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ABSTRACT The presence of cracks in a concrete structure reduces its performance and increases in the size of cracks
result in the failure of the structure. Therefore, the accurate determination of crack characteristics, such as location and
depth, is one of the key engineering issues for assessment of the reliability of structures. This paper deals with the inverse
analysis of the crack detection problems using triple hybrid algorithms based on Particle Swarm Optimization (PSO);
these hybrids are Particle Swarm Optimization-Genetic Algorithm-Firefly Algorithm (PSO-GA-FA), Particle Swarm
Optimization-Grey Wolf Optimization-Firefly Algorithm (PSO-GWO-FA), and Particle Swarm Optimization-Genetic
Algorithm-Grey Wolf Optimization (PSO-GA-GWO). A strong correlation exists between the changes in the natural
frequency of a concrete beam and the crack parameters. Thus, the location and depth of a crack in a beam can be
predicted by measuring its natural frequency. Hence, the measured natural frequency can be used as the input parameter
of the algorithm. In this paper, this is applied to identify crack location and depth in a cantilever beam using the new
hybrid algorithms. The results show that among the proposed triple hybrid algorithms, the PSO-GA-FA and PSO-GWO-

FA algorithms are much more effective than PSO-GA-GWO algorithm for the crack detection.

KEYWORDS crack, cantilever beam, triple hybrid algorithms, Particle Swarm Optimization

1 Introduction

The existing crack within a structural component changes
its local stiffness. So, vibration amplitudes and natural
frequencies change due to the existence of such cracks.
Therefore, it is feasible to determine crack location and
depth by analysis of these changes. One of the methods of
determining the crack location and depth is to utilize the
mode shapes and the natural frequencies. An inverse
method can be used for identification of structural
damages. For this purpose, the optimization method is
repeated to minimize or maximize the objective function
so as to locate a crack. In this repeated operation, the
unknown crack location can be located based on some
parameters that can be updated using the optimization
method to reach the best answer. Dimarogonas and
Papadopoulos [1] and Qian et al. [2] prepared the
stiffness matrix of the cracked beam and used intensity
factors for investigation of the dynamic response
characteristics such as the mode shapes and the natural
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frequencies. Nahvi and Jabbari [3] evaluated the failure
intensity of cantilever cracked beams using the finite
element method and experimental data. The lateral
vibration of cracked Euler-Bernoulli beams was evaluated
by Chondros et al. [4]. Also, Kim and Stubbs [5]
investigated a feasible technique to calculate depths of
cracks by utilizing modification in the natural frequen-
cies. Orhan [6] studied the forced and free vibration
analysis for recognizing cracks in a cantilever beam.
Saavedra and Cuitino [7] explained the behavior of crack
beams using the strain energy density function. Using a
finite element manner, Zheng and Kessissoglou [8]
investigated the natural frequencies and the mode shapes
of a cracked beam. Rizos et al. [9] considered the flexural
vibrations of a cantilever beam with surface crack. Sahoo
and Maity [10] offered the hybrid Neuro-Genetic
Algorithm (GA) to study crack parameters. Vakil-
Baghmisheh et al. [11,12] investigated location and depth
of cracks by utilizing the GA algorithm and hybrid
techniques that compounded Nelder-Mead (NM) and
Particle Swarm Optimization (PSO). Patil and Maiti [13]
proposed the Transfer Matrix Technique for measurement
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of locations of multiplex cracks using the measurement of
natural frequencies. Rosales et al. [14] developed a
technique to solve the inverse problem of crack location
by compounding neural network methods with power
series. Moezi et al. [15] precisely evaluated the crack
location and depth in the beam using the Modified
Cuckoo Optimization Algorithm. Nandwana and Maiti
[16] explained crack discovery in a stepped beam with
cracks, using models such as torsional spring. Lele and
Maiti [17] developed a technique for short beams by
utilizing measured frequencies to recognize the crack.
Viola et al. [18] studied the cracked beam by obtaining
the stable mass and stiffness matrices. Rezanezhad et al.
[19] used the extended finite element method (XFEM),
and modeled crack growth in a natural porous environ-
ment (like Fontainebleau sandstone).

Investigation of crack-location of 3D and 2D piezoelec-
tric structures by utilizing XFEM methodology in the
inverse and the direct problem are presented in
Ref. [20,22-25]. Rabczuk and Belytschko [26] presented
a novel technique for treating crack propagation by
particle methods. Also, a geometrically non-linear three-
dimensional cohesive crack was expressed using the
extended element-free Galerkin method for reinforced
concrete structures [27]. Ghasemi et al. [28,29] investiga-
ted the behavior of flexoelectric composites using the
computational design method, location Isogeometric
Analysis (IGA), and point-wise density mapping techni-
ques. Also, Ghasemi et al. [30,31] studied probabilistic
multi-constraints optimization of cooling channels in
ceramic matrix composites (CMC) and a reinforcement
distribution optimizer based on Non-uniform Rational B-
spline (NURBS) as a methodology for decreasing
interfacial stresses in sandwich beams. Talebi et al. [32]
presented multiscale modeling of three-dimensional crack
and dislocation propagation. Zhou et al. [33-35]
presented a Phase-Field Model (PFM) for simulating
complex crack patterns including crack propagation,
branching, and coalescence in rock and poroelastic media
using an implicit time integration scheme and the
Newton—Raphson iteration in commercial finite element
software COMSOL. In previous research, the applied
techniques were extended for crack recognition in beams.
Therefore, various methods and algorithms have been
used in recent years to identify the presence of cracks in
beam structures. Table 1 presents a short review of some
researches and their applied techniques. In this paper, a
procedure is applied to evaluate the locations and depths
of cracks in cantilever beams, which improves the
precision of crack detection. In this study, new hybrid
algorithms are utilized for crack detection of cantilever
beams. These triple hybrid algorithms combine GA, PSO,
Grey Wolf Optimization (GWO), and Firefly Algorithm
(FA). These algorithms are used to minimize the cost
function to detect the locations and depths of cracks in
cantilever beams. In other words, this paper uses Particle
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Swarm Optimization-Genetic ~ Algorithm-Grey ~Wolf
Optimization  (PSO-GA-GWO), Particle = Swarm
Optimization-Genetic ~ Algorithm-Firefly = Algorithm
(PSO-GA-FA), and Particle Swarm Optimization-Grey
Wolf Optimization-Firefly Algorithm (PSO-GWO-FA)
algorithms for evaluating tasks to obtain the best results.
Finally, the results obtained from these triple algorithms
are compared with other algorithms such as GA, GWO,
FA, PSO, and Modified Particle Swarm Optimization
(MPSO).

2 Modelling of the cracked beam

In this paper, the cantilever beam is considered as shown
in Fig. 1. This beam has length “L”, width “b”, depth of
the crack “a” at changeable location L,, and thickness
“h”. The flexibility matrix is represented via stress
intensity factors, and the existence of a transverse surface
crack affects the dynamic efficiency of the construction.
The relation between the stress intensity factors and the
strain energy release rates at the crack segment has been
presented by Jena and Parhi [36]. Also, by considering
the reverse of the flexibility matrix [1], the local stiffness
matrix can be obtained. The differential equations of the
free vibration of an Euler-Bernoulli beam can be
determined as:

»rw PW
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olox: = e @)

Equation (1) applies to transverse vibration, and Eq. (2)
applies to the longitudinal vibration; m is the unit mass of
the length of the beam; W and V demonstrate the
transverse and longitudinal movements; p is the density.
The responses of the transverse vibration and the
longitudinal vibration are determined according to the
method applied in Ref. [37]. The cracked beam is
separated into two segments of left and right (x € [0,L,])
and x € (L,L]). Therefore, we have:

A
Wi (x) =Cy, cosh (Tx) + Cstinh(

A
+CR3cos(fx)+CR4sin( , (3a)

A
W, (x) =C,,cosh (fx) ; Cusinh(
A
+ C15C08 (Tx) + Cusin( , (3b)

Vi () = Crscos (/1%) + Cagsin (/1%) (4a)
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Table 1 A summary review of recent developments in crack identification of beam structures

author target applied technique results constraint

Ghadimi and using modified extreme learning modified ELM rapid convergency in estimating N/A

Kourehli [38] machine the crack

Ghadimi and using extreme learning machine ELM fast approach in detection crack in considering uncracked elements

Kourehli [39] spite of noisy data as crack with low value of crack
depth ratio

Prawin and using baseline free algorithm Fourier power spectrum good approach by using an N/A

Rama Mohan enhanced spatial fourier power

Rao [40] spectrum

Ghadimi and using ELM and LSM for detect ~ ELM and least square support reliable tool to accurately identify LS-SVM has better accuracy than

Kourehli [41] crack in beam structures under vector machine

moving mass
Samir et al. [42]
method and cuckoo search

algorithm in CFRP

Khatir et al. [43] using PSO-FEM method PSO
Wimarshana using entropy method in detection entropy method
et al. [44] of breathing cracks in a beam

Wei et al. [45] using vibration data improved PSO

Khatir et al. [46] using teaching—learning-based

optimization algorithm
using frequency response function
and bat

Zenzen et al.
[47]

Wang et al. [48]  using bayesian inference and

teaching—learning optimization

FRF method, BAT algorithms

Bayesian inference

cracks in beam structures under ELM in detection of crack

moving mass

using orthogonal decomposition orthogonal decomposition method POD-RBF-CS and POD-RBFGA It does not stabilize when noise
and cuckoo search

have good function in prediction
crack size and location

excellent estimation of the crack

depth and location of cantilever
beam and 2D frame

levels are higher than 6%.

N/A

failure to detect cracks with low
excitation frequency with entropy
method
is effective only with
measurement noise

N/A

good function by using this
method in detection breathing
crack

detection of crack in beam, truss
and plate by improved PSO
high accuracy of TLBO in
detection of crack

high precision and computational increase of number of degrees of
time of BAT algorithm freedom leads to high
computational costs

higher precise in detection of  failure to quantify identification

closed-form solution of vibration crack location than detection of of crack
modes depth in beams with multiple
cracks
Chinka using mode shape curvatures and frequency-mode shape using frequency /mode shape N/A
et al. [49] natural frequencies based damage detection technique
(FMBDD) method for easily
achieving accurate results
Wu et al. [50] using homotopy analysis homotopy analysis algorithm  HDI, FPDI and MC methods all N/A
algorithm acheived good accuracy in
detection of crack
Broumand [51] using extended finite element  crack detection based on residual CDRE method has higher N/A
concepts for multiple crack  error (CDRE) and crack detection accuracy in crack detection than
detection in 2D elastic continua based on stiffness residual CDSR method.
(CDSR) methods
Zainud-Deen detection angular crack and its  hybrid finite difference frequency crack location, width, and depth N/A
etal. [21] location in a conductor system domain -PSO can be successfully reconstructed
Violaetal. [18] development of the stiffness and finite element method using modal test data for N/A

the consistent mass matrices for a
two-node cracked Timoshenko

identifying cracks in structures

beam
al\ Jh
L b
T 1 I
L

Fig. 1 The shape of the cantilever beam containing crack.

VL (x) = Crscos (/lf) + CLesin (/lf). (4b)
L L

The term A (in Egs. (3a), (3b), (4a), and (4b)) is

dependent on the natural frequency of the beam, (i.e.,

A = pAw?/El). Also, Cy; = 1:6, and C; ; = 1:6 are the

unknown coefficients that can be defined using suitable

boundary conditions and the continuity conditions at the

cracked section. The relations can be expressed according
to Ref. [37]. The equation of the system can be shown as
|B| = 0 that contains the local stiffness matrix [36]. This is
a function of the non-dimensional crack depth, natural
frequency (w), and function of the relative locations of
the crack («). Matrix B is shown explicitly in Appendix.

3 Objective function formulation for
locating a crack by utilizing optimization
algorithms

As mentioned in the above sections, recognizing varia-
tions of the natural frequencies of the cracked beams for a
special location and depth of crack is an easy process.
Evaluating the unknown location and depth of cracks
repeatedly by utilizing an optimization algorithm is the
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purpose of the inverse technique, which leads to
calculation of the real and the evaluated natural
frequencies. The minimized objective function of the
inverse problem can be considered as:
: " d_ s
Minf(d)= )" [ei(f=1)]- 5)
The optimization algorithm searches the location and
depth of cracks in a manner in which the summation of
variations among the evaluated and measured frequencies
is minimized to zero. According to the restriction, it is
assumed 0 <a <hand 0 < L1 < L. In Eq. (5), “m” is the
number of natural frequencies, “p,” is the ith weighting
factor, “f* is the ith demanded natural frequency of a
cracked beam, “f?” refers to the ith natural frequency that
is evaluated by the algorithm and utilized to estimate the
objective function. In this paper, the first three natural
frequencies of a cracked beam (FNF, SNF, and TNF) are
used as inputs of the crack discovery problem to measure
the objective function. Also, the weighting factors, ¢,’s,

1
are considered as 7 [52,53]. PSO is an evolutionary

optimization method offered by Kennedy and Eberhart
[54]. PSO uses a society-dependent universal probe
method in which every single particle behaves as particle
of the flock to apportion data between them such as to
obtain a universal optimum. GA is a heuristically probing
algorithm based on natural selection. GA forms an
intelligent expansion of a random probe within a deter-
mined search area to solve a problem. This algorithm uses
a society of persons that are subject to mutability-
compelling factors like mutation and crossover. Also, a
compatibility function is utilized to appraise persons and
reproductive achievement changes with compatibility. FA
is based on the behavior of fireflies, a type of insect. Most
fireflies produce rhythmical and partial sparkles [55,56].
GWO has been widely applied to many optimization
problems due to its advantages over other swarm intelli-
gence techniques. Moreover, the leadership, hierarchy,
and quarrying craft of grey wolves in nature are
displayed. Also, four kinds of grey wolves denoted as
omega (w), delta (9), beta (8), and alpha (@) are offered to
model the hierarchy [57].

3.1 Hybrid algorithms functions

This section explains the new hybridized algorithms
involving PSO, GA, FA, and GWO algorithms. The
proposed triple hybrid algorithms (PSO-GA-FA, PSO-
GWO-FA, PSO-GA-GWO) have been extended without
changing the basic operation of the PSO, FA, GA, and
GWO algorithms. It is already known that the PSO
algorithm achieves better results in almost all real-world
problems; but existence of a solution is needed to reduce
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the possibility that the PSO algorithm will become
trapped in a local minimum. In the proposed method, the
GWO, FA, and GA algorithms are utilized to support the
PSO algorithm to decrease the likelihood of falling into a
local minimum.

3.1.1 Particle Swarm Optimization-Genetic Algorithm-
Firefly Algorithm

The intention of combining three evolutionary algorithms
PSO, GA, and FA to create the hybrid PSO-GA-FA is
based on natural selection. GA that makes the ‘offspring’
seize the favored genetic structure from parents. In this
hybrid algorithm, PSO obtains a good outcome for every
individual, and these experiences aid FA to get a better
survival chance in the symbiotic interplay. As the basic
actions in the natural selection repeatedly do, it requires
to run the GA, PSO, and FA algorithms consecutively to
simulate these actions. Figure 2 presents the schematic
view of the proposed PSO-GA-FA algorithm. As can be
seen, this method consists of 3 main phases (PSO, GA,
and FA), which are executed consecutively.

3.1.2 Particle Swarm Optimization-Genetic Algorithm-
Grey Wolf Optimization

The theory of compounding GWO, PSO, and GA are
considered for dominating problems of the algorithms
mentioned above and getting the accurate response for
recognition of a crack in a cantilever beam. PSO-GA-
GWO together can provide better results than PSO,
GWO, and GA individually. Firstly, determining the
objective function, variables, and any parameter of the
algorithm is essential. This method searches the optimum
answer till the stopping criteria are found, or repetition
ends location. When appraisal and repetition of PSO
ends, GA begins acting by solving optimization problems
involving people selection, crossover, and mutation.
Thereafter, GWO starts its action. The sequence of
actions of the suggested algorithm PSO-GA-GWO is
shown in Fig. 3.

3.1.3 Particle Swarm Optimization-Grey Wolf
Optimization-Firefly Algorithm

By embedding the GWO and FA operators in PSO,
equilibrium among the discovery and extraction capabi-
lity is amended better. First of all, the objective function,
variables, and any algorithm parameter should be
determined. This procedure searches the optimum values
of objective function by updating the location and
velocity of the results till the stopping criteria are found,
or repetition ends. When assessment and repetition of the
results ends in PSO, GWO begins to act and carry on to
solve the optimization problem. Then, FA starts its action
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Fig.2 PSO-GA-FA flowchart.

by assessing fireflies’ brightness and updating them until
the repetition ends. The process of optimizing with the
PSO-GWO-FA algorithm is displayed in Fig. 4. Also, the
pseudocode of the proposed algorithms is described in
Pseudocode 1. On this pseudocode, first main subroutine
runs and then first PSO subroutine runs and by attention
to the algorithms, the following subroutine runs.

4 Discussion

The geometrical and mechanical properties of the

considered beam are introduced in Table 2. The natural
frequencies of the Euler-Bernoulli beam for various
locations and depths of cracks are presented in Table 3. In
this paper, the method applied in Ref. [58]. is used to
determine the natural frequencies of a cracked Euler-
Bernoulli beam. In this section, the technique of detecting
cracks in the cantilever beam is presented by the
proposed algorithms. It aims to detect location and depth
of a crack by optimizing the objective function based on
the natural frequencies of the beam. Thus, the results of
the crack detection in the cracked beams are reported by
the presented algorithms. In this paper, five algorithms
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Fig.3 PSO-GA-GWO flowchart.

(GA, GWO, FA, PSO, and MPSO) were compared.

Three sets of the control parameters are chosen for
evaluating various strategies of the proposed algorithms,
as explained in Table4. In each set, the number of
populations is different, so sets A, B, and C equal 10, 21,
and 32, respectively. The control parameters of the PSO
algorithm such as inertia weight parameter, W, Cognitive
parameter, C,, and Social parameter, C,, have the same
values in all sets and other parameters have different
values. To compare the achieved results of the present
study with the results of Jena and Parhi [36], the
properties of the cantilever beam based on their data are
considered. The proposed triple hybrid algorithms are
investigated by comparison with the results of Jena and
Parhi [36] for six cases. These comparisons are shown in

Tables 5 and 6 for set A. Tables 7 and 8 show the results
of PSO, GA, FA, and GWO algorithms in identification
of crack location and depth for set A. To demonstrate the
effectiveness of the proposed triple hybrid algorithms, a
performance index is defined. This index reports the
variance between evaluated and actual values of
parameters. This performance index is defined as follows:

Yoerror =

(6)

D,—D
;‘XIOO.
D,

The index is applied to comparing the results from the
proposed algorithms. Tables 5 and 6 suggest that the
performance of the PSO-GA-FA algorithm is better than
the PSO-GA-GWO algorithm and that is better than the
PSO-GWO-FA algorithm. The results show that the
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Fig. 4 PSO-GWO-FA flowchart.

Table 2 Material properties and geometry of the beam

parameter value
height, 6 mm
length, L 800 mm
Poisson’s ratio, u 0.33
density, p 2.8 g/cm3
width, W 50 mm
Young’s modulus, £ 72.4 GPa

average calculation errors for crack location and depth
equivalent, respectively, are 2.04 x 107°% and 2.79 x
107'% for the PSO-GA-FA algorithm while reaching
1.1 x 10°% and 2.62 x 107'% for the PSO-GA-GWO

algorithm, 1.81 x 102% and 1.54 x 10"'% for the PSO-
GWO-FA algorithm. Finally, based on findings in this
study, the crack location and depth are more accurately
determined by the proposed algorithms. Also, Tables 7
and 8 indicate that PSO performs better than GWO, and
GWO is higher in convergence GA, with the performance
indexes for crack location and depth equivalent to 2.73 x
10™% and 2.01 x 10"'% for PSO while reaching 4.97 x
10"'% and 9.73 x 107'% for GA, 3.24 x 10 '% and
2.94 x 10 '% for GWO, and 3.25 x 10°% and 2.0 x
107'% for FA.

Figure 5 displays the convergence of algorithms based
on set A for the cracked beam model via the existence of
crack case no. 6. Figure 5(a) clearly shows that FA has a
higher convergence than others. On the other hand,
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Fig. 5(b) illustrates that the PSO-GA-FA algorithm has
the best convergence in comparison with the proposed
algorithm in the identification of the location and depth of
cracks.

Figure 6 shows the convergence characteristics of the

Table 3 The natural frequencies for cracked beam cases

Front. Struct. Civ. Eng. 2022, 16(9): 1127-1140

proposed triple algorithms that have the most errors for
crack detection. In Figs. 7-10, the convergences of the
triple hybrid algorithms for the cracked beam model to
find the crack location and depth for cases no. 2, 4, 8, and
10 are shown for all sets of control parameters. Also, the

Table 4 Variant collection of control parameters to solve the

case no. crack (mm) natural frequencies (Hz) optimization problem of the cracked beam

Loc. Dep. FNF SNF TNF optimization parameters value
1 no crack  no depth 7 45 140 set A set B set C
2 200 1.2 7.699 48.260 135.108 population size 10 21 32
3 200 1.8 7.693 48.258 135.024 inertia weight parameter of PSO, W 0.5 0.5 0.5
4 200 2.4 7.678 48254  134.826 cognitive parameter of PSO, C, 2 2 2
5 400 1.2 7.700 48.248 135.131 social parameter of PSO, C, 2 2 2
6 400 1.8 7.698 48.202 135.131 mutation 0.2 0.3 0.4
7 400 2.4 7.694 48.096 135.131 Crossover 0.8 0.85 0.95
8 600 1.2 7.700 48.256 135.095 y of FA 1 0.9 0.8
9 600 1.8 7.700 48.240 134.964 B, of FA 2 1.9 1.8
10 600 2.4 7.700 48.204 134.657 a of FA 0.2 0.1 03
Note: FNF, SNF, and TNF represent the 1st, 2nd, and 3rd natural maximum number of iterations (max_iter) 100 200 300
frequencies, respectively. _
Table 5 Failure calculation of the location of crack obtained from PSO-GWO-FA, PSO-GA-FA, PSO-GA-GWO, and MPSO for set A
precise value (mm) PSO-GWO-FA PSO-GA-FA PSO-GA-GWO MPSO [36]

Loc. (%error)

Loc. (%error) Loc. (%error) Loc. (%error)

Loc. Dep.
200 1.2 200 (0) 200 (0) 199.999 (0.0005) -
1.8 200 (0) 199.999 (0.0005) 199.999 (0.0005) 200.16 (0.08)
2.4 199.989 (0.0055) 200 (0) 200 (0) 199.88 (0.06)
400 1.2 399.999 (0.00025) 400 (0) 399.999 (0.00025) -
1.8 399.999 (0.00025) 399.999 (0.00025) 400 (0) 400.24 (0.06)
2.4 400 (0) 399.955 (0.0112) 399.999 (0.00025) 399.80 (0.05)
600 1.2 600.505 (0.0841) 600 (0) 599.989 (0.0001) -
1.8 600.047 (0.0078) 600.038 (0.0063) 599.992 (0.0013) 599.76 (0.04)
2.4 599.605 (0.065) 599.999 (0.00016) 600.042 (0.007) 600.18 (0.03)

Table 6 Failure calculation of the depth of crack obtained from PSO-GWO-FA, PSO-GA-FA, PSO-GA-GWO, and MPSO for set A

precise value (mm)

PSO-GWO-FA

Dep. (%error)

PSO-GA-FA
Dep. (%error)

PSO-GA-GWO
Dep. (%error)

MPSO [36]

Dep. (%error)

Loc. Dep.
200 1.2 1.2 (0) 1.19 (0.84) 1.2 (0) -
1.8 1.79 (0.555) 1.8 (0) 1.8 (0) 1.802 (0.11)
24 2.4 (0) 2.39(0.416) 2.39(0.416) 2.398 (0.08)
400 1.2 1.2 (0) 1.19 (0.84) 1.2 (0) -
1.8 1.8 (0) 1.8 (0) 1.79 (0.555) 1.802 (0.11)
2.4 2.39(0.416) 2.4 (0) 2.4 (0) 2.4 (0)
600 1.2 1.2 (0) 1.2 (0) 1.19 (0.84) -
1.8 1.8 (0) 1.8 (0) 179 (0.555) 1.801 (0.05)
2.4 2.39(0.416) 2.39(0.416) 2.4 (0) 2.4 (0)
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Table 7 Failure calculation of the location and depth of crack obtained from PSO and GA algorithms for set A

precise value(mm) PSO GA
Loc. Dep. Loc. (%error) Dep. (%error) Loc. (%error) Dep. (%error)
200 1.2 199.999 (0.0005) 1.2 (0) 199.963 (0.0185) 1.2 (0)
1.8 199.999 (0.0005) 1.8 (0) 204.186 (2.093) 1.77 (1.66)
2.4 199.999 (0.0005) 2.39(0.416) 201.996 (0.988) 2.38 (0.833)
400 1.2 399.999 (0.00025) 1.2 (0) 400.121 (0.030) 1.21 (0.84)
1.8 400 (0) 1.79 (0.555) 400.255 (0.0637) 1.74 (3.333)
2.4 399.999 (0.00025) 2.4(0) 400.142 (0.0355) 2.39 (0.416)
600 1.2 599.999 (0.00016) 1.19 (0.84) 594.201 (0.966) 1.19 (0.84)
1.8 600 (0) 1.8 (0) 600.027 (0.0045) 1.8 (0)
2.4 600.002 (0.0003) 2.4 (0) 598.310 (0.2816) 2.38 (0.84)
Table 8 Failure calculation of the depth and the location of crack obtained from FA and GWO algorithms for set A
precise value (mm) GWO FA
Loc. Dep. Loc. (%error) Dep. (%error) Loc. (%error) Dep. (%error)
200 1.2 200.593 (0.296) 1.19 (0.84) 199.858 (0.071) 1.2 (0)
1.8 200.299 (0.149) 1.79 (0.555) 200.012 (0.006) 1.79 (0.555)
2.4 200.609 (0.304) 2.39 (0.416) 200.113 (0.056) 2.39 (0.416)
400 1.2 399.180 (0.205) 1.2(0) 399.832 (0.042) 1.2 (0)
1.8 395.488 (1.138) 1.8 (0) 400.037 (0.0092) 1.8 (0)
2.4 397.737 (0.565) 2.4(0) 400.213 (0.053) 2.39 (0.416)
600 1.2 600.001 (0.0001) 1.19 (0.84) 600.155 (0.025) 1.2 (0)
1.8 600.960 (0.16) 1.8 (0) 600.143 (0.023) 1.8 (0)
2.4 600.613 (0.102) 2.4(0) 599.951 (0.0081) 2.39 (0.416)
1e+00 1e+00
—FA — PSO-GA-FA
GA PSO-GA-GWO
le-02 GWO g 1 — PSO-GWO-FA
— PSO \\
% 0 l§ le—04
E le-06 E o R
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Fig. 5 Convergence of triple algorithms for case no. 6 for set A: (a) PSO, GA, FA, and GWO algorithms; (b) PSO-GA-FA, PSO-GA-

GWO, and PSO-GWO-FA algorithms.

numerical results of the identification of the crack
location and depth utilizing triple algorithms that are
based on collections A to C are shown in Tables 9 and 10
for cases no. 2, 4, 8, and 10. Finally, Table 11 shows the
best algorithm in each set for all cases.

Table 12 shows the standard deviation (SD) values of
the best cost obtained after five independent
performances of the PSO-GWO-FA algorithm and the
computational time required for each run. It should be

noted that all the results obtained and reported in Tables
and Figures are based on assumptions of Table 4. Table 4
and the obtained results show that the proposed
algorithms have better results when population and
number of iterations are both larger. Also, population
increase is an effective parameter in improving the
performance of algorithms; increase in the number of
iteration causes better convergency in the proposed
algorithms.
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Fig. 6 Convergence of proposed triple algorithms for set A that
have most errors for crack detection (PSO-GWO-FA: case no.
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le—01 .
— PSO-GWO-FA 5 Conclusions
PSO-GA-GWO
le-02 — PSO-GA-FA

In this study, novel optimization algorithms are presented

;5; ke-03 : for crack detection in a cantilever Euler-Bernoulli beam.
; le—04 Methods using PSO-GWO-FA, PSO-GA-GWO, and
;f: PSO-GA-FA algorithms were created by modifying and
le-05 improving PSO, GA, FA, and GWO algorithms to
e enhance their accuracy and speed of convergence. This

paper explores variations between evaluated frequencies
by the proposed algorithm and the measured frequencies
for a cracked beam. The results of these proposed hybrid
algorithms is compared with results of GA, GWO, FA,
PSO, and MPSO. It is shown that the PSO-GA-FA
algorithm in set A, the PSO-GWO-FA algorithm in set B,
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Fig. 7 Convergence of proposed triple hybrid algorithms for case no. 2: (a) set A, (b) set B and (c) set C.
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Fig. 8 Convergence of proposed triple hybrid algorithms for case no. 4: (a) set A, (b) set B and (c) set C.
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Fig. 9 Convergence of proposed triple hybrid algorithms for case no. 8: (a) set A, (b) set B and (c) set C.
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Fig. 10 Convergence of proposed triple hybrid algorithms for case no. 10: (a) set A, (b) set B and (c) set C.

Table 9 Numerical results of the crack detection by proposed triple
algorithms for cases nos. 2 and 8

Table 10 Numerical results of the crack detection by proposed triple
algorithms for cases nos. 4 and 10

case no. set algorithm predicted crack (mm) case no. set algorithm predicted crack (mm)
Loc. Dep. Loc. Dep.
(error%) (error%) (error%) (error%)
case no. 2 set A PSO-GWO-FA 200 1.2 case no. 4 set A PSO-GWO-FA 199.989 24
0 0 (0.005) 0)
PSO-GA-GWO 199.999 1.2 PSO-GA-GWO 200 2.39
(0.0005) 0) (0) (0.416)
PSO-GA-FA 200 1.19 PSO-GA-FA 200 2.39
0) (0.84) 0) (0.416)
set B PSO-GWO-FA 200 1.2 set B PSO-GWO-FA 200 24
(0) (0) (U] U]
PSO-GA-GWO 200 1.19 PSO-GA-GWO 199.999 2.4
(0) (0.84) (0.0005) 0)
PSO-GA-FA 200 1.19 PSO-GA-FA 199.999 24
0) (0.84) (0.0005) 0)
set C PSO-GWO-FA 200 1.2 set C PSO-GWO-FA 200 2.4
(0) () 0 (U]
PSO-GA-GWO 200 1.2 PSO-GA-GWO 199.999 24
(0) (0 (0.0005) 0
PSO-GA-FA 200 1.2 PSO-GA-FA 199.999 24
© © © ©
case no. 8 set A PSO-GWO-FA 599.908 1.19 case no. 10 set A PSO-GWO-FA 599.605 2.39
(0.0153) (0.84) (0.065) (0.416)
PSO-GA-GWO 599.989 1.19 PSO-GA-GWO 600.042 24
(0.0001) (0.84) (0.007) (0)
PSO-GA-FA 600 1.2 PSO-GA-FA 599.999 2.39
0) 0) (0.00016) (0.416)
set B PSO-GWO-FA 600 1.2 set B PSO-GWO-FA 600 24
0) (O] (0) 0
PSO-GA-GWO 599.999 1.19 PSO-GA-GWO 600 2.4
(0.00016) (0.84) 0) 0)
PSO-GA-FA 599.997 1.19 PSO-GA-FA 600 2.4
(0.0005) (0.84) 0) 0)
set C PSO-GWO-FA 600 1.2 set C PSO-GWO-FA 600 24
0 (0) (U] ©
PSO-GA-GWO 599.999 1.19 PSO-GA-GWO 599.999 2.39
(0.00016) (0.84) (0.00016) (0.416)
PSO-GA-FA 599.999 1.19 PSO-GA-FA 599.999 2.39
(0.00016) (0.84) (0.00016) (0.416)
convergency for all cases. Therefore, it is concluded that Notations

the PSO-GA-FA and the PSO-GWO-FA algorithms have
good accuracy in crack detection. The presented results
show that the error in the crack detection using the
proposed triple hybrid algorithms is approximately zero
and the proposed algorithms provide improved accuracy
relative to other algorithms, including those presented in
previous studies in the identification of crack location and
depth. These triple hybrid algorithms can be used for
crack detection in structures under complex loadings.

PSO: Particle Swarm Optimization

GA: Genetic Algorithm

FA: Firefly Algorithm

GWO: Grey Wolf Optimization

EI: Flexural rigidity

PSO-GA-FA: Particle Swarm Optimization-Genetic Al-
gorithm-Firefly Algorithm

PSO-GWO-FA: Particle Swarm Optimization-Grey
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Wolf Optimization-Firefly Algorithm
PSO-GA-GWO: Particle Swarm Optimization-Genetic
Algorithm-Grey Wolf Optimization

Table 11 Best algorithm to find crack detection

case no. crack (mm) best algorithm

Loc. Dep. set A set B set C
2 200 1.2 I 111 I-1I-111
3 200 1.8 I-11 1 I-II-111
4 200 2.4 11 111 111
5 400 1.2 II-I11 I-1IT 111
6 400 1.8 -1 -1 I-1I-1IT
7 400 2.4 I 111 I
8 600 1.2 1 I I-I11
9 600 1.8 I I I
10 600 2.4 I I-II-111 111

Note: I = PSO-GA-FA, II = PSO-GA-GWO, III = PSO-GWO-FA.

Table 12 SD of best cost and computational time of PSO-GWO-FA
algorithm

case no. set time Std
2 A 68.19 1.13e-08
B 439.5 7.00e—09
C 1439.22 2.40e-09
3 A 69.59 4.61e—0.8
B 419.29 4.28e—08
C 1434.06 1.73e—08
4 A 61.62 1.22e-0.7
B 381.37 4.52e—08
C 1480.20 3.14e-14
5 A 54.99 6.60e—08
B 394.55 2.09¢—06
C 1473.96 1.25¢-13
6 A 59.22 4.31e-10
B 438.62 9.93¢-13
C 1381.80 9.42e-15
7 A 61.71 9.71e—09
B 430.29 5.86e—15
C 1259.75 0
8 A 55.29 2.92¢—09
B 431.64 3.82e—12
C 1322.15 3.92e-11
9 A 53.49 3.09¢—08
B 404.75 1.14e-10
C 1364.90 1.99¢-11
10 A 58.19 7.09¢-07
B 388.91 6.97¢-08
C 1321.61 2.13e-11
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Appendix

B-Matrix is defined as:

0 0 O 0 0 0 0 0O 1 0 0 O
1 0 1 o o0 o0 o o0 0 o0 0 O
01 O 1 0 0 0 0O 0 0 0 O
0 0 O 0 0 0 0 0 0 0 -85 S,
0 0 O o S5 S, =-S5 -S 0 0 0 O
0 0 O o S, S5 S =-S5 0 0 0 O
00 0 O 0 0 0 0 § S -5 -5
So Sio S S =Sy =S =Sy =S, 0 0 0 O
So Sio =Su =S =89 =S Sy S, 0 0 0 O
S S S =Su =S80 =S =S, S 0 0 0 O
Si3 8 Sis Sie Sz Sis Sio Sw Su Su Su Sy
Sy Sy Sz Sas S Sn Su Sn Si Su i Sse

where

S, =sin H, S, =cos H,, S5 = cosh H,,

S,=sinh H,, S5 =cos H,, S =sin H,,

S;=cos (ax H,), Sg = sin (a X H,), Sy = cosh (a X H,),

S =sinh (ax H,), S, =cos (ax H,), S, =sin (ax H,),
M,=HxP,,M,=H,xP,, My=H,XP,,

M, =HXP,, Ms= H,X P, Si3= M;X S,

Sy =M XSo, S15=— M XS5, 816 = M X Sy,

Si7==M; XS, S15=— M X85, S19= M;X S5,

S =—M; XS, S =(— M;xSg— M, X P, XS5),

Sy =(M,XxS+ M;xP,XS;),

Sy = My X Sg, Say = — My XS5, Sas = (M3 XS+ M3 X P,X
So),

Sx = (M3 XSy + M3 X P3X S0), Sy7 = (— M3x S, — MZ %
PyXS11), Sos = (M XSII_M52XP3 X S12),

Sy == M3X S0, S30 == M3X 8y, S5 = M3 XS,

S == M3XS81, 833 = P3X 87, S34 = P3 X S,

AE
S35 =— P3XS7, 83 =— P3XSs, Plzm,
AE El EI "
P2:_9P3:_5 4T 55
KIZ LKZZ L2K21
References

1. Dimarogonas A, Papadopoulos C. Vibration of cracked shafts in
bending. Journal of Sound and Vibration, 1983, 91(4): 583—593

2. Qian G L, Gu S N, Jiang J S. The dynamic behaviour and crack
detection of a beam with a crack. Journal of Sound and Vibration,
1990, 138(2): 233-243

3. Nahvi H, Jabbari M. Crack detection in beams using experimental
modal data and finite element model. International Journal of
Mechanical Sciences, 2005, 47(10): 1477—-1497

4. Chondros T, Dimarogonas A, Yao J. A continuous cracked beam
vibration theory. Journal of Sound and Vibration, 1998, 215(1):
17-34

5. Kim J T, Stubbs N. Crack detection in beam-type structures using
frequency data. Journal of Sound and Vibration, 2003, 259(1):
145-160



10.

11.

12.

13.

14.

18.

19.

20.

21.

22.

23.

Amin GHANNADIASL & Saeedeh GHAEMIFARD.

. Orhan S. Analysis of free and forced vibration of a cracked

cantilever beam. NDT & E International, 2007, 40(6): 443—450

. Saavedra P, Cuitino L. Crack detection and vibration behavior of

cracked beams. Computers & Structures, 2001, 79(16): 1451-1459

. Zheng D Y, Kessissoglou N. Free vibration analysis of a cracked

beam by finite element method. Journal of Sound and Vibration,
2004, 273(3): 457475

. Rizos P, Aspragathos N, Dimarogonas A. Identification of crack

location and magnitude in a cantilever beam from the vibration
modes. Journal of Sound and Vibration, 1990, 138(3): 381—-388
Sahoo B, Maity D. Damage assessment of structures using hybrid
neuro-genetic algorithm. Applied Soft Computing, 2007, 7(1):
89-104

Vakil Baghmisheh M T, Peimani M, Sadeghi M H, Ettefagh M M,
Tabrizi A F. A hybrid particle swarm—Nelder—-Mead optimization
method for crack detection in cantilever beams. Applied Soft
Computing, 2012, 12(8): 2217-2226

Vakil-Baghmisheh M T, Peimani M, Sadeghi M H, Ettefagh M M.
Crack detection in beam-like structures using genetic algorithms.
Applied Soft Computing, 2008, 8(2): 1150—-1160

Patil D, Maiti S. Experimental verification of a method of
detection of multiple cracks in beams based on frequency
measurements. Journal of Sound and Vibration, 2005, 281(1-2):
439-451

Rosales M B, Filipich C P, Buezas F S. Crack detection in beam-
like structures. Engineering Structures, 2009, 31(10): 2257-2264

. Moezi S A, Zakeri E, Zare A, Nedaei M. On the application of

modified cuckoo optimization algorithm to the crack detection
problem of cantilever Euler—Bernoulli beam. Computers &
Structures, 2015, 157: 42-50

. Nandwana B, Maiti S. Detection of the location and size of a crack

in stepped cantilever beams based on measurements of natural
frequencies. Journal of Sound and Vibration, 1997, 203(3):
435-446

. Lele S, Maiti S. Modelling of transverse vibration of short beams

for crack detection and measurement of crack extension. Journal of
Sound and Vibration, 2002, 257(3): 559—583

Viola E, Federici L, Nobile L. Detection of crack location using
cracked beam element method for structural analysis. Theoretical
and Applied Fracture Mechanics, 2001, 36(1): 23—-35

Rezanezhad M, Lajevardi S A, Karimpouli S. An investigation on
prevalent strategies for XFEM-based numerical modeling of crack
growth in porous media. Frontiers of Structural and Civil
Engineering, 2021, 15(4): 914-936

Rungamornrat J, Chansavang B, Phongtinnaboot W, Van C N.
Investigation of Generalized SIFs of cracks in 3D piezoelectric
media under various crack-face conditions. Frontiers of Structural
and Civil Engineering, 2020, 14(2): 280—298

Zainud-Deen S H, Hassen W M, Awadalla K H. Crack detection
using a hybrid finite difference frequency domain and particle
swarm optimization techniques. In: 2009 National Radio Science
Conference. Cairo: IEEE, 2009, 1-8

Nanthakumar S S, Lahmer T, Rabczuk T. Detection of flaws in
piezoelectric structures using extended FEM. International Journal
for Numerical Methods in Engineering, 2013, 96(6): 373—389
Nanthakumar S S, Lahmer T, Zhuang X, Zi G, Rabczuk T.

Crack detection using triple hybrid algorithms

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

1139

Detection of material interfaces using a regularized level set
method in piezoelectric structures. Inverse Problems in Science
and Engineering, 2016, 24(1): 153-176

Nanthakumar S S, Lahmer T, Rabczuk T. Detection of multiple
flaws in piezoelectric structures using XFEM and level sets.
Computer Methods in Applied Mechanics and Engineering, 2014,
275:98-112

Samanta S, Nanthakumar S S, Annabattula R K, Zhuang X.
Detection of void and metallic inclusion in 2D piezoelectric
cantilever beam using impedance measurements. Frontiers of
Structural and Civil Engineering, 2019, 13(3): 542-556

Rabczuk T, Belytschko T. Cracking particles: A simplified
meshfree method for arbitrary evolving cracks. International
Journal for Numerical Methods in Engineering, 2004, 61(13):
2316-2343

Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H. A geometrically
non-linear three-dimensional cohesive crack method for reinforced
concrete structures. Engineering Fracture Mechanics, 2008, 75(16):
4740-4758

Ghasemi H, Park H S, Rabczuk T. A level-set based IGA
formulation for topology optimization of flexoelectric materials.
Computer Methods in Applied Mechanics and Engineering, 2017,
313:239-258

Ghasemi H, Park H S, Rabczuk T. A multi-material level set-based
topology optimization of flexoelectric composites. Computer
Methods in Applied Mechanics and Engineering, 2018, 332: 47—62
Ghasemi H, Kerfriden P, Bordas S P A, Muthu J, Zi G, Rabczuk T.
Interfacial shear stress optimization in sandwich beams with
polymeric core using non-uniform distribution of reinforcing
ingredients. Composite Structures, 2015, 120: 221-230

Ghasemi H, Kerfriden P, Bordas S P A, Muthu J, Zi G, Rabczuk T.
Probabilistic multiconstraints optimization of cooling channels in
ceramic matrix composites. Composites. Part B, Engineering,
2015, 81: 107-119

Talebi H, Silani M, Rabczuk T. Concurrent multiscale modeling of
three dimensional crack and dislocation propagation. Advances in
Engineering Software, 2015, 80: 82-92

Zhou S, Rabczuk T, Zhuang X. Phase field modeling of quasi-
static and dynamic crack propagation: COMSOL implementation
and case studies. Advances in Engineering Software, 2018, 122:
31-49

Zhou S, Zhuang X, Zhu H, Rabczuk T. Phase field modelling of
crack propagation, branching and coalescence in rocks. Theoretical
and Applied Fracture Mechanics, 2018, 96: 174—192

Zhou S, Zhuang X, Rabczuk T. A phase-field modeling approach
of fracture propagation in poroelastic media. Engineering Geology,
2018, 240: 189-203

Jena P K, Parhi D R. A modified particle swarm optimization
technique for crack detection in Cantilever Beams. Arabian Journal
for Science and Engineering, 2015, 40(11): 3263—-3272
Ghannadiasl A, Ajirlou S K. Analytical solution of dynamic
analysis of cracked Euler—Bernoulli beam with elastic boundary
condition by GFM. Romanian Journal of Acoustics and Vibration,
2018, 15(2): 100-107

Ghadimi S, Kourehli S S. Crack detection of structures using
modified extreme learning machine (MELM). Inverse Problems in



1140

39.

40.

41.

42.

43.

44,

45.

46.

47.

Science and Engineering, 2017, 25(7): 995-1013

Ghadimi S, Kourehli S S. Multiple crack identification in Euler
beams using extreme learning machine. KSCE Journal of Civil
Engineering, 2017, 21(1): 389-396

Prawin J, Rama Mohan Rao A. Reference-free breathing crack
identification of beam-like structures using an enhanced spatial
Fourier power spectrum with exponential weighting functions.
International Journal of Structural Stability and Dynamics, 2019,
19(2): 1950017

Ghadimi S, Kourehli S S. Multi cracks detection in Euler-Bernoulli
beam subjected to a moving mass based on acceleration responses.
Inverse Problems in Science and Engineering, 2018, 26(12):
1728-1748

Samir K, Brahim B, Capozucca R, Abdel Wahab M. Damage
detection in CFRP composite beams based on vibration analysis
using proper orthogonal decomposition method with radial basis
functions and cuckoo search algorithm. Composite Structures,
2018, 187: 344353

Khatir S, Dekemele K, Loccufier M, Khatir T, Abdel Wahab M.
Crack identification method in beam-like structures using changes
in experimentally measured frequencies and Particle Swarm
Optimization. Comptes Rendus Mécanique, 2018, 346(2): 110—120
Wimarshana B, Wu N, Wu C. Application of entropy in
identification of breathing cracks in a beam structure: Simulations
and experimental studies. Structural Health Monitoring, 2018,
17(3): 549-564

Wei Z, Liu J, Lu Z. Structural damage detection using improved
particle swarm optimization. Inverse Problems in Science and
Engineering, 2018, 26(6): 792—810

Khatir S, Abdel Wahab M, Boutchicha D, Khatir T. Structural
health monitoring using modal strain energy damage indicator
coupled with teaching-learning-based optimization algorithm and
isogoemetric analysis. Journal of Sound and Vibration, 2019, 448:
230246

Zenzen R, Belaidi I, Khatir S, Abdel Wahab M. A damage
identification technique for beam-like and truss structures based on
FRF and Bat Algorithm. Comptes Rendus Mécanique, 2018,

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

Front. Struct. Civ. Eng. 2022, 16(9): 1127-1140

346(12): 1253-1266

Wang T, Noori M, Altabey W A. Identification of cracks in an
Euler—Bernoulli beam using Bayesian inference and closed-form
solution of vibration modes. Proceedings of the Institution of
Mechanical Engineers, Part L: Journal of Materials: Design and
Applications, 2021, 235(2): 421-438

Chinka S S B, Putti S R, Adavi B K. Modal testing and evaluation
of cracks ofdn cantilever beam using mode shape curvatures and
natural frequencies. Structures, 2021, 32(1): 1386—1397

Wu Z, Huang B, Tee K F, Zhang W. A novel stochastic approach
for static damage identification of beam structures using homotopy
analysis algorithm. Sensors (Basel), 2021, 21(7): 2366

Broumand P. Inverse problem techniques for multiple crack
detection in 2D elastic continua based on extended finite element
concepts. Inverse Problems in Science and Engineering, 2021,
29(12): 1702—1728

Casciati S. Stiffness identification and damage localization via
differential evolution algorithms. Structural Control and Health
Monitoring, 2008, 15(3): 436—449

Casciati S, Elia L. Potential of two metaheuristic optimization tools
for damage localization in civil structures. Journal of Aerospace
Engineering, 2017, 30(2): B4016012

Eberhart R. Particle
Proceedings of ICNN'95—International Conference on Neural
Networks. Perth: IEEE, 1995, 1942—1948

Yang X S. Firefly algorithm, stochastic test functions and design

Kennedy J, swarm optimization. In:

optimisation. International Journal of Bio-inspired Computation,
2010, 2(2): 78-84

Yang X S. Firefly algorithms for multimodal optimization. In:
International Symposium on Stochastic Algorithms. Berlin:
Spriner, 2009, 169—178

Mirjalili S, Mirjalili S M, Lewis A. Grey wolf optimizer. Advances
in Engineering Software, 2014, 69: 46—61

Ghannadiasl A, Khodapanah Ajirlou S. Forced vibration of multi-
span cracked Euler-Bernoulli beams using dynamic Green
function formulation. Applied Acoustics, 2019, 148: 484—494



	1 Introduction
	2 Modelling of the cracked beam
	3 Objective function formulation for locating a crack by utilizing optimization algorithms
	3.1 Hybrid algorithms functions
	3.1.1 Particle Swarm Optimization-Genetic Algorithm-Firefly Algorithm
	3.1.2 Particle Swarm Optimization-Genetic Algorithm-Grey Wolf Optimization
	3.1.3 Particle Swarm Optimization-Grey Wolf Optimization-Firefly Algorithm


	4 Discussion
	5 Conclusions
	Notations
	Appendix
	References

