7(a)-7(f) displays the final evaluation scores of

Table 4 Equations for evaluation metrics

classifiers trained with three different hyperparameter
combinations across six algorithms. As explained in
Subsubsection 3.3.3, the formula derivation indicates that
the Youden’s index holds the highest priority as a metric.
Consequently, we highlight the hyperparameter combina-
tion with the highest J score in the subgraphs. From Table
5 and Fig. 7, we deduce the following observations.

(1) The trend lines for AUC scores and J scores exhibit
similar patterns, implying that, in this study, AUC offers
equally good evaluation effect.

(2) The trend line for the MCC score does not align
with that of the J score, as indicated in Figs. 7(b), 7(c),
and 7(e). For instance, in Fig. 7(c), the XGBoost
classifier with HPC (J) exhibits the highest J score, the
lowest MCC score, and 17.2% miss rate. In contrast, the
XGBoost classifier with HPC (MCC) has the lowest J
score, highest MCC score, and 25.3% miss rate.
However, if the total error rate is similar, the classifier
with HPC (J) is more appropriate due to potential safety
hazards associated with omitted fractured rock mass.
Therefore, the Youden’s index offers a more comprehen-
sive evaluation of the classifier’s performance.

(3) If the classifier with HPC (X) also performs well on
the test data set, it indicates good generalization
performance. The hyperparameter combinations corres-
ponding to classifiers with the largest J score have been
highlighted in the figures. For example, in the case of the
XGBRF algorithm, the classifier with HPC (4UC) has the
highest J and AUC scores, indicating that the XGBRF
algorithm has good generalization ability.

In summary, the Youden’s index and AUC are the most
appropriate performance metrics for this data set, and the
XGBRF algorithm exhibits superior generalization
performance.

4.1.2 Comparison of prediction performance of different
algorithm models

The aim of this study is to compare and evaluate the
performance of various algorithmic models regarding the
perception of fractured and weak rock. In Subsubsection

metrics definition Eq. No.
TP
TPR TPR= — (6)
TP+FN
FP
FPR FPR = (@)
FP+TN
FN
FNR FNR= ——=1-R 8
N. TPLFN ecall ®)

TPXTN-FPXFN

mMcc Mcc

- V(TP+FP)(TP+FN)(TN +FP)(TN + FN)

(€]

AUC

Youden’s index

area under the ROC curve

J=TPR-FPR=1-FNR-FPR

(10)

Notes: TPR = recall; FPR = false alarm rate; FNR = miss rate
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4.1.1, we drew conclusions and selected the optimal HPC
for each algorithm to enhance their performance. Here,
we present the prediction results of six classifiers on the
test data set samples in the form of a confusion matrix, in
Fig. 8. The test data set consisted of 2340 non-fractured

Table 5 Performance of the classifiers trained under different HPCs

and weak rock (non-FWM) samples and 174 fractured
and weak rock (FWM) samples, with a ratio of 13.4:1. By
examining the results of the six classifiers, we infer the
following. The ResNetl8, DT, and ANN algorithm
classifiers exhibit good recognition results for non-FWM

algorithm hyperparameter combination evaluation metric score
AUC optimal threshold J Mcc FPR FNR
DT HPC (J) 0.791 0.454 0.476 0.278 21.9 30.5
HPC (4UC) 0.814 0.547 0.505 0.327 15.6 339
HPC (MCC) 0.830 0.730 0.506 0.331 15.0 34.5
RF HPC (J) 0.874 0.316 0.599 0.342 229 17.2
HPC (4UC) 0.873 0.282 0.596 0.328 26.6 13.8
HPC (MCC) 0.875 0.290 0.607 0.337 25.6 13.8
XGBoost HPC (J) 0.873 0.080 0.590 0.334 23.8 17.2
HPC (4UC) 0.868 0.156 0.582 0.352 18.8 23.0
HPC (MCC) 0.866 0.329 0.572 0.353 17.5 253
XGBRF HPC (J) 0.865 0.484 0.584 0.311 30.7 10.9
HPC (4UC) 0.867 0.493 0.601 0.340 23.8 16.1
HPC (MCC) 0.866 0.489 0.590 0.330 24.9 16.1
ANN HPC (J) 0.812 0.608 0.504 0.333 14.5 35.1
HPC (4UC) 0.816 0.705 0.521 0.313 19.7 28.2
HPC (MCC) 0.809 0.700 0.504 0.287 23.8 259
ResNet18 HPC (J) 0.826 0.715 0.542 0.359 14.2 31.6
HPC (4UC) 0.826 0.636 0.541 0.331 18.3 27.6
HPC (MCC) 0.832 0.471 0.532 0.297 25.5 21.3

Note: The term “HPC (Y)” refers to the hyperparameter combination selected based on the highest ¥ metric score on the validation data set, where Y can

represent J, AUC, or MCC.
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o 0F = L o 0.8 o 0.8
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Fig.7 Metric scores of classifiers trained with different HPCs:

(a) DT; (b) RF; (c) XGBoost; (d) XGBRF; (e) ANN; (f) ResNet18.
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samples, with ResNet18 achieving the highest recognition
rate of 85.8%. On the other hand, the RF, XGBRF, and
XGBoost algorithm classifiers have good recognition
results for FWM samples, with the RF model having the
highest recognition rate of 86.2%. However, based on the
confusion matrix results alone, it is challenging to
determine which algorithm is better.

To visually compare of the models’ predictions, we plot
some of the indicator scores in Fig. 9. According to
Fig. 9(a), the RF, XGBRF, and XGBoost classifiers
exhibit higher J scores, but XGBoost also has a higher
miss rate than the other two classifiers. Thus, we analyze
the ROC curves and optimal thresholds of the other two
classifiers, as shown in Fig. 9(b). Based on the ROC
curves, the overall performance of the two classifiers is
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similar. Still, the optimal threshold of the XGBRF
classifier is 0.493, while the optimal threshold of the RF
classifier is only 0.28. This finding suggests that the
XGBREF classifier performs better for imbalanced data.

Through a comparison analysis, we find that the
XBGRF algorithm exhibits excellent predicting and
generalizing performance, and the final hyperparameter is
HPC (AUC) through hyperparameter screening. The
‘n_estimators’ is 286, the ‘max depth’ is 67, the
‘learning_rate’ is 0.039, the ‘gamma’ is 1.0, and the
‘reg_lambda’ is 0.02.

4.2 Influence on whether to process imbalanced data

The issue of sample imbalance can often lead to
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Fig. 8 Confusion matrices of six algorithm classifiers on test dataset: (a) DT; (b) RF; (c) XGBoost; (d) XGBRF; (¢) ANN; (f) ResNet18.
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Fig. 9 Metric scores and ROC curves: (a) metric score for various classifiers; (b) ROC curves for RF and XGBREF classifier.
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disastrous prediction results. In this study, we seek to
investigate the impact of resampling on the prediction
performance of the model, and we compare the predictive
performance of the two cases according to the process in
the flowchart (Fig. 4). Our findings, presented in Fig. 10,
show that the classifier trained without resampling tends
to predict non-FWM samples as high probability events,
indicating a preference for non-FWM.

To further examine the impact of resampling, we
analyzed the statistics of false alarm rates and miss rates
of RF and XGBRF algorithm models under three
conditions: (a) when the data used in the training model
was not resampled and the threshold was set at 0.5;
(b) when the training model used resampled data and the
threshold was set at 0.5; (c) when the training model used
resampled data and an optimal threshold was applied. As
shown in Fig. 11, the false alarm rate of both the RF and
XGBRF classifiers was very low when the data used in
the training model was not resampled and the threshold
was set at 0.5. However, the miss rate was higher for RF
(75.3%) compared to XGBRF (54.6%), indicating that
XGBRF may perform better in addressing data imbalance
issues.

Moreover, our study observed an interesting phenome-
non that the optimal threshold of the XGBRF classifier
was closer to 0.5 than that of the RF classifier,
demonstrating its advantage in dealing with data sets with

actual class
non-FWM

FWM

non-FWM FWM
predicted class

(@)

actual class
non-FWM

FWM

FWM

non-FWM
predicted class

©
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extremely imbalanced sample classes. After resampling
the training data and setting the threshold value at 0.5, the
miss rates of the XGBRF and RF classifiers decreased to
33.9% and 34.5%, respectively. This suggests that
resampling can effectively improve the model’s perfor-
mance in response to sample imbalance.

In conclusion, our study suggests that resampling can
significantly enhance the prediction performance of
machine learning models. Additionally, the XGBRF
algorithm may have certain advantages in dealing with
the data imbalance issue, as demonstrated by its
performance in this study.

4.3 Impact of different input features on model
performance

The preceding section focused on the evaluation of the
performance of each algorithmic model, utilizing a set of
26 input features. In this section, we aim to demonstrate
the importance of individual input features on the
predictive capability of the model. Additionally, we
analyze the effect of selecting different input variables to
train the model.

4.3.1 Input features importance
Different input features exert varying degrees of
p
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Fig. 10 Confusion matrices of different classifier with a threshold of 0.5: (a) RF without resampling; (b) XGBRF without resampling;

(c) RF with resampling; (d) XGBRF with resampling.
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influence on predictive performance. In the context of
data analysis, it is beneficial to eliminate features that
exhibit relatively insignificant contributions to the model’s
generalization performance. As depicted in Fig. 12, there
are four features with a contribution exceeding 3.0%, and
with a total contribution of 57.1%. These features, ranked
in order of descending contribution, are Mean (7PlIs),
Mean (n), Mean (TPlu), and C.V (TPIs); Mean (TPlIs)
alone accounts for 41.4% of the contribution. These
features are highlighted in the figure for emphasis.

I false alarm rate
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Furthermore, Fig. 13 portrays the distribution curves of
features across different class samples. The red dashed
lines correspond to the parameter distribution of the
FWM samples, while the black solid lines represent the
parameters distribution of the non-FWM samples. A
comparison of the two subplots reveals that the Mean
(FPIs) value distribution ranges of the FWM and non-
FWM samples are distinctly different, indicating that the
FWM characteristics can be identified by utilizing this
feature.

I miss rate
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resample 4 optimal threshold = 0.28
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Fig. 11 False alarm and miss rates of RF and XGBRF classifiers.
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Fig. 13 Distribution of features across different class samples: (a) Mean (7PIs); (b) Mean (n).

4.3.2 Data-driven model vs. knowledge-driven model

Data-driven models are constructed using only the
fundamental sensor parameters obtained from TBM
without incorporating any expert knowledge of rock-
breaking behaviors. In contrast, knowledge-driven
models are developed by including input features that
consist of variables infused with expert knowledge of
rock-breaking behaviors.

To compare the discrepancies between data-driven,
knowledge-driven, and dual-driven models, we trained
the XGBRF algorithm using the three different input
approaches mentioned in Table 6. To ensure the validity
of our results, each model trained autonomously and
selected its optimal parameters according to the
procedure illustrated in Fig. 4.

Table 6 Performance of data-driven versus knowledge-driven models

model input sum of feature J FPR FNR

features  importance (%) (%) (%)
data-driven X —Xg 23.5 0.538 284 17.8
knowledge-driven Xo—Xy 76.5 0.580 225 195
dual-driven X=X 100.0 0.601 23.8 16.1

Notes: Results in this table are based on optimal threshold conditions for
FPR and FNR; FPR = false alarm rate; FNR = miss rate.

Specifically, the data-driven model utilized input
features X,—X; with an aggregate importance of 23.5%.
Knowledge-driven model used input features X,—X,, with
an aggregate importance of 76.5%. Finally, the dual-
driven model utilized all the parameters as input features
with a total feature importance score of 100%. By
comparing the results of the three models, the following
phenomena were observed.

Firstly, the false alarm rates of the data-driven classifier
and the knowledge-driven classifier were 28.4% and
22.5%, respectively, while the miss rates of the two
classifiers were relatively similar. This indicates that the
knowledge-driven model has better perceptual results
than the data-driven model.

Secondly, the dual-driven classifier has the highest J
score and the lowest miss rate. It can be concluded that
adding expert knowledge variables to the input features
can effectively improve the model’s detection of FWMs.

4.3.3 Real-time prediction model for fractured and weak
rock mass

Real-time prediction is a critical requirement in TBM
construction to prevent accidents such as cutterhead
jamming or collapses by accurately assessing and
responding to the surrounding rock conditions. Despite
the establishment of a well-performing model, the
timeliness of parameter acquisition was not considered in
selecting input parameters. For instance, parameters such
as TPIu, FPlu, and WRu, are calculated based on loading
phase data, while TPIs, FPIs, and WRs, etc. are calculated
based on stable boring phase data. In TBM construction,
the duration of the loading phase is relatively short and
data can be obtained within a few minutes after the
cutterhead contacts the rock mass, whereas stable boring
data can typically be obtained after excavation is
complete.

To achieve real-time prediction, a real-time approach
was chosen to train the XGBRF model. This means that
only the loading phase features were used to train the
model, and the predicted samples only needed to provide
the loading phase features. Table 7 illustrates the
predictive performances of the real-time model and the
dual-driven model. The false alarm and miss rates of the
real-time classifier are 24.6% and 21.8%, respectively,
indicating that the real-time prediction model can meet

Table 7 Performance of real-time predictive models

model input sum of feature J FPR  FNR

features  importance (%) (%) (%)
dual-driven X1—Xs6 100.0 0.601 23.8 16.1
real-time X15X6 228 0.536 246 218

Notes: Results in this table are based on optimal threshold conditions for
FPR and FNR; FPR = false alarm rate; FNR = miss rate.
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the TBM construction safety early warning requirements
effectively. However, the dual-driven model has a
significantly lower miss rate than the real-time model.

In conclusion, the real-time model can offer practical
real-time prediction during TBM construction, while the
dual-driven model can continuously correct the real-time
model’s prediction results during continuous excavation.
This combination ensures both the real-time prediction
capability and the prediction’s accuracy, thereby
enhancing TBM construction safety.

5 Conclusions

The paper presents a novel model for predicting the rock
conditions of tunnel face using six distinct algorithms and
the data collected by TBM sensors. Specifically, the
paper proposes a real-time perception method for FWM
based on the XGBRF algorithm, which is compared to
other algorithms.

Initially, this study compares the effects of different
metrics on hyperparameter selection and the predictive
performance of various algorithms. Subsequently, the
study discusses the model’s performance before and after
processing imbalanced data. Finally, the authors explore
the variations in model performance that arise from using
different input data and establish a real-time prediction
model for weak and broken surrounding rock. The
specific conclusions are drawn as follows.

1) The most appropriate performance metrics for this
data set are the Youden’s index and AUC, and the
XGBRF algorithm exhibits superior generalization
performance.

2) After a comparison analysis, we found that the
XBGRF algorithm demonstrates excellent prediction and
generalization performance. Taking the AUC as the
metric, the final selection from the hyperparameter
screening included ‘n_estimators’ set to 286,
‘max_depth’ set to 67, ‘learning rate’ set to 0.039,
‘gamma’ set to 1.0, and ‘reg_lambda’ set to 0.02.

3) Resampling imbalanced data sets can significantly
improve the prediction performance of machine learning
models. Additionally, the XGBRF algorithm may have
certain advantages in dealing with the imbalanced data
problem.

4) Different input features exert varying degrees of
influence on the predictive performance of a model. For
the XGBRF classifier, four features with a contribution
exceeding 3.0% are identified, with a total contribution of
57.1%. These features, ranked in descending order of
contribution, are Mean (7PIs), Mean (n), Mean (TPlu),
and C.V (TPIs), with Mean (TPIs) alone accounting for
41.4% of the contribution.

5) In the case of similar miss rates, the false alarm rate
of knowledge-driven classifier is significantly lower than
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that of data-driven classifier. This indicates that
knowledge driven models have better perceptual results
than data driven models.

6) The miss rates of the real-time classifier and dual-
driven classifier are 21.8% and 16.1%, respectively,
indicating that the real-time prediction model can meet
the TBM construction safety early warning requirements
effectively.

The proposed real-time prediction model can offer
practical real-time prediction during TBM construction,
while the dual-driven model can continuously correct the
real-time model’s prediction results during continuous
excavation. This combination ensures both the real-time
prediction capability and the prediction’s accuracy,
enhancing TBM construction safety. When the model
issues an alarm, the TBM operator and on-site engineer
can take necessary measures to avoid potential collapse.
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