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ABSTRACT The compressive strength of self-compacting concrete (SCC) needs to be determined during the
construction design process. This paper shows that the compressive strength of SCC (CS of SCC) can be successfully
predicted from mix design and curing age by a machine learning (ML) technique named the Extreme Gradient Boosting
(XGB) algorithm, including non-hybrid and hybrid models. Nine ML techniques, such as Linear regression (LR), K-
Nearest Neighbors (KNN), Support Vector Machine (SVM), Decision Trees (DTR), Random Forest (RF), Gradient
Boosting (GB), and Artificial Neural Network using two training algorithms LBFGS and SGD (denoted as
ANN_LBFGS and ANN_SGD), are also compared with the XGB model. Moreover, the hybrid models of eight ML
techniques and Particle Swarm Optimization (PSO) are constructed to highlight the reliability and accuracy of SCC
compressive strength prediction by the XGB_PSO hybrid model. The highest number of SCC samples available in the
literature is collected for building the ML techniques. Compared with previously published works’ performance, the
proposed XGB method, both hybrid and non-hybrid models, is the most reliable and robust of the examined techniques,
and is more accurate than existing ML methods (R = 0.9644, RMSE = 4.7801, and MAE = 3.4832). Therefore, the XGB

model can be used as a practical tool for engineers in predicting the CS of SCC.
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1 Introduction

Self-compacting concrete (SCC) can flow and compact
under the effect of self-weight and does not need
mechanical vibration in order to ensure uniformity [1]. In
contrast to conventional concrete, SCC more often uses
mineral fillers and water-reducing admixtures. In
addition, SCC often uses coarse aggregates with smaller
particle sizes than conventional concrete [2]. The benefits
of SCC include increased economic efficiency due to
reduced construction time, labor costs, energy costs, and
equipment prices [3]. Furthermore, SCC can be applied in
complex construction shapes and difficult construction
conditions and can improve the working and living
environment because vibration and noise pollution can be
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avoided. Use of SCC can also favor automation of
construction. Because of these benefits SCC has been
regarded as a remarkable application in civil engineering,
including for bridge building, road construction, and
tunnel construction [4,5]. However, constructions using
SCC also have disadvantages such as structural defects
and failure to guarantee compressive strength [6]. To
overcome these disadvantages, one of the most critical
mechanical properties needs to be correctly determined:
the SCC compressive strength. In particular, due to the
complex composition required for SCC to reach its
desirable properties, the compressive strength of SCC
(CS of SCC) depends on mixed composition design,
mineral filler content, one or more chemical admixtures,
and an optimum balance between the coarse aggregate
and fine aggregate.

For decades, many researchers have determined the CS
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of SCC by experimental methods. For example, Bouzou-
baa and Lachemi [7] determined the compressive strength
and shrinkage of SCC using fly ash (FA). In this work,
40%, 50%, and 60% of cement content are replaced by
FA. The compressive strength of SCC containing 50%
FA after 28 d is equal to that of conventional SCC.
However, one type of FA was used in this study. Busari
et al. [8] conducted experiments to determine the
influence of some selected cement brands on the CS of
SCC used in pavement construction. The effect of
temperature rise on the CS of SCC was studied by Rajah
Surya et al. [9]. These tests demonstrate that the CS of
SCC is very variable and is influenced by the mixed
composition design and experimental settings. Further-
more, many errors can occur during the experimental
procedures. and so it is necessary to have other methods
to predict the CS of SCC, and machine learning (ML)
algorithms appear as a potential alternative.

In recent years, based on available experimental data-
bases, ML algorithms or artificial intelligence (Al)
approaches have been widely used in the geotechnical
field [10], structural engineering [11-13], fundamental
mechanical problems [14], and material sciences [15-17].
In addition to many advanced computational approaches
to predict concrete behaviors [18-21], the possibility of
applying Al to predict various concrete properties have
also been investigated, such as concrete beams’ shear
strength [22], the later-age CS of concrete [23], recycled
aggregate concrete compressive strength [24], concretes
containing blast furnace slag (BFS) and FA [25-27],
high-performance concrete [28], rubber concrete compre-
ssive strength [16].

Concerning SCC, there have been many studies using
one of the Al algorithms to predict compressive strength,
such as Artificial Neural Network (ANN), Random Forest
(RF), Fuzzy Logic (FL), and Support Vector Machine
(SVM). Siddique et al. [29] used 80 data with six inputs
(namely cement content, FA content, the ratio of water to
binder, superplasticizer dosage, sand, coarse aggregate) to
develop an ANN model to forecast the CS of SCC. The
highest coefficient of determination (R®) of this
architecture was found to be about 0.9187. Using only 69
data samples, Abu Yaman et al. [30] proposed an ANN
model with Levenberg Marquardt backpropagation
algorithm to study SCC using FA. They used a coefficient
of determination to evaluate the performance of such an
ANN model, and the highest value was R* = 0.81. Asteris
et al. [31,32], and Malagavell and Manalel [33] collected
205 and 169 data, respectively. They built ANN models
for predicting the CS of SCC containing BFS and FA. In
particular, Siddique et al. [29] used a Back-Propagation
Neural Network (BPNN) and surrogate models [32]. The
highest correlation coefficient of their model was R* =
0.9604. Moreover, some researchers used RF regression
to evaluate the uniaxial CS of lightweight SCC [34] and
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used linear and nonlinear SVM to predict the CS of high
volume FA SCC [35]. It is noted that these studies used a
limited number of data, with only 130 and 340 data
samples, respectively, and the highest value of R* was
about 0.9388. Overall, the model’s performance can be
significantly improved by increasing the database’s
sample number and input distribution and by ML
techniques.

Therefore, the aim of this investigation is to develop the
best ML technique to predict the CS of SCC. The
selection is evaluated by two criteria: the accuracy of the
ML technique and the training process’ reliability and
speed. Determining a model that satisfies both of these
criteria is crucial in practice in order to provide good
prediction with minimum time and computation costs.
Moreover, the model should allow engineers to predict
problems without difficulty, even without an in-depth
understanding of the algorithms. In this study, the
collection of the highest number of data, including 1287
data samples from 44 published literature using 13 input
variables, is firstly carried out. In the next step, nine ML
techniques, namely Linear regression (LR), K-Nearest
Neighbors (KNN), SVM, Decision Trees (DTR), RF,
Gradient Boosting (GB), Extreme Gradient Boosting
(XGB), ANN using two optimization algorithms LBFGS
and SGD (denoted as ANN_LBFGS and ANN _SGD,
respectively) are developed. In this step, to minimize the
computation time, the default hyperparameters of nine
ML techniques are taken from the Sklearn library [36]
and XGBoost library [37] in Python. Hybrid ML
techniques are also developed, in which the hyperpara-
meters of the nine proposed ML techniques are tuned by
the Particle Swarm Optimization (PSO) algorithm. The
prediction accuracies of non-hybrid and hybrid models
are compared to evaluate the robustness of different ML
techniques in predicting the CS of SCC. In the last step,
the feature importance is investigated to show the effect
of input variables on the compressive strength prediction
model.

2 Significance of the study

A number of ML techniques have been developed to
predict the CS of SCC in the field of civil engineering,
namely ANN [29], and a newly proposed normalization
method [32], BPNN [38], FL [39], RF regression [40],
SVM [41, 42], but the accuracy and reliability of the
predictions could be better. As a result, the following
main points may be used to highlight this investigation’s
contributions.

1) The highest number of samples, to date, are gathered
to develop the database of SCC compressive strength.

2) Nine ML algorithms and their hybridized models
using PSO are developed to predict the CS of SCC.



930

3) The XGB model, in both cases, gives the best
performance in comparison with the other ML techni-
ques.

4) The best performances of these XGB and XGB_PSO
in this investigation are compared with seven previously
published investigations and achieved a higher R? value.
Thus, the simplicity, practical value, and effectiveness of
the proposed approach using the XGB model are
confirmed. Furthermore, the two criteria mentioned above
for assessing the predictive ML technique are achieved
using the XGB model.

3 Database description and analysis

Any model’s predictive performance depends on many
factors, such as the completeness of the training data, the
amount of data, and the relationship between input and
output variables. In this paper, the database with 1287
experimental data is constructed from 44 published
literature [7,43-84]. The total collected database is
randomly divided into 2 parts; 70% (901 samples)
provide the training and testing data to build the models.
30% (386 samples) of data is used to test the model. The
input space includes 13 parameters (denoted from X, to
X,3), which are directly related to the the CS of SCC. A
summary of the inputs, output with their range and
statistical analysis (average, standard deviation, mini-
mum, Q25, median, Q75, maximum, and skewness) is
provided in Table 1.

As illustrated in Fig. 1, the cement content varies from
about 83 to 670 (kg/m’), mainly concentrated in the range
from 200 to 450 (kg/m’). The FA content is 0 to 500
(kg/m®), with a few samples having about 500 kg/m® FA,

Table 1 Summary of the inputs and output

Front. Struct. Civ. Eng. 2022, 16(7): 928-945

and about 500 samples without FA. Water content is
about 150 to 200 (kg/m®). Sand or fine aggre%ate has a
broad data spectrum, from 240 to 1200 (kg/m’), mainl}y
concentrated in the range from 650 to 900 kg/m’.
Similarly, coarse aggregate in the collected data set also
has an extensive range of values—the minimum value is
500 kg/m’, and the maximum value is 1600 kg/m’. The
superplasticizer content is concentrated in the 0 to
25 kg/m’ range, but most samples range from 1 to
4 kg/m3. The remaining input data have narrow data
spectra (X, to X,,). GGBFS, silica fume, metakaolin, rice
husk ash, viscosity modifying admixtures content are
about 1000, 1200, 1100, 1200, 1200, 1100 samples,
respectively. There are nine values of curing time, where
the minimum value is 0.5 d, and the maximum value is
400 d. Besides, the output parameter (the CS of SCC) has
a broad data spectrum, which is in the 1 to 115 (MPa)
range. The distribution red lines in Fig. 1 represent the
Gaussian Kernel Density Estimation, and each point
contributes a Gaussian curve to the total. The outcome is
a smooth density estimate obtained from the data that
serves as a powerful non-parametric model of the point
distribution. The compressive strength values have
relatively normal distribution.

The correlation matrix of the inputs and output is
plotted in Fig 2. The image is built based on Pearson rank
correlation coefficient () between each pairwise
variable. In this image, the correlations between all
parameters are clearly and concisely drawn. Different
colors show different correlation values. As observed in
Fig. 2, some input variables are significantly correlated,
like X, and X,, X, and X,,. However, in this paper, all
input variables are considered and cover as many SCC
types as possible.

variable notation unit count  average Std? min Q25%  median  Q75% max Skw®
cement X, kg/m3 1287 353.44 114.69 83.00 250.00 350.00  449.00 670.00 0.11
FA X, kg/m3 1287 102.50 105.40 0.00 0.00 96.00 173.25 525.00 0.80
water Xs3 kg/m3 1287 183.85 26.96 126.00 166.12 178.50 196.23 331.50 1.19
sand X, kg/m3 1287 812.18 153.12  240.00  742.00 820.00 891.00 1180.00 -0.81
coarse aggregate X5 kg/m3 1287 821.30 162.16  500.00  746.00 837.00 900.00 1600.00 1.53
superplasticizers X kg/m3 1287 5.70 4.37 0.00 241 431 8.80 22.50 1.09
limestone powder X5 kg/m3 1287 28.42 64.53 0.00 0.00 0.00 0.00 376.00 2.61
GGBS (kg/m3) Xy kg/m3 1287 17.22 55.20 0.00 0.00 0.00 0.00 440.00 4.03
silica fume X, kg/m3 1287 4.06 13.98 0.00 0.00 0.00 0.00 82.50 3.83
metakaolin X0 kg/m3 1287 1.41 8.73 0.00 0.00 0.00 0.00 82.50 7.18
rice husk ash X kg/m3 1287 1.48 13.55 0.00 0.00 0.00 0.00 200.00 11.59
viscosity modifying admixtures X, kg/m3 1287 0.16 0.51 0.00 0.00 0.00 0.00 4.46 4.22
curing time X3 d 1287 40.40 63.93 0.50 7.00 28.00 28.00 400.00 3.98
compressive strength CS MPa 1287 48.62 23.95 1.20 30.00 47.40 66.90 113.10 0.17

Notes: a) Std: Standard deviation; b) Skw: Skewness.
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Fig. 2 Correlation matrix of the inputs and CS of SCC.

4 Machine learning methods

ML is a subfield of soft computing that is able to
automatically learn knowledge from data without the
need for explicit, detailed programming. The basis of ML
algorithms is that they can access data, then use that data
for self-learning. The main goal of ML is to allow
computers to quickly learn about the process automati-
cally in the absence of human knowledge to adjust
actions efficiently. ML algorithm generates an inference
function with the correct prediction of output values. To
perform the desired conversion from input to output,
different models can be used. Many ML algorithms have
been proposed to find a relationship between inputs and
the output. ML algorithms use different models/techni-
ques to perform the learning process and represent
knowledge. Nine algorithms have been applied in this
work to estimate the CS of SCC.

4.1 Linear regression

LR is the most basic ML model used to develop the
relationship between dependent and independent vari-
ables [85]. LR consists of finding the best fit representing
the relationship of more than one variable in a
straightforward term. This best fit line can be achieved by
a minimization process of the squared distance between
variables in the input space to that line.

4.2 K-Nearest Neighbors

KNN is a supervised-learning algorithm and one of the
most straightforward models [85]. The principle of KNN
for a regression problem is that the desired output is equal
to that of the nearest sample in the data space; alterna-
tively, the algorithm can calculate the average values of

outputs corresponding to the nearest data points, or can
deduce a relationship using the distance to the nearest
data points. Basically, the KNN algorithm tries to find the
desired output based on the information of K closest (by
value) samples in the training dataset, regardless of
whether some of these closest data points are noisy.

4.3 Support Vector Machine

SVM, which is also a supervised-learning algorithm, is
one of the most commonly used algorithms nowadays for
classification or regression problems. SVM was proposed
by Vladimir N. Vapnik and his colleagues [86] in 1963 in
Russia and then became popular in the 90s thanks to the
application of solving nonlinear problems by the Kernel
trick method. The idea of SVM is to find a hyperplane to
separate the data points. This hyperplane will divide the
space into different regions, and each domain will contain
a data type. One of the fundamental notions behind SVMs
is the optimum separating hyperplane. It gives birth to the
so-called support vectors, which are the data points on the
hyperplane’s margin border. ML theory has shown that
such a hyperplane minimizes the error limit.

4.4 Decision Trees

The decision tree algorithm, proposed by Quinlan [87], is
a supervised ML model which can be applied to solve
classification or regression problems. DTR builds a
model that predicts the value of the target variable using
data-driven decision rules. The root, internal, and leaf
nodes, as well as branches, comprise the structure of a
decision tree. The term “leaf nodes” refers to the leaves
that hold the value of the previous category variable, and
branch is the branching rule representing the relationship
between the independent and target variables’ values.
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4.5 Random Forest

RF was firstly proposed by Breiman [88], using multiple
classifications or regression trees in a group. RF is one of
the algorithms built based on the decision tree model, and
each tree acts as a vote as the basis of decision-making
for the algorithm. Thus, group learning methods combi-
ned with the individual results of each tree often yield
better results. RF is an extended algorithm based on
bagging or bootstrap aggregation that uses random
(repetitive) training data samples to generate multiple
regression trees without pruning and is the sum of their
averages.

4.6 Gradient Boosting

GB is a synthesis algorithm, taking advantage of boosting
methods to construct an advanced prediction tool inspired
by gradient descent [89]. Boosting begins with a tree’s
construction to find the relationship between input and
output variables, and subsequent trees are next developed
to reduce errors. GB considers the boosting problem an
optimization one, in which a loss function is used to
minimize error.

4.7 Extreme Gradient Boosting

XGB is an upgraded algorithm from the GB algorithm
developed by Friedman [90] in 2000. The basic principle
used in the GTB algorithm is to combine weak (i.e., high
error) essential learning trees into a more substantial
learning model tree in a sequential fashion. In order to
improve the GTB model’s performance, a component is
added to the loss function in the XGB model, called
regularization, to evaluate the model’s complexity. By
including a regularization component, it is possible to
harmonize the learning model’s parameters and prevent
overfitting. The core problem of this algorithm is to
optimize the value of the objective function. Furthermore,
it implements ML algorithms in a gradient-enhanced
framework. As a result, XGBoost can handle many data
science problems quickly and accurately with parallel
boost trees.

4.8 Artificial Neural Network (ANN_LBFGS and
ANN SGD)

ANN is the most popular ML model built on the basis of
biological neural networks. It consists of input neurons
multiplied by weights, which are the strengths of the
corresponding signals, and then calculated by the neuron’s
activation function. Finally, one more function (possibly
an identity function) will compute the desired output. By
adjusting the artificial neuron’s weight, it is possible to
obtain the output corresponding to specific inputs.
However, when there are too many neurons, it becomes
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difficult to calculate these weights. At this point, several
approaches are developed to adjust the neurons’ weights
to achieve the output as quickly as possible. In this study,
two different weight updating methods are evaluated,
namely the Limited-Memory Broyden-Fletcher-Goldfarb-
Shanno method (denoted as LBFGS) and the Stochastic
Gradient Descent (SGD).

LBFGS is a training algorithm that belongs to the
family of quasi-Newtonian methods, allowing an approxi-
mation of the standard BFGS algorithm using the
computer’s limited memory [91]. Thus, the LBFGS
algorithm is advantageous with large datasets because it
requires less computational memory, especially while
estimating the inverse of the Hessian matrix to drive the
transform space search.

SGD is a straightforward variation of the gradient
descent technique that computes the slope and updates the
weight matrix W in subsets of the training set, rather than
in the complete training set [92]. Although this algorithm
is highly stable during training, the results obtained are
comparable to other algorithms. The idea of the algorithm
is quite simple, which is to “calculate the gradient value
of each parameter, and take a small step in the direction
of the gradient”. If this process is repeated many times
and randomly selects (stochastically) a batch in the
training set, then the model will lead to faster
convergence with no adverse effect on loss and correct
classification.

4.9 Particle Swarm Optimization (PSO)

PSO is a commonly used and robust algorithm, proposed
by Eberhart and Kennedy, based on the behavior of
swarms of animals [93]. PSO can handle multiple
optimization problems, with each instance representing a
possible solution. To find the optimal solution, PSO
performs the following steps: 1) initialization; 2) update
of velocity; 3) update of instance location; 4) update of
the “global best” and “local best” positions if a new
instance finds a better position; and 5) check of the
termination condition. If the stopping criteria are satisfied
(that is, if the error is minimal), the search stops and
returns the “globally optimal” and “locally optimal”
values corresponding to the position with the least error.
If not, the algorithm goes back to step (ii) and continues
to execute the loop until the stopping criterion is satisfied.

The details of PSO algorithm is presented in an
investigation by Liu et al. [94]. Particle flying speed is
dynamically modified based on individual and commu-
nity flight experience. The formula for the particle swarm
algorithm is as follows:

VSI =wVy+cn (p?—x§)+C272(Pg_x;>’ (1)

X=XV, @)
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where x' is the present location of particle i, p¢ is the
superior position of particle i which searches at current,
and pg is the superior position of the whole particle
swarm. w is a positive constant known as the inertia
factor, which decreases linearly with iteration; ¢, and ¢,
are positive constants known as the cognitive weights and
social weights. r, and r, are random values in the range
[0,17; Vid € [~ Viax> Vi) With V., 1S a positive constant.
The chosen criterion for terminating iteration is the
maximum number of iterations or the best position of
particle found so far that fulfills the adaptive thresholds
significance. The velocity change of PSO in Eq. (1) has
three components: inertia factor, cognitive weight, and
social weight. It decides the PSO’s performance and how
to balance it. According to Blanke [95], the values of w,
¢, and ¢, are set to be equal to 0.4, 0.7, and 0.7,
respectively.

4.10 K-Fold Cross-Validation

K-Fold Cross-Validation (K-Fold CV) is a method of
breaking down datasets to verify the performance of ML
models [96]. It is often used to compare and select the
best model for a problem. In this strategy, the crucial
parameter is k, which specifies the number of groups into
which the data will be divided. When the value of £ is
chosen, that value is used directly in the name of the
evaluation method.

This technique usually includes the following steps.

Step (i): random shuffle of the dataset.

Step (ii): division of the dataset into & groups.

Step (iii): consideration of each group:

l)use of the current group to evaluate model
performance;

2) use of the remaining groups to train the model;

3) model training;

4) evaluation of the model;

Step (iv): synthesis of the effectiveness of the model
based on the evaluation data.

The aggregated results are usually the average of the
evaluations. The addition of variance and standard
deviation information to the aggregate results is also used
in practice.

4.11 SHAP values

SHapley Additive Explanations (SHAP) are similar to
many other sensitivity analysis techniques [97],
introduced by Shapley based on cooperative game theory
in 1953 [98]. Strumbelj and Kononenko [99] were the
first to apply the approach to ML problems in the subse-
quent years [100]. Since the publication of Lundberg and
Lee’s study [101] and the associated Python package for
SHAP, SHAP has received extensive usage.

Front. Struct. Civ. Eng. 2022, 16(7): 928-945

The main idea of SHAP is to determine the importance
of a given feature, for instance, X. In order to do this,
first, all subsets of features in the input space that do not
contain X are collected. In a second step, the effect on
prediction results while adding X to all the earlier subsets
are evaluated. In the final step, all the contribution are
aggregated, and the contribution of feature X is
computed.

4.12 Performance indices of models

The ML models’ prediction performance is evaluated by
several well-known and commonly used statistical
measures such as root mean square error (RMSE), the
coefficient of determination (Rz), and mean absolute error
(MAE). In particular, R? is an essential criterion in regre-
ssion analysis, computed by the square of the correlation
(R?) between the predicted and actual outcome, ranging
from 0 to 1 (Eq. (3)). Thus, a high R? value shows a good
correlation between the model’s output and actual values.
RMSE is an error measurement of the mean squared
difference of a ML model’s predicted and actual outputs
(Eq. (4)), while MAE measures the average error (Eq. (5))
[102]. Lower values of these indicators show better

prediction performance [103]. The wvalues of these
measures are written:
N
D (M;-0))
2 _ J=1
R =1- ~ , 3)
M}
i=1
1 v )
RMSE = ||+ > M,-0), (@)
j=1
1 N
MAE = NZ|M].—Q,.|, (5)

j=1

with N the data point number in the database, M is the
actual value of the output, and Q is the predicted value
calculated by the model.

5 Methodology flowchart

This work proposes four main steps in the overall
methodology flowchart to predict the CS of SCC as
follows (Fig. 3).

Step (i): Data collection.

In the first step, the SCC database consisting of 1287
data points on the CS of SCC is collected from 44
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Fig.3 The present study’s methodology flowchart.

published literature. This dataset is divided into two parts:
the training and testing datasets. Precisely, 70% of the
samples are used to train the ML models, whereas the
remaining 30% of data is used for the testing phase of the
ML models.

Step (ii): Training models.

The training process with nine ML models is conducted

in this second step, namely LR, KNN, SVM, DTR, RF,
GB, XGB, ANN_LBFGS, and ANN_SGD. In addition,
the PSO algorithm is also used to finely tune the
hyperparameters of these models. For the sake of
clarification, these ML models are divided into two
groups: the first one consists of non-hybrid ML models,
and the second one corresponds to hybrid ML models
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(using the PSO optimization algorithm). This second step
is performed until all the models are successfully trained
with tolerance error criteria lower than a predefined
threshold. 70% of dataset is used for tunning hyperpara-
meters by the PSO algorithm combined with K-Fold CV
technique.

In both steps (ii) and (iii), the prediction performance
of the models is evaluated by the statistical measures
which are previously presented (i.e., R*, RMSE, and
MAE).

Step (iii): Validating the model.

Next, the nine proposed ML algorithms are evaluated
using Monte Carlo simulations (MCS). In this step, the
split 70/30 of dataset is performed multiple times.

Step (iv): Sensitivity analysis.

In this step, the importance and influence of the input
variables are evaluated and simulated by SHAP values.
After analyzing and evaluating the influence of input
variables on the CS of SCC and predictive performance
models, less important input variables are removed.
Finally, the best model is applied to predict the CS of
SCC.

6 Results and discussion

6.1 Assessment of non-hybrid machine learning models
The prediction results obtained by non-hybrid ML models
are presented in this section. To fully evaluate the perfor-
mance of ML models, 500 simulations are conducted,
taking 70% of data randomly to construct the training
dataset. Figure 4 shows the prediction performance on the
training and testing datasets of 9 non-hybrid ML
algorithms based on Rz, RMSE, and MAE over 500
simulations. Typically, the predictive performance of ML
models is often reflected by the statistical criteria applied
to the testing dataset. Therefore, the R?, RMSE, and MAE
values that correspond to the testing dataset are used for
the sake of comparison. For example, based on Fig. 4(a),
the XGB model has the highest R* value (R = 0.95),
followed by RF and GB models (R* values are 0.92 and
0.91, respectively). The remaining models obtain R’
values in descending order are DTR, KNN, LR,
ANN LBFGS, ANN SGD, and SVM. According to
RMSE and MAE, Figs. 4(b) and 4(c), the performance of
the models in descending order can be seen to be XGB,
FR, GB, DTR, KNN, LR, ANN_LBFGS, ANN SGD,
and SVM. Based on the evaluation of these statistical
criteria, the XGB model is better than the remaining
models for predicting the CS of SCC. Summary of
performance values for XGB over 500 simulations are
presented in Table2 with min, max, average, and
standard deviation of statistical measures values.
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6.2 Assessment of hybrid machine learning models

This section presents the predictions of hybridized ML
models using the particle swarm optimization algorithm.
Specifically, 10 hybrid ML models are developed,
namely KNN PSO, SVM PSO, RF PSO, GB_PSO,
XGB_PSO, Decision Tree PSO, ANN_LBFGS_1hidden
PSO, ANN LBFGS 2hiddens PSO, ANN GD lhidden
PSO, and ANN_GD 2hiddens PSO. In all cases, the
ANN model is built with two structural possibilities using
1 and 2 hidden layers. The number of neurons in each
hidden layer varies from 1 to 15. The number of training
iterations to adjust the parameters and the “K” value in K-
fold CV are essential parameters that control the perfor-
mance of ML models. Several studies have shown that
K =5, or a maximum of 10, is sufficient to evaluate the
performance of ML models [104,105]. Therefore, 5-Fold
CV is selected in this study.

Using the computing hardware configuration as
Intel(R) Core (TM) i7-6820HQ CPU 8M cache, up to
3.6 GHz, RAM 32 GB, the optimization process is
performed by CPU. The computational time of each
hybrid algorithm after 300 iterations is shown in Table 3.
The computational time of the hybrid XGB_PSO, 266.40 s,
is highest; the lowest computational time belongs to the
hybrid KNN_PSO model with 1.14 second.

The models’ performances are evaluated using the
optimal number of iterations, and the coefficient of
determination R”. Figure 5 shows the mean of R? of 10
hybrid ML models with 5-fold cross-validation and 300
iterations. It’s worth noting that mean values are a critical
parameter for determining the correctness and stability of
ML models. It is observed that after about 100 iterations,
the mean values of R* of most of the proposed hybrid ML
models achieve convergence. The Decision Tree PSO
model gives the convergence result of R* after about 250
iterations. This result shows that the selection of 300
iterations to evaluate the models’ performance is
reasonable. Figure 5 shows that GB-PSO and XGB-PSO
models are the two models that performed the best among
the proposed models. Next, the predictive performance of
the hybrid ML models, listed in descending order, is
ANN _LBFGS 2 hiddens PSO > Decision Tree PSO >
ANN _SGD 2 hiddens PSO > SVM PSO > ANN LBF
GS_1 hidden PSO >KNN PSO > ANN SGD 1 hidden_
PSO > RF_PSO. Therefore, the following paragraphs and
accompanying figures are dedicated to evaluating the
reliability of the GB_PSO and XGB_PSO models.

Thanks to PSO, the hyperparameters of GB are
n_estimators = 370, learning rate = 0.07368, max depth =
18, max features = 4, min samples leaf = 0.0722, min
samples split = 0.0261 and the hyperparameters of XGB
are n_estimators = 597, learning rate = 0.4587, max
depth = 3 in this study. The performance of the GB_PSO
and XGB PSO models using these hyperparameters is
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Fig. 4 Performance of different ML models over 500 simulations ML models. (a) R? value; (b) RMSE value (MPa); (c) MAE value (MPa).

Table 2 Summary of performance value for XGB on the training and

testing datasets

statistical value training testing

R®  RMSE MAE  R° RMSE MAE
min 0.9965 0.6511 0.9771 0.9048 3.7658 5.1078
average 0.9975 0.7811 1.1992 0.9339 4.3723 6.1432
max 0.9984 0.9388 1.4122 0.9536 5.1425 7.3213
Std 0.0003 0.0453 0.0777 0.0089 0.2421 0.3932

evaluated in detail using statistical criteria and MCS.
Among the factors affecting ML model performance, the
random sampling effect for both training and testing
datasets has been shown to have a significant influence
[106]. Furthermore, assessing the reliability of the
proposed model should be performed with a sufficient
number of simulations to make the obtained results more
representative [107]. Therefore, 500 MCS for each model
are performed, and the results are shown in Fig. 6. The R
values of the simulations for the two models are shown in
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Table 3 Computational time in second of hybrid algorithms after 300 iterations

ANN (LBFGS) PSO  ANN (LBFGS2) PSO ANN (SGD1) PSO ANN (SGD2) PSO RFPSO GBPSO XGBPSO KNNPSO DTPSO SVMPSO
139.23 345.95 8.87 15.97 15133 120.55  266.40 1.14 3.55 26.34
Note: In second (s).
1.0 — - ANN LBFGS 2 hiddens PSO
e L ANN LBFGS 1 hidden PSO
S -~ ANNSGD 2 hiddens PSO
008 W reermiakilosssuban sensuaressissas ol Yo m— == ANN SGD_I hidden_PSO
8 i P e EE T = RF PSO
e eeccccce e cc - GB_PSO
" ---- XGB PSO
0.6 == KNN PSO
_—f e =/ &/ =/ = = — - DecisionTree_PSO
0.5 : ; | | | —— SVM_PSO
0 50 100 150 200 250 300

number of iterations

Fig. 5 Mean value of R® in function of iterations using hybrid models and 5-Fold CV.

Figs. 6(a) and 6(b) represent the training and testing
datasets, respectively. It is observed that the GB PSO
model gives R? values in the 0.9526 to 0.9659 range for
the training dataset and 0.8781 to 0.9432 for the testing
dataset. The most frequented R* values are 0.9580 with
240 simulations (training set), and 0.918 with about 248
(testing set). The XGB_PSO model shows the higher
accuracy when the R® value ranges from 0.9962 to
0.9985, with the highest frequency value R* = 0.997
(frequency about 235 times) corresponding to the training
dataset. For the testing dataset, R* value varies from
0.8883 to 0.9644, and the highest R* is 0.946 with 230
simulations. A similar analysis is shown in Figs. 6(c),
6(d) (for RMSE values) and 6(e), 6(f) (for MAE values)
for the two models corresponding to training and testing
parts. The RMSE and MAE of XGB PSO model are
smaller than those of the GB_PSO model, showing that
the XGB PSO model has better performance. Statistical
criteria values for the training and testing parts of the
GB_PSO model and the XGB_PSO model are detailed in
Table 4, which includes the maximum, minimum, mean,
and standard deviation. The results show that both
GB_PSO and XGB_PSO models are stable under random
sampling effect (small standard deviation values) and
have a good performance in predicting the CS of SCC.
Precisely, the XGB_PSO model gives better results, with
the mean value of R* = 0.9416, than the GB_PSO (R =
0.9164). The mean values of RMSE and MAE for
XGB_PSO are 4.1363 and 5.7651, respectively, which
are lower than for the GB_PSO model (RMSE = 5.2119,
MAE = 6.9033). Overall, the XGB_PSO model shows
strong potential in predicting the CS of SCC.

Comparing the performance of the XGB model using
default hyperparameters with the performance of the
hybrid models XGB_PSO and GB_PSO (cf. Table 4), the

predictive capability of three ML models could be ranked
as XGB PSO > XGB > GB_PSO. The performance of
XGB_PSO is slightly superior to XGB and GB_PSO.
Therefore, the XGB PSO model using the default
hyperparameters can satisfy both prediction accuracy
criteria and time-consuming reduction.

6.3 Prediction results of typical ML algorithm

The most accurate hybrid ML model, namely XGB_PSO,
is proposed to predict the CS of SCC. Correlation
analysis between the actual and output values for the
training, testing, and the whole dataset is presented in
Figs. 7(a), 7(b), and 7(c), respectively. The correlation
lines are found close to the perfect linear line in all cases.
This means that there is a coherent correlation between
the actual and predicted CS of SCC. Besides, the
performance of this model is also evaluated by R*, RMSE,
MAE. The values of these criteria for the training dataset,
the testing dataset, and all datasets are presented in
Figs. 7(a), 7(b), and 7(c), corresponding to the XGB_PSO
model structure with the best-predicted results. The R*
value is 0.9970, 0.9644, 0.9861, respectively, for the
training, testing, and all dataset. RMSE values in training,
testing, and all dataset are 1.2472, 4.7801, and 2.8211
MPa, respectively. The MAE values are respectively
0.8214, 3.4832, and 1.6218 MPa. These values indicate
that the XGB_PSO model can be applied to predict quite
accurately the CS of SCC.

Next, the error diagrams of the XGB_PSO model for
the training and testing datasets are computed and
presented in Figs. 8(a) and 8(b). As can be seen, the error
values are small, corresponding to the range of [—5 to 4]
MPa for the training dataset and [—18 to 15] MPa for the
testing one. The number of samples with prediction errors
out of the [-5 to 5] kN range is small (2 samples) for the
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Table 4 Summary of performance value for two hybrid models GB-PSO and XGB-PSO

ML model Statistical value training part testing part
R RMSE MAE R RMSE MAE
GB_PSO min 0.9526 3.4179 4.4817 0.8781 4.4611 5.6289
average 0.9590 3.6674 4.8454 0.9164 5.2119 6.9033
max 0.9659 3.9058 5.1605 0.9432 6.1726 8.2714
Std 0.0017 0.0710 0.0901 0.0090 0.2250 0.3379
XGB_PSO min 0.9962 0.6412 0.9269 0.8883 3.3736 47113
average 0.9974 0.7904 1.2192 0.9416 4.1363 5.7651
max 0.9985 0.9348 1.4880 0.9644 5.0243 7.9969

Std 0.0003 0.0357 0.0714 0.0080 0.0714 0.3586
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training process. Besides, the cumulative red lines show
that about 800 samples with errors are in the range
[-2 to 2] MPa for the training process, whereas about 300
samples with errors are within the [—5 to 5] MPa for the
testing process.

In order to clarify the significance of this study, Table 5
compares different ML techniques used in previously
published works with the best ML models XGB_PSO and

XGB proposed herein. The comparisons are based on
several criteria such as the number of inputs used, number
of data, and performance measure evaluated by R* value
for the testing process. The comparison shows that the
XGB model of this investigation, using only the default
hyperparameters, could give almost the highest perfor-
mance with the highest number of samples in the
database. The performance values in Asteris and Kolovos
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Table 5 Performance comparison with published works in predicting the CS of SCC
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reference ML algorithm input variable sample size statistical
measures
Siddique ANN 6 inputs: cement, FA, water to powder ratio, superplasticizer, sand, 80 R*=0.9187
et al. [29] coarse aggregate
Asteris and ANN 11 inputs: cement, coarse aggregate, fine aggregate, water, limestone 205 R*=0.9658
Kolovos [32] powder, FA, ground granulated BFS, silica fume, rice husk, new
generation superplasticizers, viscosity modifying admixtures
Asteris ANNE, 11 inputs: cement, limestone powder, FA, ground granulated BFS 169 R*=0.9655
et al. [38] BPNN GGBES, silica fume, rice husk ash, coarse aggregate, fine aggregate,
water, superplasticizer, viscosity modifying agent
Akkurt ANN, FL 11 inputs: cement, limestone powder, FA, ground granulated BES, 169 R*=0.9604
et al. [39] silica fume, rice husk ash, coarse aggregate, fine aggregate, water,
superplasticizer, viscosity modifying agent
Kovacevic¢ RF regression 7 inputs: water to binder ratio, macro-synthetic polypropylene fibers, 131 R*=10.9477
et al. [40] steel fiber, scoria, crumb rubber, natural fine aggregate, natural
coarse aggregate
Azimi-Pour Linear and nonlinear SVM 10 inputs: cement, water to cement, water to powder, water to binder, 340 R*=0.9388
etal. [41] fine aggregate to powder, coarse aggregate to powder, high water
range reducer to powder, viscosity modify admixture to powder,
micro silica to binder.
Saha Support vector regression approach 6 inputs: binder content, FA percentage, water to powder ratio, fine 115 SVR: R*=0.955
et al. [42] aggregate (f), coarse aggregate, superplasticizer dosage ANN: R* =0.882
this study LR, KNN, SVM, DTR, RF, GB, 13 inputs: cement, FA, water, sand or fine, coarse aggregate, 1280 XGB_PSO:
XGB, ANN_LBFGS and superplasticizer, limestone powder, ground granulated BFS, silica R*=0.9644
ANN_SGD, and the fume, metakaolin, rice husk ash, viscosity modifying admixtures, XGB: R*=0.9536
Hyperparameters tuning with PSO curing time
[32], and Asteris et al. [38] are higher, but the number of fiigh
samples in these works is much lower than in this X, o a-aommpumnr SV 0o
investigation. However, the performance of XGB_PSO is X, e i
. . . . 1
relatively equivalent to that of these investigations. The X HRE
. . . . 13
evaluation of CS of SCC in this study is more accurate X - o PR -
. . . 7
than the values obtained in these previous works. Based X B
. . . 4 [}
on the 51mu1at19ns performed, this work shows thqt the X, ot - g
XGB model using default hyperparameters has a higher X, — o
prediction accuracy. Overall, these results indicate XGB X N %
. . . . . 2
models, in both non-hybrid and hybrid variations, can be X, - <
applied as a quick prediction tool for material engineers. X, —
. . XIO ' o=
6.4 Effect of input number on performance typical model X {--- -
11
. . . . . X, o +
In this section, the importance and influence of the input _ low

variables are evaluated by the SHAP value implanted in
Python programming language (Fig.9). Observing the
SHAP value, the X, input corresponding to water content
is the most important feature, and X, input negatively
influences the CS of SCC. It shows that with a higher
water content, the CS of SCC decreases. That is also
confirmed by other investigations, such as Oner and
Akyuz [108], Shen and Xu [109], Zhou et al. [110].
Similarly, the results show that the coarse aggregate,
sand, and superplasticizers, denoted as X, X,, and X,
respectively, have the most crucial positive impact on the
CS. The sand content also positively influences the CS of
SCC. In fact, with a higher sand content, the CS of SCC
is improved. Superplasticizer content also has a positive
impact on the CS of SCC. However, a higher
superplasticizer content seems to decrease the CS of
SCC. Lastly, among 13 input variables, the variables that
have a negligible impact on the CS according to the
analysis are proportions of silica fume, limestone powder,

40 20 0 20 40
SHAP value (impact on model output)

|
A
=)

Fig. 9 Feature importance analysis presented by SHAP value.

abrasive slag, metakaolin, rice husk ash, viscosity
modifying admixtures, denoted as Xy, X,, X, X;0, Xi15
X,,, respectively. After analyzing and evaluating the
influence input variables on CS of SCC and predictive
performance of the model, less important input variables
are removed. Simulations with XGB_PSO are conducted
without the above-mentioned input variables. The
performance of the model for these cases is presented in
Table 6. It is shown that XGB_PSO model using 6 input
variables including the five most important variables,
namely proportions of cement, FA, water, sand, coarse
aggregate and curing time, could predict the CS of SCC
with high accuracy, with R* = 0.9515. In another attempt,
it is shown that if the database has only three importance
input variables such as X;, X;, and X,, (cement, water
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Table 6 Performance of the XGB model over the number of inputs
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input training part testing part

R RMSE MAE R RMSE MAE
Xy, X3, Xy, X5, X, X3 0.9935 1.8764 1.0218 0.9450 5.9407 4.1603
Xy» Xa0 X Xs, X3 0.9907 2.2474 1.2671 0.9434 6.0281 4.3440
Xy, X3, X5, X5 0.9877 2.5847 15112 0.9429 6.0573 4.5451
X, X5 X 0.9676 4.1970 2.4100 0.9253 6.9245 5.0681
X Xy X Xy X5, X5 0.9917 2.1191 1.1322 0.9515 5.5780 4.0643
and curing time, respectively), the XGB_PSO model can References

also provide good prediction of SCC compressive streng-
th with R* = 0.9253 for the testing part. Several other
scenarios are also shown in Table 6.

7 Conclusions

In this study, the XGB algorithm was investigated to
determine its validity for prediction of the CS of SCC
from mix design and curing age. A high-quality and
reliable dataset with the highest number of data points
and broadest data range from the literature was used for
the evaluation of the XGB model. The comparison of
performance with nine other ML methods showed the
best performance of the XGB model in predicting SCC’s
CS. Furthermore, the XGB model using the default
hyperparameters predicted the CS of SCC with high
performance and reliability, only slightly lower than
performance and reliability of the hybrid model
XGB _PSO. Therefore, the XGB method, including a
hybrid or non-hybrid model, is faster to train, more
accurate, and more robust than other ML methods.
Indeed, the XGB model using default parameters,
implemented with the XGB package of Python, without
any further optimization, could achieve better prediction
results than LR, KNN, RF, GB, ANN_LFBGS,
ANN_SGD, SVM models.

The feature importance analysis indicated that the most
critical features for predicting the CS of SCC are cement,
FA, water, sand, coarse aggregate, and curing time. Using
the first five important input variables, the XGB PSO
model could predict the CS of SCC with the high
accuracy R* = 0.9515 for the testing part and gain
comparative advantage over methods used in previously
published works. Moreover, the prediction of the
compressive strength using the XGB PSO model with
just three important inputs, namely cement, water, and
curing time, provides reasonably good results with R* =
0.9253 for the testing process. From the perspective of
this work, finding appropriate processing techniques and
using only relevant input variables could be investigated
to improve prediction ability.
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