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ABSTRACT This paper investigates the influence of crack geometry, crack-face and loading conditions, and the
permittivity of a medium inside the crack gap on intensity factors of planar and non-planar cracks in linear piezoelectric
media. A weakly singular boundary integral equation method together with the near-front approximation is adopted to
accurately determine the intensity factors. Obtained results indicate that the non-flat crack surface, the electric field, and
the permittivity of a medium inside the crack gap play a crucial role on the behavior of intensity factors. The mode-I stress
intensity factors (KI) for two representative non-planar cracks under different crack-face conditions are found significantly
different and they possess both upper and lower bounds. In addition, KI for impermeable and semi-permeable non-planar
cracks treated depends strongly on the electric field whereas those of impermeable, permeable, and semi-permeable
penny-shaped cracks are identical and independent of the electric field. The stress/electric intensity factors predicted by
permeable and energetically consistent models are, respectively, independent of and dependent on the electric field for the
penny-shaped crack and the two representative non-planar cracks. Also, the permittivity of a medium inside the crack gap
strongly affects the intensity factors for all crack configurations considered except for KI of the semi-permeable penny-
shaped crack.

KEYWORDS crack-face conditions, intensity factors, non-flat cracks, permittivity, piezoelectric media, SGBEM

1 Introduction

Piezoelectric materials are widely employed in various
engineering and industrial applications (e.g., actuators,
sensors, transducers, etc.). Extensive studies have been
carried out in the past decades to gain an in-depth
understanding of responses and behavior of such materials
in both macroscopic and microscopic scales [1–10].
Besides the desirable mechanical-electrical coupling
feature, the piezoelectric materials possess a major draw-
back in that they are quite brittle in nature and susceptible
to fracture initiation, during either the manufacturing
process or usage. Therefore, extensive investigations are
required to gain insights into the fracture behavior of

piezoelectric materials. One of the most challenging tasks
in the modeling of fractures in piezoelectric media is the
development of a physically suitable mathematical model
capable of simulating actual conditions on the crack
surface to accurately mimic the real physical phenomena.
Several models of crack-face conditions have been
proposed, and their pros and cons were extensively
discussed. For instance, an electrically permeable condi-
tion was introduced by Parton [11]; an electrically
impermeable condition was proposed by Deeg [12]; a
semi-permeable condition was employed by Hao and Shen
[13]; and an energetically consistent boundary condition
was proposed by Landis [14]. Among those electrical
boundary conditions, an energetically consistent boundary
condition seems to represent more realistic cracks than the
permeable, impermeable, and semi-permeable models (anArticle history: Received Nov 16, 2018; Accepted Feb 14, 2019
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extensive review can be found in the work of Runga-
mornrat et al. [15]). Nevertheless, most previous publica-
tions focused mainly on cracks with simple geometries
(viz., Griffith cracks, straight cracks, kinked cracks/
branched cracks, inclined cracks, edge cracks, and inclined
edge cracks) in two-dimensional bodies and planar cracks
of various shapes embedded in an infinite and/or finite
three-dimensional domains under simple loading condi-
tions [16–44], while relatively few studies relevant to the
investigation of non-planar and multiple cracks have been
reported, whereby most of them only concerned the
development of computational tools for fracture analysis
[44–49].
Selected useful results from previous investigations can

be summarized as follows. For two-dimensional boundary
value problems, Xu and Rajapakse [25] proposed an
analytical solution for an arbitrarily oriented elliptical void
embedded in a piezoelectric infinite medium. By reducing
void solutions to crack solutions, they found that under
varying remote electric fields and with relatively small
applied remote mechanical stress, the electric intensity
factors of semi-permeable and permeable cracks are nearly
identical, and both results are significantly different from
the solution of impermeable cracks when a crack is not
parallel to the poling direction of the piezoelectric material.
In contrast, when the crack is parallel to the poling
direction, the electric intensity factors of impermeable and
semi-permeable cracks are identical, and the solution of
permeable cracks vanishes. Finally, it is interesting to note
that the electric intensity factors for three types of crack-
face conditions (i.e., impermeable, permeable, and semi-
permeable) are nearly identical when the remote electric
field is close to zero. Such finding seems valid for any
orientation of the poling direction considered. Wang and
Jiang [26] studied a slit crack embedded in an piezoelectric
infinite medium that is subjected to far-field mechanical
and electrical loadings. They found that for positive
applied electric fields, the electric intensity factor of the
semi-permeable crack varies from the permeable solution
(the lower bound) to the impermeable solution (the upper
bound) as the applied tensile stress increases. Later, Wang
and Jiang [31] studied an arbitrarily oriented crack in an
infinite medium subjected to mechanical and electrical
loads. They found that there exists a discrepancy between
the electric intensity factors computed from semi-perme-
able and permeable boundary conditions when the tensile
mechanical load is high and the poling direction is
perpendicular to the crack surfaces. This finding contra-
dicts the results obtained by Xu and Rajapakse [25].
However, Wang and Jiang [31] pointed out that the
discrepancy exists due to the different levels of applied
remote mechanical load. This implies that the levels of
applied mechanical and electrical loads play an important
role in the fracture behavior of piezoelectric cracked
media. In addition, Wang and Jiang [31] also noted that for
positive applied electric fields, high mechanical loads, and

when the poling direction is perpendicular to the crack
surfaces, the electric intensity factor for the impermeable
and permeable conditions represent the upper and lower
bounds of the result for the semi-permeable condition,
respectively. Conversely, if the applied electric field is
negative, such solution for impermeable and permeable
conditions are the lower and upper bounds of the result for
the semi-permeable condition, respectively, and it can be
seen that the electric intensity factor for the permeable
model is independent of the electric field. Subsequently,
Denda and Mansukh [46] investigated the interaction of
multiple cracks in two-dimensional bodies using the
boundary element method. However, their development
is still limited to multiple straight cracks under imperme-
able and permeable boundary conditions.
For three-dimensional boundary value problems, Li and

Lee [32] studied a penny-shaped crack embedded in a
transversely isotropic piezoelectric infinite medium sub-
jected to remote uniform tensile stress and constant electric
field using three crack-face conditions (i.e., permeable,
impermeable, and semi-permeable conditions). They
found that the mode-I stress intensity factors for a penny-
shaped crack under such three crack models (i.e., perme-
able, impermeable, and semi-permeable conditions) are
identical and depend only on mechanical loading. How-
ever, the electric intensity factors for those three crack
models are completely different. The electric intensity
factor for semi-permeable cracks depends on various
parameters (i.e., mechanical loading, electrical loading,
material properties, and permittivity of the medium inside
the crack gap), whereas the electric intensity factor for the
impermeable condition depends only on the electrical
loading. In contrast, the electric intensity factor for the
permeable solution does not depend on the electrical
loading but depends on the material properties and the
mechanical loading. These useful conclusions are in
agreement with the results obtained by several investiga-
tors [18,20,33,35].
Chiang and Weng [35] investigated a similar problem.

They proposed a critical state that consists of the critical
stress and applied electric displacement. They pointed out
that when the effective electric displacement is positive
and the remote tensile stress is less than the critical stress,
the electric intensity factor for the semi-permeable model
falls between the result of the impermeable model (that is
the upper bound) and the result of the permeable model
(that is the lower bound). However, under a positive
effective electric displacement and when the remote tensile
stress is greater than the critical stress, the electric intensity
factor for the impermeable model becomes the lower
bound whereas the results for the permeable becomes the
upper bound of the results for the semi-permeable
condition.
Recently, Li et al. [39] found that the mode-I stress

intensity factor (as well as the electric intensity factor) for a
penny-shaped crack under an energetically-consistent

Jaroon RUNGAMORNRAT et al. Generalized SIFs of cracks in 3D piezoelectric media under various crack-face conditions 281



boundary condition depends on various parameters besides
the mechanical loading conditions (i.e., mechanical
loading, electric loading, material properties, and the
permittivity of the medium inside the crack gap). This
finding differs from the results obtained from the
impermeable, permeable, and semi-permeable boundary
conditions where the mode-I stress intensity factor depends
only on the mechanical loading. Moreover, as pointed out
by several investigators (e.g., Li and Chen [50], Motola
and Banks-Sills [51], and Li et al. [39]), the non-zero
mechanical traction proposed by Landis [14] that is
induced by the crack opening displacement, the jump in
the electric potential, and the permittivity of the medium
inside the crack gap, tends to close the crack.
As mentioned above, most previous publications

focused on the modeling and analysis of planar cracks. A
question arises as to the difference between the fracture
behavior of planar and non-planar cracks (or curvilinear
cracks and/or multiple cracks) in such materials under the
four types of crack-face conditions. Recently, Rungamorn-
rat and Mear [48] used a numerical technique called a
weakly singular symmetric Galerkin boundary element
method (SGBEM) to determine the stress intensity factors
and electric intensity factor of an arbitrarily shaped crack
embedded in three-dimensional, generally anisotropic,
linear piezoelectric infinite media. They found that the
fracture behavior of planar and non-planar cracks under the
impermeable condition are different. More specifically,
while the mechanical electrical loading can cause both
stress intensity factors and electric intensity factors and
vice versa factor, as observed for non-planar cracks (i.e.,
spherical cap cracks), there is no coupling effect due to the
mechanical and electrical loads found in planar cracks (i.e.,
penny-shaped cracks) (e.g., [20,32,35]). Nevertheless,
their investigation was restricted to impermeable cracks
in infinite media.
Sanz et al. [47] and Solis et al. [49], the pioneers in the

analysis of intensity factors of transversely isotropic
piezoelectric finite cracked bodies, revealed that the
mode-I stress intensity factor and electric intensity factor
can be produced by either uniform mechanical traction or
uniform electrical loading. Again, these finding are
different from those in planar cracks embedded in an
piezoelectric infinite domain under the impermeable
assumption. However, the works of Sanz et al. [47] and
Solis et al. [49] were limited to the impermeable crack-face
condition only. Phongtinnaboot et al. [52] generalized the
work of Rungamornrat and Mear [48] to investigate the
stress intensity factors and electric intensity factor of
cracked piezoelectric finite domains. The electrically
impermeable assumption was still adopted for the crack
surface.
Most recently, Rungamornrat et al. [15] successfully

generalized the work of Rungamornrat and Mear [48] to
analyze cracked piezoelectric infinite domains under the
four types of electrical boundary conditions (i.e., perme-

able, impermeable, semi-permeable, and an energetically
consistent boundary condition.) While they proposed a
technique that can solve cracks of arbitrary shapes and
under various electrical boundary conditions, they focused
only on computational aspects and a full discussion of the
role of electrical boundary conditions models was not
presented. There are several crucial issues that arise and
pose several nontrivial research problems in this specific
area, and therefore, still require rigorous investigations,
such as the difference between the fracture behavior of
planar and non-planar cracks under the four types of crack-
face conditions and a wide range of electrical/mechanical
loads; the suitability of semi-permeable and energetically
consistent conditions compared to extreme crack-face
conditions such as permeable and impermeable models;
the influence of the dielectric permittivity of a medium
inside the crack gap, etc.
The current study is motivated by these outstanding

challenges to fully explore the influence of several
parameters such as crack geometry, crack-face conditions,
loading conditions, and the permittivity of the medium
inside the crack gap on the stress and electric intensity
factors along the crack front of cracked piezoelectric
bodies. Three representative configurations of cracks,
including a penny-shaped crack, a spherical cap crack,
and a cylindrical crack, and four models of electrical
boundary conditions (viz., permeable, impermeable, semi-
permeable, and an energetically consistent boundary
conditions) are considered in the present study.

2 Problem description

Let us consider an isolated crack in a three-dimensional,
homogeneous, linear piezoelectric, infinite medium Ω as
shown in Fig. 1. The crack is represented by two identical
surfaces Sþ and S – with their corresponding outward unit
normal vectors nþ and n – , respectively. The body is
assumed to be free of body force and body charge, and can
be subjected to mechanical and electrical loadings on either
the crack surface or the remote boundary. The elastic

Fig. 1 Schematic of a three-dimensional, linear piezoelectric,
infinite medium containing a crack.

282 Front. Struct. Civ. Eng. 2020, 14(2): 280–298



constants, the piezoelectric constants, and the dielectric
permittivities of the constituent material are fully
prescribed and denoted in a concise form by EiJKl. The
boundary conditions on the crack surface can be simulated
by one of the following four models: impermeable,
permeable, semi-permeable, and energetically consistent
models. The first two models ignore the contribution of the
permittivity of the medium inside the crack gap, whereas
such parameters is fully prescribed and its role is
considered in both semi-permeable and energetically
consistent models, and are assumed to be prescribed and
defined by κc. It should be noted here that the notations and
nomenclatures utilized by Rungamornrat et al. [15] are
adopted in this study and detailed explanations will not be
repeated here for brevity.
For impermeable cracks, the generalized tractions on the

upper and lower crack surfaces, denoted by tþI and t –I , are
fully prescribed whereas the jump in the crack-face
generalized displacement, defined by ΔuI � uþI – u –

I , are
unknown a priori. This implies that the permittivity of the
medium inside the crack gap is negligible or in other words
the medium between the upper and lower crack surfaces is
treated as an insulator (e.g., Deeg [12]). For permeable
cracks, the mechanical tractions on both crack surfaces
tþi , t

–
i , the zero jump in the crack-face electrical potential

Δu4 � uþ4 – u –
4 ¼ 0, and the zero sum of the crack-face

electric charges Σt4 � tþ4 þ t –4 ¼ 0 are fully prescribed,
whereas the jump in the crack-face displacement, Δui �
uþi – u –

i and the crack-face electric charge tþ4 ¼ – t –4 are
unknown a priori. For this particular case, the permittivity
of a medium inside the crack gap is assumed indefinitely
large (e.g., Parton [11]). For semi-permeable cracks, the
mechanical tractions on both crack surfaces, tþi , t

–
i are fully

prescribed and the sum of the surface electric charges
vanishes (i.e., Σt4 ¼ 0) whereas the jump in the crack-face
generalized displacement ΔuI and the crack-face electric
charge tþ4 ¼ – t –4 are unknown a priori and also satisfy the
following relation

tþ4 Δuin
þ
i ¼ – κcΔu4, (1)

where κc is the dielectric permittivity of the medium inside
the crack gap (e.g., Hao and Shen [13]). It should be noted
that if the permittivity inside the crack gap is significantly
large (i.e., κc↕ ↓1), the electrically semi-permeable
condition will converge to the conducting boundary
condition (e.g., [32,35]). Here and in what follows, the
lower case indices range from 1 to 3; the upper case indices
range from 1 to 4, and repeated indices imply a summation
over their range. Note that the superscript “þ” and “ – ” are
employed to emphasize the quantities associated with the
upper crack surface Sþ and the lower crack surface S – ,
respectively.
For energetically consistent cracks (e.g., Landis [14]),

the mechanical tractions on both crack surfaces tþi , t
–
i can

be partitioned into two parts: �þi þ τþi and � –
i þ τ –i where

f�þ
i ,  �

–
i g and fτþi ,  τ –i g are the normal and shear tractions,

respectively. For this crack model, the mechanical shear
tractions fτþi ,τ –i g are fully prescribed whereas the jump in
the crack-face generalized displacement ΔuI , the mechan-
ical normal tractions f�þ

i ,�
–
i g, and the surface electric

charge tþ4 ¼ – t –4 are unknown a priori but satisfy the
condition (1) and the following relation

�þj ¼ ð1=2Þκcnþj ðΔu4Þ2=ðΔuinþi Þ2: (2)

Extensive details of the electrical boundary conditions
used in the present investigation can also be found in the
work of Rungamornrat et al. [15].

3 Formulation

A set of basic equations for linear piezoelectric materials
and the boundary integral equations governing an isolated
crack of arbitrary shape embedded in a three-dimensional,
generally anisotropic, linear piezoelectric infinite medium
under various types of crack-face conditions are summar-
ized below.

3.1 Basic field equations

The electro-mechanical behavior of a piezoelectric med-
ium is governed by the classical theory of linear
piezoelectricity. The basic field equations for a vanishing
distributed source can be expressed in a concise form as

∂�iJ
∂xi

¼ 0, �iJ ¼ EiJKl
∂uK
∂xl

, (3)

where �iJ represents the generalized stress (i.e., the stress
tensor �ij and the electric induction vector �i4); uK
represents the generalized displacement (i.e., the displace-
ment uk and the electric potential u4), and EiJKl denotes the
generalized moduli (i.e., elastic constants Eijkl,
piezoelectric constants Ei4kl, and dielectric permittivities
–Ei44l). The generalized traction at any point on a smooth
surface with a unit normal n is given by tJ ¼ �iJ ni (i.e., the
mechanical traction tj ¼ �ijni and the surface electric
charge t4 ¼ �i4ni).

3.2 Boundary integral equations

Boundary integral equation methods have been found
efficient for modeling cracks in homogenous, linear,
infinite media because in the absence of a distributed
source, the key governing equation involves only
unknowns on the crack surface. This positive feature
renders the solution methodology computationally effi-
cient than domain-based techniques such as the conven-
tional finite element and finite difference methods. In the
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present study, the well-known, symmetric Galerkin
boundary element method (SGBEM) developed by
Rungamornrat and Mear [48] and Rungamornrat et al.
[15] is selected as key computational procedure in the
analysis.
For isolated cracks in a linear piezoelectric, infinite

medium that is free of remote loading, the generalized
stress �lK at any interior point x can be expressed in terms
of the crack-faced data via the following standard integral
relation

�lKðxÞ ¼ –!
Sþ

SJlKðξ – xÞΣtJ ðξÞdAðξÞ

þ !
Sþ

ΣlK
iJ ðξ – xÞniðξÞΔuJ ðξÞdAðξÞ, (4)

where ΣtJ ¼ tþJ þ t –J and ΔuJ ¼ uþJ – u –
J denote the sum of

the crack-face generalized traction and the jump in the
crack-face generalized displacement, respectively, and
SPiJ ðξ – xÞ and ΣlK

iJ ðξ – xÞ are known fundamental solutions
for an un-cracked whole space. While Eq. (4) can be
directly used to form a boundary integral equation
sufficient for determining the unknown relative crack-
face generalized displacement, the resulting integral
equations contain both the strongly singular kernel SPiJ ðξ
– xÞ and the hyper-singular kernel ΣlK

iJ ðξ – xÞ and this, as a
direct consequence, requires nontrivial numerical treat-
ments in the solution procedure (e.g., [53–57]). To avoid
such difficulties, an alternative singularity-reduced bound-
ary integral equation for the generalized crack-face traction
proposed by Rungamornrat et al. [15] and Rungamornrat
and Mear [48] can be utilized. To construct such weakly
singular integral equation, they employed the following
special decompositions of the kernels SPiJ ðξ – xÞ and
ΣlK
iJ ðξ – xÞ:

SPiJ ξ – xð Þ ¼ HP
iJ ξ – xð Þ þ εism

∂GP
mJ ðξ – xÞ
∂�s

, (5)

ΣlK
iJ ξ – xð Þ ¼ –EiJKlδ ξ – xð Þ

þ εism
∂
∂�s

εlrt
∂
∂�r

CtK
mJ ξ – xð Þ, (6)

where εism is the standard alternating symbol; δðξ – xÞ
is a Dirac-delta function centered at x; HP

iJ ðξ – xÞ ¼
– δJPð�i – xiÞ=4πr3 with δJP denoting the generalized
Kronecker-delta and r ¼ jjξ – xjj; and GP

mJ ðξ – xÞ and
CtK
mJ ðξ – xÞ are given, for generally anisotropic piezo-

electric materials, by

GP
mJ ξ – xð Þ ¼ εmqaEqJKl

8π2r
#

z$r¼0

ðz,zÞ – 1KPzazldsðzÞ, (7)

CtK
mJ ξ – xð Þ ¼ AKJPQ

mtsl

8π2r
#

z$r¼0

ðz,zÞ – 1PQzszldsðzÞ,

AKJPQ
mtsl ¼ εaumεadt EuKPsEdJQl –

1

4
EdJKuElPQs

� �
,

(8)

in which z is a unit vector, ðz,zÞPQ ¼ zmEmPQnzn, ðz,zÞ – 1 is
the inverse of ðz,zÞ; and the line integrals are carried out
along a unit circle on the plane normal to the vector
r ¼ ξ – x. It is remarked that the two-point functions
GP

mJ ðξ – xÞ and CtK
mJ ðξ – xÞ are only singular at ξ ¼ x of

Oð1=rÞ.
By applying Eqs. (5) and (6) to Eq. (4) together with

carrying out the integration by parts via Stokes’ theorem, it
results in the singularity-reduced integral relation for the
generalized stress

�lK xð Þ ¼ εlrt
∂
∂xr

!
Sþ

GJ
tKðξ – xÞΣtJ ðξÞdAðξÞ

þ εlrt
∂
∂xr

!
Sþ

CtK
mJ ðξ – xÞDmΔuJ ξð ÞdA ξð Þ

–!
Sþ

HJ
lKðξ – xÞΣtJ ðξÞdAðξÞ,

(9)

Finally, a weakly singular, weak-form boundary integral
equation for the generalized traction reported in Runga-
mornrat et al. [15] and Rungamornrat and Mear [48] can be
obtained from Eq. (9) by a limiting process, a standard
weighted residual technique, and the integration by parts
via Stokes’ theorem. Its final explicit form, in terms of the
crack-face data, is given by

–!
Sþ

Dt~�KðyÞ!
Sþ

CtK
mJ ðξ – yÞDmΔuJ ðξÞdAðξÞdAðyÞ

¼ 1

2
!
Sþ

~�KðyÞΔtKðyÞdAðyÞ

þ !
Sþ

Dt~�KðyÞ!
Sþ

GJ
tKðξ – yÞΣtJ ðξÞdAðξÞdAðyÞ

þ !
Sþ

~�KðyÞ!
Sþ

HJ
iKðξ – yÞniðyÞΣtJ ðξÞdAðξÞdAðyÞ,

(10)

where ~�K is a sufficiently smooth test function; Dmð$Þ ¼
niεism∂ð$Þ=∂�s is a surface differential operator; ΣtK ¼
tþK þ t –K and ΔtK ¼ tþK – t –K are the sum of and the jump in
the generalized tractions across the crack surface; and
fCtK

mJ ,G
J
tK ,niH

J
iKg are known kernels. It should be noted

that the development of the boundary integral equation in
Eq. (10) is independent of the crack configurations and the
mechanical and electrical boundary conditions on the crack
surface and, as a result, it is valid for the four types of
cracks described above. In addition, since it contains
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complete information on the crack surface (i.e., ΔtK ,    ΣtK ,
and ΔuK), the boundary integral equation in Eq. (10) is
sufficient for solving the primary unknowns on the crack
surface when all prescribed data and known relations
associated with each type of cracks are properly incorpo-
rated. From a theoretical and computational point of
view, all the double-surface integrals in Eq. (10) exist
in an ordinary sense since all involved kernels
fCtK

mJ , G
J
tK ,  niH

J
iKg are only weakly singular and of

Oð1=rÞ. This feature allows unknown data on the crack
surface to be approximated by continuous interpolation
functions. Although Eq. (10) is applicable only to an
infinite domain that is free from the electro-mechanical
remote loading, the integration of the remote loading can
readily be handled using the principle of superposition (see
clear explanations in Rungamornrat et al. [15]).

4 Solution technique

By adopting a standard discretization procedure commonly
employed in the weakly singular SGBEM, the boundary
integral equation for the generalized traction can be
transformed into a discrete system of linear algebraic
equations

CΔU þ ðG þHÞΣT þ LΔT ¼ 0, (11)

where matrices C, G, and H result directly from the
discretization of the double surface integrals containing the
kernels CtK

mJ , GJ
tK , and HJ

iK , respectively; the matrix L
corresponds to a single surface integral containing the
jump in the crack-face generalized traction; ΔU is a vector
of nodal quantities associated with the jump in the crack-
face generalized displacement, and ΣT and ΔT are vectors
of nodal quantities of the sum of and the jump in the crack-
face generalized tractions, respectively. The construction
of all matrices fC,   G,   H ,    Lg follows directly the work
of [15,48]. The approximation of the near-front, jump in
the crack-face generalized displacement is enhanced by
using special crack-tip elements along the crack front
[15,48,58] and the interpolation technique is employed to
efficiently evaluate involved kernels for general aniso-
tropic materials [15,48]. In addition to allowing the use of
relatively coarse meshes in the discretization while
yielding sufficiently accurate results, the former also
provides the direct means to extract the intensity factors
in terms of extra nodal data solved along the crack front.
Details of such relevant solution procedure can be found in
the work of Rungamornrat and Mear [48] and Runga-

mornrat et al. [15].
To obtain the unknown crack-face data, the system of

linear Eq. (11) is solved together with the prescribed crack-
face boundary conditions. For both electrically permeable
and impermeable cracks, the final system of governing
equations after incorporating the crack-face conditions is
linear and its solution can be readily obtained via a selected
efficient linear solver. On the contrary, the final governing
equations for the case of electrically semi-permeable and
energetically consistent cracks are nonlinear due to the
nonlinear crack-face conditions and they are efficiently
solved via standard Newton iterative scheme. Details of the
solution procedure can be found in the work of
Rungamornrat et al. [15]. Once a set of nodal data ΔU is
determined, it is directly used to post-process for both the
stress and electric intensity factors along the crack front.

5 Numerical results and discussions

First, computed results for certain simple cases such as a
penny-shaped crack under simple electrical/mechanical
loads are benchmarked with available reference solutions
to validate the formulation of the governing integral
equations and numerical implementations of the weakly
singular SGBEM and the post-process for the stress
intensity factors and the electric intensity factor. After
verifying the proposed technique, we then thoroughly
investigated the influence of non-flat geometry of the crack
surface, remote electrical load, and permittivity of the
medium inside the crack gap on the intensity factors along
the crack front of representative non-flat cracks.
In the numerical study, a series of meshes is constructed

first to investigate the convergence of the computed
intensity factors and a sufficiently fine mesh is then chosen
to ensure the convergence of the solution. In the
discretization, the majority of the crack surface is
discretized by standard 6-node and 8-node isoparametric
elements, whereas the region adjacent to the crack
boundary is discretized by 9-node special crack-tip
elements [15,48,58]. The representative linear piezoelec-
tric materials selected in the analysis are transversely
isotropic and all material constants are taken to be those of
PZT-4, as shown in Table 1.

5.1 Verification

To verify the implemented weakly singular SGBEM,

Table 1 Generalized moduli of PZT-4 [39]. The plan of isotropy is taken normal to the x3 -axis

item elastic constants (� 109 Pa) piezoelectric constants (C/m2) dielectric permittivities (� 10–9 C/(Vm))

E1111 E1122 E1133 E3333 E1313 E1143 E3343 E1341 –E1441 –E3443

value 139.00 77.80 74.30 113.00 25.60 – 6.98 13.80 13.40 6.00 5.47
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consider first a penny-shaped crack of radius a embedded
in a piezoelectric infinite medium made of PZT-4, as
shown in Fig. 2(a). The medium is loaded by a uniform
remote tension �0 that is varied from 10 to 100 MPa,
whereas the electric field E0 is fixed at 2.5 MV=m, and the
dielectric permittivity of the medium inside the crack gap
is chosen as κc ¼ 5κ0 where κ0 ¼ 8:85� 10 – 12   C=ðVmÞ
is the permittivity of the air. The poling direction and the
axis of material symmetry are taken along the x3 -axis. The
mesh shown in Fig. 2(b), after the convergence is
confirmed, is used in the verification. Numerical results
for the normalized mode-I stress intensity factor and
electric intensity factor are reported in Figs. 3(a) and 3(b),
respectively, along with the analytical solutions [32,39].
It is shown that the numerical results obtained are in

good agreement with the analytical solution for all four
crack-face condition considered. In addition, it can be
inferred from Fig. 3(a) that the mode-I stress intensity
factors KI for the permeable, impermeable, and semi-
permeable crack models are identical for the entire range of
the applied uniform remote tension �0 treated. These
findings are in agreement with the work of previous
investigators (e.g., Li and Lee [32] and Chiang and Weng
[35]) who pointed out that the mode-I stress intensity
factors for the three crack-face conditions depend only on
the mechanical loading but are independent of electrical
loading and the permittivity of the medium inside the crack
gap.
In addition, it can be concluded from Fig. 3(a) that the

results predicted by the energetically consistent model is
less than those predicted by the other three crack models
for the entire range of �0. This is because, as pointed out by
several investigators [50,51], the unknown mechanical
traction acting on both the crack surfaces that is induced by
the opening displacement of the crack, the jump in the
electric potential, and the permittivity of the medium inside
the crack gap, try to close the crack. However, when the
uniform remote tension increases, the mode-I stress
intensity factor predicted by the energetically consistent
model tends to approach the results of the other three crack
models.
In contrast to KI, the electric intensity factor KIV strongly

depends on the electrical boundary conditions adopted on
the crack surface. Results in Fig. 3(b) show that the electric
intensity factors of the impermeable and permeable cracks
serve, respectively, as the upper and lower bounds of the
results generated by the semi-permeable and energetically
consistent models for almost the entire range of �0
considered. However, when the uniform remote tension
�0 is relatively small, the electric intensity factor KIV for

Fig. 2 (a) Schematic of a penny-shaped crack of radius a in a
piezoelectric infinite medium and (b) mesh of a penny-shaped
crack used in the analysis.

Fig. 3 Normalized intensity factors for a penny-shaped crack in a piezoelectric infinite medium subjected to remote uniform tensile
stress �0 and constant electric field E0 under four types of crack assumptions: (a) KI ¼ ðKIE3343Þ=ðE1111E1441E0

ffiffiffi
a

p Þ; (b)
KIV ¼ KIV=ðE1441E0

ffiffiffi
a

p Þ.
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the energetically consistent model is lower than that for the
permeable model. This implies that the level of applied
mechanical load has a significant influence on the lower
bound of KIV for the penny-shaped crack subjected to
uniform loading. As a result, one can see that the lower
bound of KIV switches from the energetically consistent
solution to the permeable solution as the applied mechan-
ical loading increases. It is remarked also that the electric
intensity factor KIV for the semi-permeable and energeti-
cally consistent cracks are nearly identical and both results
tend to approach the result for the impermeable model
when the applied remote stress increases.

5.2 Influence of crack geometry

To explore the behavior of the intensity factors along the
boundary of non-flat cracks, two representative cracks, one
for a spherical cap crack (shown in Fig. 4) and the other for
a cylindrical crack (shown in Fig. 5), are considered. The
latter and the former are chosen to represent cracks
possessing the curvature in a single direction and two
directions, respectively. In the numerical study, following

parameters are employed: (i) various half-subtended angles
of the spherical cap crack and the cylindrical crack (defined
further below in Sections 5.2.1 and 5.2.2) ranging from 5°
to 90° are considered; (ii) the uniform remote tension
and the uniform electric field are taken as 50 MPa and
2.5 MV/m, respectively; (iii) the permittivity of the
medium inside the crack gap for both semi-permeable
and energetically consistent crack-face conditions are
taken as κc ¼ 5κ0 where κ0 ¼ 8:85� 10 – 12     C=ðVmÞ.

5.2.1 Spherical cap crack

Consider a spherical cap crack embedded in a transversely
isotropic piezoelectric infinite medium of PZT-4, as shown
schematically in Fig. 4(a). The medium is subjected to a
uniform remote tension �0 and a uniform electric field E0
along the x3 -axis. The axis of material symmetry and the
poling direction are chosen to direct along the x3 -axis. The
geometry of the crack surface is defined by

x1 ¼ Rsingcosβ,    x2 ¼ Rsingsinβ,    x3 ¼ Rcosg, (12)

where R denotes the radius of the spherical cap crack,
β 2 ½0,2π�, and g 2 ½0,�� with � denoting the half
subtended angle of the spherical surface. It is remarked
that the spherical cap crack considered here can be viewed
as a penny-shaped crack of radius a ¼ R� bended over the
surface of a sphere of radius R. In the following
investigation, a mesh of the crack surface containing 144
elements is adopted, as shown in Fig. 4(b).
The normalized non-zero stress intensity factors KI and

KII, and the electric intensity factor KIV under the four
crack-face conditions are shown in Figs. 6(a)–6(c),
respectively. It is found that when the half subtended
angle of the crack surface is relatively small, the behavior
of the intensity factors of the spherical cap crack is similar
to that of the penny-shaped crack. However, when the half
subtended angle is sufficiently large, such behavior of the
special cap crack is significantly different from that of the
penny-shaped crack.

Fig. 4 (a) Schematic of a penny-shaped crack folded in circular
ball (a spherical cap crack) in an infinite piezoelectric medium and
(b) mesh of a spherical cap crack adopted in the analysis.

Fig. 5 (a) Schematic of a penny-shaped crack folded over the surface of a sphere of radius R (a cylindrical crack) in a piezoelectric
infinite medium; (b) mesh utilized in the analysis; (c) three different points on the mesh of cylindrical crack observed in the investigation.
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The results reported in Fig. 6(a) indicate that when the
half subtended angle of the crack surface is relatively small
(e.g., � ¼ 5°,    10°,    15°), the distribution of KI under the
four crack models is similar to that of KI for the penny-
shaped crack. In particular, KI of the impermeable,
permeable, and semi-permeable cracks are nearly identical
and serve as the upper bound, whereas KI of the
energetically consistent model is less than those of the
other three crack models and, therefore, serves as the lower
bound solution. However, when the half subtended angle is
sufficiently large, the distributions of KI for the imperme-
able, permeable, and semi-permeable crack models are
obviously different and the solution predicted by the
permeable model forms the upper bound, whereas KI for
the impermeable model becomes the lower bound instead
of the result generated by the energetically consistent
model. It can be concluded that the lower bound switches
from the energetically consistent solution to the imperme-
able solution as the half subtended angle increases.
It is important to remark that while the mode-I stress

intensity factors of the penny-shaped crack under the
impermeable, permeable, and semi-permeable crack-face
conditions are identical as indicated in Refs. [32,39], such
results for the spherical cap crack are not identical when
the half subtended angle is sufficiently large. The
discrepancy depends primarily on the half subtended
angle. This implies that the non-planar feature of the crack
surface has a significant influence on the mode-I stress
intensity factor of the three crack models. According to the
numerical results presented later in Section 5.3, it was also
found that the non-flat crack surface leads to the
dependence of the mode-I stress intensity factor KI on
the electric field for both the impermeable and semi-
permeable models, while the electric field has no effect on
KI of the penny-shaped crack under the impermeable,
permeable, and semi-permeable crack-face conditions.
This conclusion is supported by the significant difference

among results generated by the three crack models (i.e.,
impermeable, permeable, and semi-permeable models)
when the half subtended angle of the spherical cap crack is
sufficiently large.
While the lower bound of the mode-I stress intensity

factor for the spherical cap crack switches when the half
subtended angle is sufficiently large, the upper and lower
bounds of the mode-II stress intensity factor for the
spherical cap crack do not. Results in Fig. 6(b) indicates
that the mode-II stress intensity factor KII for the
impermeable and energetically consistent cracks serve,
respectively, as the upper and lower bounds for (nearly) the
entire range of the normalized half subtended angle �,
except when � is either very small or large (i.e., � ¼ 5° and
� ¼ 90°). In particular, the numerical result indicates that
when the half-subtended angle is relatively small (e.g.,
� ¼ 5°), results generated by the four crack-face models
are nearly identical and almost zero. This finding is similar
to that for the penny-shaped crack subjected to uniform
remote loading where the mode-II stress intensity factors
for the four crack-face models vanish. However, such
result becomes clearly distinct when the half subtended
angles become larger (e.g., � ¼ 40°,    45°,    50°,    55°) for
the four crack-face models, and it can be seen that the
impermeable solution is significantly different from those
of the other three crack-face models. Finally, it should be
noted that when the half subtended angle is relatively large
(i.e., � ¼ 90°), the mode-II stress intensity factor KII for the
impermeable, permeable, and semi-permeable cracks are
nearly identical.
Similar to the mode-I stress intensity factor but unlike

the mode-II stress intensity factor, the lower bound of the
electric intensity factor KIV for the spherical cap crack
switches as the half subtended angle increases. Results in
Fig. 6(c) indicate that the electric intensity factors KIV for
the four crack-face models are different, and that the
permeable solution represents the lower bound when the

Fig. 6 Dependence of the normalized intensity factors on half-subtended angles for the spherical cap crack in a piezoelectric infinite

medium: (a) KI ¼ KI=ð�0

ffiffiffi
R

p Þ; (b) KII ¼ KII=ð�0

ffiffiffi
R

p Þ; (c) KIV ¼ ðKIVE3333Þ=ð�0E3343

ffiffiffi
R

p Þ.
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half subtended angle is relatively small. However, when
the half subtended angle becomes larger (e.g.,
� ¼ 65°,    70°), the energetically consistent solution
becomes the lower bound instead for the permeable
solution. Moreover, it is obvious that when the half
subtended angle of the spherical cap crack is relatively
small, KIV of the spherical cap crack for the four crack-face
models possesses a similar behavior to that of the penny-
shaped crack, where the permeable solution of KIV serves
as the lower bound. However, KIV of the spherical cap
crack and the penny-shaped crack obviously exhibit
different behavior when the half subtended angle is
sufficiently large, and it can be seen that the lower bound
switches from the permeable solution to the energetically
consistent solution. Finally, it can be inferred from
Figs. 3(b) and 6(c) that KIV for the impermeable model
is still the upper bound for both the penny-shaped crack
and the spherical cap crack for the entire range of the half
subtended angle � considered.

5.2.2 Cylindrical crack

Consider a cylindrical crack with the radius of curvature R
embedded in a transversely isotropic piezoelectric infinite
medium made of PZT-4, as illustrated in Fig. 5(a). The
piezoelectric medium is subjected to a uniform remote
tension �0 and a uniform electric field E0 along the x3 -axis.
The axis of the material symmetry and the poling direction
coincide with the x3 -axis.
The geometry of the crack surface is defined by

x1 ¼ Rsing,      x2 2 ½ – d,d�,      x3 ¼ Rcosg, (13)

where g 2 ½0,��, � denotes the half subtended angle of the

crack surface, and d ¼ R
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 –g2

p
. It is worth noting that

the cylindrical crack considered here can be obtained
directly by folding a penny-shaped crack of radius a ¼ R�
over the surface of a cylinder of radius R. In the present
study, a mesh of the cylindrical crack containing 144

Fig. 7 Dependence of the normalized intensity factors on the half-subtended angles for a cylindrical crack in a piezoelectric infinite

medium: (a) KI ¼ KI=ð�0

ffiffiffi
R

p Þ; (b) KII ¼ KII=ð�0

ffiffiffi
R

p Þ; (c) KIII ¼ KIII=ð�0
ffiffiffi
R

p Þ; (d) KIV ¼ ðKIVE3333Þ=ð�0E3343

ffiffiffi
R

p Þ.
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elements is used, as shown in Fig. 5(b). The normalized
stress intensity factors fKI,KII,KIIIg and the electric
intensity factor KIV at three different points (i.e., top,
middle, and bottom points) located on the cylindrical crack
as shown in Fig. 5(c) are reported in Figs. 7(a)–7(d) for
four crack-face models.
Results in Fig. 7(a) indicate that the mode-I stress

intensity factor KI for the top point is greater than those for
the middle and bottom points of the cylindrical crack,
when the half-subtended angle is relatively large. More-
over, it can be inferred from Fig. 7(a) that KI under the four
types of crack-face conditions obtained from the top and
bottom points of the cylindrical crack are similar to the
results for the penny-shaped crack and spherical cap crack,
respectively, whereas such intensity factors obtained for
the middle point are different from those for the penny-
shaped crack and the spherical cap crack. In particular, it
was found that for the top point, KI for the impermeable,
permeable, and semi-permeable cracks are nearly identical,
whereas that for the energetically consistent model is less
than those for the other three crack-face models and,
therefore, serves as the lower bound for the entire range of
the normalized half-subtended angle �. While KI at the top
point of the cylindrical crack obtained from the four crack
models are similar to that of the penny-shaped crack, the
results at the bottom point has the similar behavior to that
of the spherical cap crack. It was also found that KI at the
bottom point of the cylindrical crack obtained from the
impermeable, permeable and semi-permeable models are
not identical, and that the permeable solution serves as the
upper bound, whereas the lower bound of KI switches from
the energetically consistent model to the impermeable
model when the subtended angle of the cylindrical crack
increases. In contrast to the top and bottom points of the
cylindrical crack, KI at the middle point under the four
crack-face conditions are different from the results
obtained for the penny-shaped crack and the spherical
cap crack. In particular, it can be seen that results for the
impermeable, permeable, and semi-permeable crack-face
models are not nearly identical as those observed at the top
point and that the permeable solution serves as the upper
bound, whereas the energetically consistent solution
represents the lower bound for the entire range of the
normalized half-subtended angle �.
While the mode-II stress intensity factor KII for the

penny-shaped crack subjected to uniform loading identi-
cally vanishes along the crack front, it is nonzero and
completely different for the top, middle, and bottom points
of the cylindrical crack. Results in Fig. 7(b) indicate that
KII obtained at the bottom point is greater than those at the
middle and top points of the cylindrical crack. In addition,
it is obvious that when the half-subtended angle is
relatively small (e.g., � ¼ 5°), the mode-II stress intensity
factors at all three points of the cylindrical crack for all four
crack-face models are nearly identical and almost vanish.

However, when the half-subtended angle increases, the
stress intensity factors KII for the four crack-face models
are different and their lower and upper bounds can be
obviously seen. More specifically, it can be inferred from
Fig. 7(b) that when the half-subtended angle is sufficiently
large, the impermeable crack model yields the upper bound
for KII at all three points of the cylindrical crack, whereas
the permeable and energetically consistent crack models
provide the lower bound of KII at the top point and the
remaining two points (i.e., middle and bottom points),
respectively. This indicates that the non-planar feature of
the crack surface has the significant influence on the lower
bound and the value of the mode-II stress intensity factor
for the cylindrical crack. As a result, it can be seen that KII
obtained from the four crack models are different and that
the upper and lower bounds exist when the half-subtended
angle becomes larger. In addition, the lower bounds of KII
are not the same for the top point and the remaining two
points of the cylindrical crack. Finally, it can be observed
that when the half-subtended angle of the cylindrical crack
is sufficiently large, KII at the top point of the cylindrical
crack obtained from the impermeable model is positive and
quite different from those obtained from the other three
models which clearly attain the negative values.
While the mode-III stress intensity factors KIII at the top

and bottom points of the cylindrical crack for the four
crack-face conditions vanish due to the symmetry, it does
not vanish at the middle point of the cylindrical crack and
possesses the same negative sign. Results in Fig. 7(c) also
indicate that KIII obtained from the semi-permeable and
energetically consistent crack-face models fall between the
impermeable and permeable solutions which constitute the
upper and lower bounds, respectively. Moreover, it was
also observed that when the half-subtended angle is
relatively small (i.e., � ¼ 5°), KIII for the four crack-face
conditions tends to zero. This finding is expected since the
mode-III stress intensity factor vanishes for any planar
cracks (e.g., penny-shaped cracks) subjected to uniform
loading. Finally, it can be pointed out that, similar to the
mode-II stress intensity factor KII, KIII for the impermeable
model is significantly different from those generated by the
other three crack-face models when the half-subtended
angle becomes larger.

The electric intensity factor KIV at the top, middle, and
bottom points of the cylindrical crack are shown in
Fig. 7(d). It was found that KIV at the top point is greater
than those at the middle and bottom points. Moreover,
obtained numerical results also indicate that the behavior
of KIV at the top and bottom points of the cylindrical crack
is similar to that for the penny-shaped crack and the
spherical cap crack, respectively, whereas KIV at the
middle point is significantly different from that of the
penny-shaped and spherical cap cracks. More specifically,
it was found that at the top point of the cylindrical crack,
the electric intensity factor KIV for the four crack models
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are completely different according to the electrical
boundary conditions adopted on the crack surface. It can
be seen that the impermeable and permeable crack models
yield, respectively, the upper and lower bounds of KIV to
the solutions from the semi-permeable and energetically
consistent models. This finding is similar to the results
obtained for the penny-shaped crack. Obtained results also
indicate that the electric intensity factor KIV at the bottom
point of the cylindrical crack obtained from the four crack
models is different from that of the penny-shaped crack,
but is similar to that of the spherical cap crack. In addition,
the impermeable crack model yields the upper bound for
KIV for the entire range of the normalized half-subtended
angle �, whereas the lower bound fluctuates between
solutions generated by the permeable and energetically
consistent crack models as � increases. Finally, it can be
seen that when the half-subtended angle is large (e.g.,
� ¼ 75°,  80°,  85°,  90°), the electric intensity factor KIV of
the permeable crack is nearly identical to that of the semi-
permeable crack. In contrast to the top and bottom points,
KIV obtained at the middle point of the cylindrical crack is
different from those of the penny-shaped and spherical cap
cracks. It was found that the permeable crack provides the
lower bound solution for KIV for almost the entire range of
the normalized half-subtended angle � except when the
subtended angle is significantly large (e.g., � ¼ 85°,  90°).
Solutions generated by the permeable and energetically
consistent crack models are nearly identical and serve as
the lower bound. It is interesting to note that though the
lower bound of KIV for all three points of the cylindrical
crack are completely different; the impermeable crack
model always yields the upper bound of KIV for all those
three points.

5.3 Influence of remote electrical loading

To explore the influence of remote electrical loading on the

intensity factors along the crack front of non-flat cracks,
the same spherical cap crack and cylindrical crack
embedded in a transversely isotropic piezoelectric infinite
medium made of PZT-4 as shown in Figs. 4 and 5,
respectively, are considered. In the numerical study,
following parameters are employed: (i) the half-subtended
angle for both cracks is taken as � ¼ 45°; (ii) the uniform
remote tension �0 is taken to be 50 MPa whereas the
uniform electric field E0 varies from -4.5 to 4.5 MV/m;
(iii) the permeable, impermeable, semi-permeable, and
energetically consistent crack models are considered; (iv)
the permittivity of the medium inside the crack gap for
both semi-permeable and energetically consistent crack
models are taken to be κc ¼ 5κ0 where κ0 ¼ 8:85�
10 – 12     C=ðVmÞ. In the analysis of the spherical cap
crack and cylindrical crack, the meshes shown in Figs. 4(b)
and 5(b) are employed, respectively. In addition, results for
a penny-shaped crack of radius a ¼ R� are also obtained
and used in the comparison and discussion.

5.3.1 Spherical cap crack

The normalized non-zero stress intensity factors KI, KII,
and the electric intensity factor KIV under four types of
crack-face conditions are shown in Figs. 8(a)–8(c),
respectively. It can be seen from the results reported in
Fig. 8(a) that the mode-I stress intensity factor KI for the
impermeable and semi-permeable spherical cap cracks
depends strongly on the electric field E0. These findings are
in contrast with those observed for planar cracks (i.e., a
penny-shaped crack) where KI for impermeable, perme-
able, and semi-permeable cracks are identical and
independent of the electric field. Moreover, it was also
observed that KI for permeable planar and non-planar
cracks are independent of the electric field. This implies
that the curvature of non-planar cracks leads to the
dependence on the electric field for KI for both the

Fig. 8 Dependence of the normalized intensity factors on the electric field for a spherical cap crack in a piezoelectric infinite medium: (a)
KI ¼ KI=ð�0

ffiffiffi
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p Þ; (b) KII ¼ KII=ð�0
ffiffiffi
a

p Þ; (c) KIV ¼ ðKIVE3333Þ=ð�0E3343
ffiffiffi
a

p Þ.
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impermeable and semi-permeable crack-face conditions.
However, such effect plays no role on the value of KI for
the permeable condition. Moreover, it can be inferred from
Fig. 8(a) that the mode-I stress intensity factor generated
from the energetically consistent model strongly depends
on the electric field for both the penny-shaped crack and
the spherical cap crack. In addition, obtained numerical
results also indicate that the energetically consistent crack-
face model yields the lower bound of KI for the penny-
shaped crack subjected to the uniform loading for the entire
range of the electric field considered, while the lower
bound of the spherical cap crack for the positive electric
field fluctuates between the impermeable and energetically
consistent solutions by showing a turning point at about
E0 ¼ 2:5 MV/m. Moreover, it was also observed that KI
for all four crack-face conditions are nearly identical when
the electric field vanishes, i.e., E0 ¼ 0 MV/m. This finding
is equally true for both the penny-shaped and spherical cap
cracks, as shown in Fig. 8(a). Similar to the mode-I stress
intensity factor, Fig. 8(b) indicates that the mode-II stress
intensity factor KII for the permeable spherical cap crack is
independent of the electric field, whereas KII of the
impermeable, semi-permeable, and energetically consis-
tent spherical cap cracks depend strongly on the electric
field.
While the fracture behavior of planar cracks (i.e., penny-

shaped cracks) and non-planar cracks (i.e., spherical cap
cracks) are different for the mode-I stress intensity factor
when using the impermeable and semi-permeable condi-
tions, Fig. 8(c) indicates that the electric intensity factor
KIV for the spherical cap crack is similar to KIV of the
penny-shaped crack under all four crack-face conditions.
More specifically, KIV is independent of the electric field
for both the permeable penny-shaped and spherical cap
cracks, whereas KIV for the impermeable, semi-permeable,
and energetically consistent crack-face models depend
strongly on the electric field for both crack configurations.
According to the numerical results for the penny-shaped

and spherical cap cracks subjected to remote uniform
loading, the non-zero intensity factors fKI,KII,KIVg for
the spherical cap crack and the non-zero intensity factors
fKI,KIVg for the penny-shaped crack are all independent of
the electric field under the permeable condition.

5.3.2 Cylindrical crack

The normalized stress intensity factors KI, KII, and KIII and
the electric intensity factor KIV under four types of crack-
face conditions are shown in Figs. 9(a)–9(d), respectively.
It can be seen from the results reported in Fig. 9(a) that the
mode-I stress intensity factor KI at the top point is greater
than those at the middle and bottom points of the
cylindrical crack. Moreover, it can be inferred from
Fig. 9(a) that KI at the top point of the impermeable,
permeable, and semi-permeable cracks are nearly identical,

whereas that of the energetically consistent crack strongly
depends on the electric field. These findings are similar to
the case of the penny-shaped crack subjected to uniform
loading as shown in Fig. 8(a). In contrast, the behavior of
KI obtained from the three crack models for the remaining
two points (i.e., middle and the bottom points) of the
cylindrical crack is different from that of the penny-shaped
crack but similar to that of the spherical cap crack.
Figure 9(a) indicates that the impermeable, permeable, and
semi-permeable models yield slightly different KI at the
middle point but clearly different at the bottom point of the
cylindrical crack. In addition, it can be seen that KI for the
impermeable and semi-permeable cases depend on the
electric field whereas KI for the permeable case is
independent of the electric field. Finally, it should be
noted that KI generated from the energetically consistent
model strongly depends on the electric field for all three
points of the cylindrical crack, similar to that of the penny-
shaped crack.
While the mode-II stress intensity factor KII vanishes

identically for the penny-shaped crack subjected to
uniform loading, it is non-zero for the top, middle, and
bottom points of the cylindrical crack. Figure 9(b)
indicates that KII at the bottom point is greater than those
at the middle and top points. Moreover, it can be inferred
from Fig. 9(b) that KII for the impermeable, semi-
permeable, and energetically consistent models depend
on the electric field and vary according to the electrical
boundary condition adopted on the crack surface (except
when the electric field is equal to zero where KII for the
four crack models are nearly identical), whereas KII for the
permeable model is independent of the electric field. These
findings are similar for all three points of the cylindrical
crack, as shown in Fig. 9(b). While the mode-III stress
intensity factor KIII at the top and bottom points of the
cylindrical crack vanish, Fig. 9(c) shows that it does not
vanish at the middle point. It was observed that, similar to
the mode-II stress intensity factor, KIII at the middle point
of the cylindrical crack for the impermeable, semi-
permeable, and energetically consistent models depend
on the electric field, whereas that for the permeable model
is clearly independent of the electric field.
The electric intensity factor KIV obtained at the top,

middle, and bottom points of the cylindrical crack are
shown in Fig. 9(d). It was observed that, for the positive
electric field, KIV at the top point is greater than those at the
middle and bottom points. Moreover, it was found that the
behavior of KIV at all three points of the cylindrical crack is
similar to that of the spherical cap crack and the penny-
shaped crack. More specifically, the numerical results
indicate that KIV for the impermeable, semi-permeable,
and energetically consistent models depend strongly on the
electric field, whereas KIV at all three points of the
cylindrical crack for the permeable model is independent
of the electric field.
Finally, it is important to note that the intensity factors
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fKI,KII,KIII,KIVg at the top, middle, and bottom points of
the cylindrical crack under the permeable crack-face
condition are independent of the electric field. This similar
conclusion was also observed for the case of a penny-
shaped crack and a spherical cap crack.

5.4 Influence of permittivity of the medium inside the crack
gap

To explore the influence of the permittivity of the medium
inside the crack gap on the intensity factors along the crack
front for both the spherical cap crack and the cylindrical
crack (see Figs. 4 and 5) under semi-permeable and
energetically consistent crack-face conditions, following
parameters are used in the investigation: (i) the variation in
the permittivity of the medium inside the crack gap,
defined by κc ¼ ακ0 where α is the relative permittivity and
κ0 ¼ 8:85� 10 – 12     C=ðVmÞ is the permittivity of the air,
is considered by varying α; (ii) the half-subtended angle is

taken as � ¼ 45°; (iii) the uniform remote tension and the
uniform electric field are taken as 50 MPa and 2.5 MV/m,
respectively; and (iv) the impermeable and permeable
crack-face conditions are also considered in addition to the
semi-permeable and energetically consistent cases to
represent the cases α ¼ 0 and α ¼ 1, respectively.
Again, the meshes shown in Figs. 4(b) and 5(b) are
employed in the analysis. Results for a penny-shaped crack
of radius a ¼ R� are also obtained for the comparison
purpose.

5.4.1 Spherical cap crack

The influence of the permittivity of the medium inside
the spherical cap crack on the non-zero intensity factors,
fKI,KII,KIVg is demenstrated in Figs. 10(a)–10(c), respec-
tively. It was observed that the mode-I stress intensity
factors KI of the penny-shaped crack under the semi-
permeable crack-face condition is identical and clearly

Fig. 9 Dependence of the normalized intensity factors on electric field for a cylindrical crack in a piezoelectric infinite medium: (a)
KI ¼ KI=ð�0

ffiffiffi
a

p Þ; (b) KII ¼ KII=ð�0
ffiffiffi
a

p Þ; (c) KIII ¼ KIII=ð�0
ffiffiffi
a

p Þ; (d) KIV ¼ ðKIVE3333Þ=ð�0E3343
ffiffiffi
a

p Þ.
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independent of the medium inside the crack gap and
identical to those for the permeable and impermeable
cases, while KI of the same crack predicted by the
energetically consistent model strongly depends on the
medium inside the crack gap and it serves as the lower
bound solution for the entire range of the relative
permittivity α.
Unlike the penny-shaped crack, Fig. 10(a) shows that

the results for the spherical cap crack obtained from the
impermeable, permeable, and semi-permeable models are
not identical and that the results for the semi-permeable
crack depend on the medium inside the crack gap, whereas
the results for the impermeable and permeable cases are
completely different. Also, one can see that KI for the semi-
permeable crack varies from the impermeable solution to
the permeable solution (which clearly represents the upper
bound solution) as the value of the permittivity of the
medium increases. This implies that the non-planar feature
of the crack surface has the significant influence on the
mode-I stress intensity factor of the three crack models. In
addition, the numerical results also indicate that the lower
bound of KI for the special cap crack switches from the
energetically consistent solution to the impermeable
solution as the relative permittivity increases.
Figures 10(b) and 10(c) indicate that the mode-II stress

intensity factor KII and the electric intensity factor KIV of
the spherical cap crack under four crack-face conditions
are significantly different according to the electrical
boundary condition adopted on the crack surface. More-
over, it can be observed from obtained results that KII and
KIV are strongly dependent on the permittivity of a medium
inside the crack gap for both the semi-permeable and
energetically consistent models. Such the results for both
crack-face conditions approach the permeable solution as
the permittivity of the medium increases. In addition, it can
be seen that the impermeable solution represents the upper
bound for both KII and KIV while the energetically
consistent solution is the lower bound for the mode-II

stress intensity factor KII and the permeable solution serves
as the lower bound for the electric intensity factor KIV.
Finally, it is important to note that the distribution of KIV
for the spherical cap crack under four crack-face conditions
is similar to that of the penny-shaped crack.

5.4.2 Cylindrical crack

The normalized stress intensity factors KI, KII, KIII, and the
electric intensity factor KIV under four types of crack-face
conditions are reported in Figs. 11(a)–11(d), respectively.
Results in Fig. 11(a) indicate that the mode-I stress
intensity factor KI at the top point is greater than the middle
and bottom points of the cylindrical crack. It can be also
observed that KI for the semi-permeable and energetically
consistent models depends strongly on the permittivity of a
medium inside the crack gap. In addition, the energetically
consistent solution is significantly different from those of
the other three crack-face models and it serves as the lower
bound for the entire range of the relative permittivity α.
This similar behavior is observed for the top, middle, and
bottom points of the cylindrical crack. It is interesting to
remark that the upper bounds of KI at the three points of the
cylindrical crack are not identical. More specifically,
results at the top point for the impermeable, permeable,
and semi-permeable crack-face conditions are nearly
identical and serve as the upper bound, whereas the
permeable solutions represent the upper bounds for both
the middle and bottom points of the cylindrical crack.
Finally, it can be concluded that the lower and upper

bounds of KI for the penny-shaped crack, spherical cap
crack, and cylindrical crack under four crack-face condi-
tions are different. For the penny-shaped crack, the three
crack-face models (i.e., impermeable, permeable, and
semi-permeable models), and the energetically consistent
crack-face model yield the upper and lower bound
solutions, respectively, whereas, for the spherical cap

Fig. 10 Dependence of the normalized intensity factors on relative permittivity α of the medium inside the crack gap for a spherical cap
crack in a piezoelectric infinite medium: (a) KI ¼ KI=ð�0

ffiffiffi
a

p Þ; (b) KII ¼ KII=ð�0
ffiffiffi
a

p Þ; (c) KIV ¼ ðKIVE3333Þ=ð�0E3343
ffiffiffi
a

p Þ.
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crack, the permeable solution serves as the upper bound
while the lower bound switches from the energetically
consistent solution to the impermeable solution as the
permittivity of the medium inside the crack gap increases.
However, for the cylindrical crack, the energetically
consistent solution serves as the lower bound for all
three points. One can also see that the semi-permeable
solution is independent of the permittivity of the medium
inside the crack gap for the penny-shaped crack but
strongly depends on such quantity for both the spherical
cap crack and the cylindrical crack.
Results in Fig. 11(b) indicate that the mode-II stress

intensity factor KII at the bottom point is greater than those
at the middle and top points of the cylindrical crack.
Similar to the mode-I stress intensity factor, KII for the
semi-permeable and energetically consistent condition is
also strongly dependent on the permittivity of medium
inside the crack gap. Results for both models vary from the
impermeable solution to the permeable solution as the
permittivity of the medium inside the crack gap increases.

This finding is true for all three points of the cylindrical
crack. In addition, one can observe that the impermeable
solutions represent the upper bound for all three points of
the cylindrical crack whereas the permeable solution serves
as the lower bound for the top point and the energetically
consistent solution represents the lower bound for the
middle and bottom points for the cylindrical crack. This
implies that the distribution of KII for the middle and
bottom points of the cylindrical crack is similar to that of
the special cap crack. As a result, one can see that the upper
and lower bounds of the middle and bottom points of the
cylindrical crack are the same as those for the spherical cap
crack.
From results of the non-zero mode-III stress intensity

factor KIII at the middle point of the cylindrical crack
shown in Fig. 11(c), the semi-permeable and energetically
consistent solutions, again, depend strongly on the
permittivity of the medium inside the crack gap and both
results varies from the impermeable solution to the
permeable solution as the permittivity of the medium

Fig. 11 Dependence of the normalized intensity factors on the relative permittivity α of the crack medium for a cylindrical crack in a
piezoelectric infinite medium: (a) KI ¼ KI=ð�0

ffiffiffi
a

p Þ; (b) KII ¼ KII=ð�0
ffiffiffi
a

p Þ; (c) KIII ¼ KIII=ð�0
ffiffiffi
a

p Þ; (d) KIV ¼ ðKIVE3333Þ=ð�0E3343
ffiffiffi
a

p Þ.

Jaroon RUNGAMORNRAT et al. Generalized SIFs of cracks in 3D piezoelectric media under various crack-face conditions 295



increases. Clearly, the impermeable solution serves as the
upper bound whereas the permeable solution represents
the lower bound for the entire range of the relative
permittivity α.
Results reported in Fig. 11(d) indicate that the electric

intensity factor KIV at the top point is greater than those at
the middle and bottom points of the cylindrical crack.
Moreover, it was found that the behavior of KIV at the three
points of the cylindrical crack is similar to that of the
penny-shaped crack and the spherical cap crack. More
specifically, KIV generated from the semi-permeable and
energetically consistent models strongly depends on the
relative permittivity α of the medium inside the crack gap
and both results vary from the impermeable solution that is
the upper bound to the permeable solution that is the lower
bound as α increases.

6 Conclusions

In the present study, we have fully investigated the
influence of half subtended angle on the intensity factors
of three crack configurations including the penny-shaped
crack, the spherical cap crack, and the cylindrical crack
under impermeable, permeable, semi-permeable, and
energetically consistent crack-face conditions. Obtained
results have indicated that the mode-I stress intensity factor
KI and the electric intensity factor KIV at the top and
bottom points of the cylindrical crack have the similar
behavior to that of the penny-shaped crack and the
spherical cap crack, respectively, whereas fKI,KIVg at the
middle point of the cylindrical crack have different trend
when compared with those for the penny-shaped crack and
the spherical cap crack. However, for the relatively small
half-subtended angle (e.g., � ¼ 5°,10°), the characteristics
of fKI,KIVg for the spherical cap crack and the cylindrical
crack are similar to those for the penny-shaped crack.
For the penny-shaped crack subjected to a uniform

loading, the mode-II and mode-III stress intensity factors
vanish identically for all four types of crack-face
conditions considered due to the symmetry. In contrast,
due to the non-flat feature of the crack surface, the mode-II
stress intensity factor of the spherical cap crack and the
cylindrical crack and the mode-III stress intensity factor of
the cylindrical crack do not vanish along the crack front. It
was also found that when the half-subtended angle of the
spherical cap crack and the cylindrical crack are suffi-
ciently large, the non-zero mode-II and mode-III stress
intensity factors under the four crack-face conditions are
different according to the electrical boundary condition
adopted on the crack surface. As a result, the upper and
lower bounds of the mode-II and mode-III stress intensity
factors could be seen. In particular, the impermeable
solution represents the upper bound of the mode-II stress
intensity factor of the spherical cap crack and the three
representative points for the cylindrical crack, and as well

as the upper bound of the mode-III stress intensity factor at
the middle point of the cylindrical crack. However, the
energetically consistent solution represents the lower
bound of the mode-II stress intensity factor of the spherical
cap crack and the middle and bottom points of the
cylindrical crack, whereas the permeable solution serves as
the lower bound of the mode-II and mode-III stress
intensity factors at the top and middle points of the
cylindrical crack, respectively.
Results from the investigation of the influence of the

electric field on the intensity factors for the three
representative crack configurations under four different
crack-face conditions have indicated that the non-zero
intensity factors fKI,KII,KIII,KIVg under the permeable and
energetically consistent crack-face conditions for both
planar (i.e., penny-shaped crack) and non-planar cracks
(i.e., spherical cap and cylindrical cracks) were indepen-
dent and dependent of the electric field, respectively. In
addition, it was found that the influence of the electric field
on the electric intensity factor KIV for the penny-shaped
crack was similar to that for the spherical cap crack and
cylindrical crack under the four crack-face conditions. In
particular, KIV obtained from the impermeable, semi-
permeable, and energetically consistent models depends
strongly on the electric field, whereas KIV of the permeable
crack is independent of the electric filed. On the contrary,
the behavior of the mode-I stress intensity factor KI under
the impermeable and semi-permeable conditions for the
planar crack (i.e., penny-shaped) and the non-planar cracks
(i.e., spherical cap crack, and the middle and bottom points
of the cylindrical crack) are different. In particular, KI of
the impermeable and semi-permeable spherical cap crack
depends strongly on the electric field whereas such results
for the penny-shaped crack are independent of the electric
field. This implies that the non-flat crack surface renders
the dependence on the electric field for KI for both the
impermeable and semi-permeable crack-face conditions.
Finally, it can be concluded that all the intensity factors

fKI,KII,KIII,KIVg for the three representative crack config-
urations under the energetically consistent crack-face
condition strongly depend on the permittivity of the
medium inside the crack gap. The same behavior can also
be observed for the semi-permeable crack-face condition,
except for the mode-I stress intensity factor KI of the
penny-shaped crack that is found independent of the
medium inside the crack gap.
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