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ABSTRACT An out-put only modal parameter identification method based on variational mode decomposition
(VMD) is developed for civil structure identifications. The recently developed VMD technique is utilized to decompose
the free decay response (FDR) of a structure into to modal responses. A novel procedure is developed to calculate the
instantaneous modal frequencies and instantaneous modal damping ratios. The proposed identification method can
straightforwardly extract the mode shape vectors using the modal responses extracted from the FDRs at all available
sensors on the structure. A series of numerical and experimental case studies are conducted to demonstrate the efficiency
and highlight the superiority of the proposed method in modal parameter identification using both free vibration and
ambient vibration data. The results of the present method are compared with those of the empirical mode decomposition-
based method, and the superiorities of the present method are verified. The proposed method is proved to be efficient and
accurate in modal parameter identification for both linear and nonlinear civil structures, including structures with closely
spaced modes, sudden modal parameter variation, and amplitude-dependent modal parameters, etc.

KEYWORDS modal parameter identification, variational mode decomposition, civil structure, nonlinear system, closely
spaced modes

1 Introduction

Modal parameters (modal frequencies, modal damping
ratios, and mode shape vectors) are key parameters of civil
structures. The identification of modal parameters belongs
to the inverse problems [1,2] (which also include the
control problem and optimization problem, etc.), and is an
important topic in the engineering domain. Modal
parameter identification has found applications in design
assumption validation [3], non-destructive damage detec-
tion [4], health monitoring [5], dynamic response analysis
[6], and vibration control [7], etc. Modal parameters are
generally identified through the acceleration (or displace-
ment) responses recorded during dynamic tests, which
include three basic types, i.e., force vibration test, free
vibration test, and ambient vibration test (measuring the
vibration response under ambient excitation, e.g., wind,
traffic, etc.). Generally, it is hard to quantify the external
input (excitation force) on a real structure, and the external
input may disturb the normal operation of the structure.

Therefore, the ambient vibration test-based methods have
been extensively studied, and are often referred to as
output-only methods. Some free vibration test-based
methods can also be classified as output-only methods
since the input is not necessary to be measured, and the
modal parameters can be extracted from the free decay
responses (FDRs) [8,9].
Classic output-only system identification methods can

be classified into frequency domain methods and time
domain methods. The frequency domain methods include
the peak-picking method [10], the frequency domain
decomposition method [11], the enhanced frequency
domain decomposition method [12], and the frequency-
spatial domain method [13], etc. These methods are quite
straightforward to implement, while their abilities are very
limited for many types of systems, especially for systems
with high damping ratios and closely spaced modes. The
time domain methods include the random decrement
technique (RDT) [14], the eigensystem realization algo-
rithm [15], the autoregressive moving average method
[16], the stochastic subspace identification method [17],
and the method based on proper orthogonal decompositionArticle history: Received Jun 24, 2018; Accepted Sep 16, 2018
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[18], etc. The time domain methods avoid some limitations
(e.g., low frequency resolution) of the Fourier based
frequency domain methods, and make online system
identification of an in-operation structure possible. How-
ever, both the classic time domain methods and frequency
domain methods are inefficient to identify the nonlinear
and nonstationary features in civil structures, which may
be induced by structural damage, material nonlinearity, and
geometric nonlinearity, etc. Some sensitivity analysis
methods have also been developed to investigate the
uncertainties in the modal parameters of complicated
structures and to deal with the effects of noise [19–21].
Modal parameter identification methods based on time-

frequency analysis have received increasing attentions in
recent years since they can provide both time and
frequency information of a signal simultaneously and are
suitable to deal with nonlinear and nonstationary signals.
The wavelet transform(WT)-based methods [22] and
methods based on the empirical mode decomposition
(EMD) with Hilbert transform (HT) [23–29] are among the
most popular ones. The multi-resolution and time-
frequency analysis capabilities of the WT have promoted
its successful applications in system identifications of
many types of structures. However, due to its non-adaptive
property, a major difficulty of the WT-based methods is to
select an appropriate mother wavelet for any analysis. The
EMD is an adaptive signal processing technique, and its
combination with the HT provides another powerful time-
frequency analysis tool, which is often referred to as the
Hilbert-Huang transform (HHT). EMD decomposes a
complicated multi-component signal into the summations
of a finite number of mono-component signals referred to
as intrinsic mode functions (IMFs), and the HT is then
applied to the IMFs to calculate their instantaneous
amplitudes and instantaneous frequencies. A time-fre-
quency representation of the multi-component signal can
be obtained and the modal parameters can be subsequently
extracted. Yang et al. [25,26] proposed a modal identifica-
tion method for linear systems using free vibration data
based on the HHT method, and showed that the HHT-
based method can serve as an effective tool for linear
system identification. Chen et al. [27] combined the HHT
and RDT to identify the modal parameters of Tsing Ma
suspension bridge using the ambient vibration data caused
by Typhoon Victor. Pines and Salvino [28] identified the
modal parameters of a 3-story building model with a HHT-
based method, and detected the damage with the phase
information. He et al. [29] presented an EMD-based RDT
method, and the method was verified through the modal
parameter identification of an existing railway bridge. Shi
and Law [30] showed the ability of the HHT-based method
in identifying typical time-varying systems. Moreover,
some improved versions of HHT [31,32] have been
developed and applied to structure identifications, by
which the performances of the HHT-based methods can be
improved.

Despite the wide application of HHT, it has some
limitations associated with the EMD process: 1) the first
IMF generally covers a wide frequency range and may not
be a mono-component signal [32]; 2) its performance
varies with the frequency ratios and amplitude ratios of the
inherent modes in a signal, so that closely spaced modes
and low-energy modes cannot be reliably separated [33];
3) some low-energy pseudo-components may be generated
in the low-frequency region [31]; 4) it is sensitive to noises
and sampling frequency of the recorded signal [34]. To
overcome these shortcomings, the variational mode
decomposition (VMD) [34] is recently proposed as another
adaptive signal decomposition technique. VMD decom-
poses a complicated multi-component signal into several
mono-component modes which collectively reproduce the
original signal. This method is non-recursive and extracts
the modes concurrently. The superiority of VMD relative
to EMD in processing certain types of signals has been
demonstrated in seismic signal analysis [35], power signal
analysis [36], speech signal analysis [37], and fault
diagnosis [38]. Recently, Bagheri et al. [9] proposed a
structural system identification method using free vibration
test data based on VMD. However, it is only applicable for
linear systems. The efficiency of the VMD-based method
to identify nonlinear and nonstationary features with both
free vibration and ambient vibration test data is worth to be
investigated.
In the present work, an out-put only modal parameter

identification method based on VMD is developed for civil
structure identifications. In the proposed method, the FDR
(recorded in free vibration test or reconstructed from
ambient vibration response) of a structure is first decom-
posed into modal responses using VMD. The instanta-
neous frequencies of the modal responses are calculated
with the empirical envelope (EE) method [39], and the
instantaneous modal damping ratios are calculated using a
newly developed procedure. All instantaneous modal
frequencies and instantaneous modal damping ratios can
be identified using a single acceleration history measure-
ment at a suitable location, and the calculated instanta-
neous modal frequencies and instantaneous modal
damping ratios can capture any transient modal parameter
variations. Mode shape vectors can also be identified if
multiple sensor locations are available on the structure. To
verify the efficiency and highlight the superiority of the
proposed method, a series of numerical and experimental
examples are carried out. The examples demonstrate the
efficiency and superiority of the proposed method in modal
parameter identification with both free vibration and
ambient vibration data.

2 Presentation of proposed method

The proposed VMD-based modal parameter identification
method includes three main steps: 1) the modal responses
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are extracted from the FDR recorded in a free vibration test
or reconstructed from ambient vibration response (e.g., by
RDT [14]); 2) the instantaneous modal frequency and
instantaneous modal damping ratio of each mode are
extracted from the corresponding modal response; 3) the
mode shape vectors are identified by processing the modal
responses extracted from the FDRs at all available sensors
on the structure. Details of each step are illustrated in the
following part of this section.

2.1 Extracting modal responses: VMD

VMD is used to decompose a FDR (denoted as s(t)) into a
finite number of mono-component sub-signals (modes),
i.e.,

sðtÞ ¼
XK
k¼1

vkðtÞ, (1)

where fvkðtÞg ¼ fv1ðtÞ, :::, vKðtÞg denotes the set of all
sub-signals, and each sub-signal is compact around a
center frequency (ffkg ¼ ff1,:::, fKg) and represents a
distinct modal response of the structure; K is the
decomposition level which needs to be specified by the
operator.
The decomposition is realized by solving the following

constrained variational problem

min
fvkg, ffkg

XK
k¼1

k ∂t δ tð Þ þ j

πt

�
� vk tð Þ

� �
e – j2πfk t k 2

2

" )
,

(

(2)

where ∂t represents the derivative with respect to time; d(t)
is the Dirac distribution; j ¼ ffiffiffiffiffiffiffi

– 1
p

; ‘�’ denotes the
convolution operation; ‘k k2’ denotes the L2 norm.
A quadratic penalty term and Lagrangian multiplier

(denoted as l) are used to render the problem uncon-
strained, resulting in an augmented Lagrangian (denoted as
L) given by

LðfvkðtÞg, ffkg, lðtÞÞ

¼ α
XK
k¼1

k ∂t δ tð Þ þ j

πt

�
� vk tð Þ

� �
e – j2πfk t k 2

2

"

þ k sðtÞ –
XK
k¼1

vkðtÞ k 2

2
þ h lðtÞ, sðtÞ – XK

k¼1

vkðtÞ i , (3)

where α represents the balancing parameter of the data
fidelity constraint; ‘h i’ denotes the inner product of two
vectors.
The solution to the original minimization problem in

Eq. (2) is now found as the saddle point of L, and can be
solved with a sequence of iterative sub-optimizations
named alternate direction method of multipliers (ADMM)
[40]. The ADMM searches vk and fk in the frequency
domain with an iterative procedure given by

v̂nþ1
k fð Þ ¼ ŝðf Þ –

X
i≠k

v̂ni ðf Þ þ l̂
nðf Þ=2

1þ 2αð2πf – 2πf nk Þ2
, (4a)

f nþ1
k ¼

!
1

0
2πf jv̂nkðf Þj2df

!
1

0
jv̂nkðf Þj2df

, (4b)

where superscript n denotes the nth iterative step; ‘^’

denotes the Fourier transform of a signal. The iterative

process terminates while

X k vnþ1
k – vnk k22X k vnk k2

2

< ε, where ε

is pre-specified small number.
The final solution for vk(t) can be obtained as the real

part of the inverse Fourier transform of v̂kðf Þ, i.e.,

vkðtÞ ¼ R ifft v̂kðf ÞÞð g:f (5)

Detailed introductions of VMD and a Matlab code for
reference implementation can be found in Ref. [34]. It
should be stated that the decomposition results of VMD
is closely related to the selection of the value of K. Some
typical signs of over-decomposition (K> actual mode
number) and under-decomposition (K< actual mode
number) can be found in Ref. [34]. Besides, some
algorithms have been developed to select the value of K
[38,41]. In the present work, K is simply selected
according to the number of dominant bands in the Fourier
spectra. Although sometimes this method may fail to select
the right value of K due to the limitation of frequency
resolution of the Fourier transform, the signs in Ref. [34]
can be used to evaluate over-decomposition or under-
decomposition in such conditions.
For a system with constant modal frequencies, ffkg ¼

ff1,:::, fKg represent the damped modal frequencies of the
structure since the FDRs used for structural identification
contain the contributions of structural damping. The
deviation between a damped modal frequency and the
un-damped value increases with increasing the damping
ratio [42], while the deviation is almost negligible (e.g., the
relative error is around 0.5% for a damping ratio equals
0.1). For a system with time-varying modal frequencies,
ffkg ¼ ff1,:::, fKg just represent the weighted means of the
damped time-varying modal frequencies. To capture the
possible nonlinear and/or nonstationary features of the
modal responses, the instantaneous modal frequencies and
instantaneous modal damping ratios can be calculated,
which will be illustrated in the following part.
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2.2 Identification of instantaneous modal frequency and
instantaneous modal damping ratio

Each modal response is a mono-component signal with
amplitude-modulation (AM) and frequency-modulation
(FM), and can be expressed as

vðtÞ ¼ qðtÞcos½φðtÞ� ¼ qðtÞcos !
t

0
2πf ðτÞdτ þ �

� �
, (6)

where q(t) is the AM part (instantaneous amplitude);
cos½φðtÞ� is the FM part; φ(t) is the instantaneous phase; f(t)
is the instantaneous frequency; q is the initial phase.
q(t) and f(t) have been traditionally calculated using the

HT. However, the HT may result in remarkable fluctua-
tions or even negative values in the calculated f(t) at some
time instants due to the limitations of the Bedrosian
theorem [43] and Nuttall theorem [44]. Recently, Huang
et al. [45] introduced a normalized HT (NHT) method in
which a mono-component signal is first decomposed into
its AM and FM parts through an empirical AM-FM
decomposition. HT is then applied to the FM part with
constant amplitude, and thus the limitation of the Bed-
rosian theorem can be removed. Zheng et al. [39] further
proposed an EE method on the basis of the AM-FM
decomposition, which has been proved to perform better in
calculating f(t). Therefore, in this study, the EE method is
used to calculate q(t) and f(t) of a mono-component signal.
The process of the EE method is briefly illustrated in the
Appendix.
Once q(t) is obtained, the instantaneous logarithmic

decrement d(t) of v(t) can be calculated as

δ tmð Þ ¼ ln
qðtmÞ
qðtm – 1Þ

¼ 2πξðtmÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 – ξ2ðtmÞ

p , (7)

wherem denotes themth discrete sampling point; �(t) is the
instantaneous damping ratio of v(t).
For case of low �(t), it can be approximated as

ξ tð Þ ¼ ln½qðtmÞ=qðtm – 1Þ�
2π

: (8)

The error induced by Eq. (8) increases with increasing
�(t) [42], and it can be calculated that the relative error is
lower than 0.5% for �(t)< 0.1.
The instantaneous modal frequencies and instantaneous

modal damping ratios of a linear system should be almost
constant, and variations in the instantaneous modal
frequencies and instantaneous modal damping ratios can
serve as simple indications of the existence of nonlinea-
rities. A great number of laboratory and full-scale
experiments show that the modal frequencies and modal
damping ratios of many types of civil structures may be
dependent on the vibration amplitudes [6,45,46]. There-
fore, it is generally reasonable to transform f(t) and �(t) into
the amplitude-dependent frequency and amplitude-depen-
dent damping ratio, respectively, i.e.,

½qðtÞ,f ðtÞ� ↕ ↓

polynomial fitting
f ðqÞ, (9a)

½qðtÞ,ξðtÞ� ↕ ↓

polynomial fitting
ξðqÞ: (9b)

2.3 Identification of mode shapes

The mode shape vector for a specific mode can be
straightforwardly indentified using the modal responses
extracted from the FDRs at all available sensors. Assuming
that there are totally n sensors available on a structure, the
modal responses of the kth mode extracted from the FDRs
at all n sensors are denoted as v1kðtÞ,v2kðtÞ, ..., vnkðtÞ,
respectively. The instantaneous damping ratios of vikðtÞ
(i = 1–n) all reflect the modal damping ratio of the kth

mode, so that the following relationship can be deduced
from Eq. (8)

qjkðtmÞ
qikðtmÞ

¼ qjkðtm – 1Þ
qikðtm – 1Þ

, (10)

where qikðtÞ and qjkðtÞ are the instantaneous amplitudes of

vikðtÞ and vjkðtÞ, respectively.
Equation (10) indicates that qjkðtÞ=qikðtÞ is constant

theoretically. However, the calculated qjkðtÞ=qikðtÞ may
exhibit slightly fluctuations due the noises, discrete
sampling of the recorded signal, and cubic spline fitting
in the EE method. Practically, the mean values of qjkðtÞ=
qikðtÞ can be calculated to minimize the error, i.e.,

rijk ¼ mean½qjkðtÞ=qikðtÞ�: (11)

The normalized mode shape vector of the kth mode can
be obtained as

Φk ¼ ½1, r12k , :::, r1nk �T: (12)

The mode shape vectors of all modes can be obtained by
repeating the procedure in Eqs. (11) and (12).

3 Modal parameter identification from free
vibration response

VMD overcomes some shortcomings of EMD while keeps
the abilities of decomposing multi-component signal and
detecting transient amplitude and/or frequency variation.
Therefore, VMD is more suitable for the time-frequency
analyses of certain types of nonlinear and nonstationary
signals, and the proposed modal parameter identification
method may perform better than the EMD or wavelet-
based methods in dealing with some certain types of
structures. In this section, three examples (with free
vibration responses) are conducted to demonstrate the
efficiency and superiority of the proposed method.

Mingjie ZHANG et al. Variational mode decomposition based modal parameter identification in civil engineering 1085



3.1 3-DOF system with closely space modes

The first example is a 3-DOF numerical system with very
closely spaced modes. The motion equation of the
numerical system can be expressed as

m€x þ c _x þ kx ¼ 0, (13)

where m, k, and c are the mass, stiffness, and damping
matrices, respectively; x, _x, €x are the displacement,
velocity, and acceleration vectors, respectively. m, k, and
c are defined as

m ¼ m0I , (14a)

k ¼ k0

4 – 1 0

– 1 2 – 1

0 – 1 4

2
64

3
75, (14b)

c ¼ ½mΦM -1�
2ξω1M1 0 0

0 2ξω2M2 0

0 0 2ξω3M3

2
64

3
75½M -1ΦTm�,

(14c)

where m0 = 1000 kg, k0 = 10 kN/m, and � = 0.01; I is the
unit matrix; Ф is the mode shape matrix; ωi = 2πfi (i =
1 – 3) are the modal circular frequencies; M is the modal
mass matrix, and Mi (i = 1 – 3) are the modal masses.
The theoretical natural frequencies of 3 modes are 0.567,

1.006, and 1.095 Hz, respectively, and the theoretical
damping ratios of 3 modes are 0.01. The natural
frequencies of the latter two modes are within 10% of
each other, and can be considered as very closely spaced
modes. The system is excited by a unit acceleration
impulse (1 cm/s2) at the third DOF, and the FDR at the third
DOF and its amplitude spectra is shown in Fig. 1. Kijewski
and Kareem [22] identified the modal parameters of the
system with the same FDR using the Morlet wavelet-based
analysis, and showed that the appropriate selection of the
central frequency is of crucial importance to the identifica-
tion accuracy.
To identify the modal parameters using the proposed

method, the FDR in Fig. 1 is decomposed into 3 modes (by
setting K = 3) using VMD as its amplitude spectra indicate
that the signal has three dominate bands. The decomposi-
tion results are shown in Fig. 2, in which each mode
(denoted as v1(t), v2(t), v3(t), respectively) represents a
distinct modal response. Applying EMD (with the stopping
criterion in Ref. [19]) to the FDR results in 8 IMFs
(denoted as IMFi (i = 1 – 8)), as shown in Fig. 3. EMD
successfully separates the first mode (f1 = 0.567 Hz) while
fails to separate the later two modes with closely spaced
frequencies. Besides, 5 low-energy pseudo-components
are generated in the EMD results, which might be

misleading when dealing with a system without prior
knowledge.
The instantaneous amplitudes and instantaneous fre-

quencies (denoted as f1(t), f2(t), f3(t), respectively) of the
modal responses are calculated using the EE method, as
shown in Figs. 2 and 4, respectively. The instantaneous
amplitude agrees very well with the peaks of the
corresponding modal response. f1(t), f2(t), f3(t) are very
close to 0.567, 1.006, and 1.095 Hz, respectively. The
results demonstrate that the system has constant modal
frequencies as f1(t), f2(t), f3(t) almost do not vary with time.
f1(t) calculated by the traditional HT is also shown in Fig. 4
for comparison. It can be seen that f1(t) obtained by the
traditional HT agrees well with the theoretical result at the
preliminary stage, and significantly deviates from the

Fig. 1 FDR of a 3-DOF system and amplitude spectra

Fig. 2 Modal responses of a 3-DOF system and instantaneous
amplitudes
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theoretical result at the later stage due to the end effect.
Therefore, the advantage of the EE method is demonstrated
obviously. The instantaneous modal damping ratios
(denoted as �1(t), �2(t), �3(t), respectively) are calculated
using Eq. (8), and the results are shown in Fig. 5. �1(t),
�2(t), �3(t) are very close to 0.01, indicating the identifica-
tion accuracy of the modal damping ratios. �1(t), �2(t), �3(t)
exhibit slight fluctuations at the ends due to the end effect
of the EE method. However, the end effects are quite weak
compared with the results of the Morlet wavelet-based
analysis in Ref. [22].
The instantaneous modal frequencies and instantaneous

modal damping ratios are extracted from the FDRs at all 3
DOFs separately, and the mean values of the instantaneous
modal frequencies and instantaneous modal damping
ratios are listed in Table 1. It can be seen that the mean
values almost exactly reflect the theoretical values. The
results for Mode 2 cannot be extracted from the FDR at the
second DOF because the FDR does not contain the
component of Mode 2 (the mode shape vector of Mode 2 is
[1.00 0.00 – 1.00]T, as demonstrated later).
The accuracy of the proposed method is also investi-

gated under different signal-to-noise ratios (SNRs).
Gaussian white noises of different levels are added to the
FDR in Fig. 1, and the modal parameters are extracted
from the noisy signals by using the proposed method. The
mean values of the instantaneous modal frequencies and
instantaneous modal damping ratios extracted from the
noisy signals of different SNRs are listed in Table 2. It can
be seen that the identification error are negligible except
for that of the modal damping ratio of Mode 1, mainly
because the energy of the component of Mode 1 in the
FDR is low so that extracted modal response is largely
affected by noise. The preceding analysis demonstrates
that the proposed method performs well in modal
parameter identification from noisy signals.
The mode shape vectors can be identified from the

modal responses at all 3 DOFs using the procedure in
Section 2.3. As an example, the modal responses for Mode
1 at all 3 DOFs (denoted as v11ðtÞ,v21ðtÞ,v31ðtÞ, respectively)
and their instantaneous amplitudes are shown in Fig. 6.
The amplitude ratios between v21ðtÞ and v11ðtÞ (denoted as
r121 ðtÞ), and between v31ðtÞ and v11ðtÞ (denoted as r131 ðtÞ) are
shown in Fig. 7. It can be seen that r121 ðtÞ and r131 ðtÞ are
almost constant. The normalized mode shape vector of
Mode 1 can be obtained as ½1, r121 , r131 �T, where r121 and r131
are the mean values of r121 ðtÞ and r131 ðtÞ, respectively. The
identified mode shape vectors are listed in Table 3, in
which the theoretical results are also shown for compar-

Fig. 3 EMD results for FDR of a 3-DOF system. (a) IMF1 and
IMF2; (b) IMF3 ~ IMF8

Fig. 4 Modal frequencies of a 3-DOF system

Fig. 5 Modal damping ratios of a 3-DOF system

Table 1 Mean values of modal frequencies and modal damping ratios of a 3-DOF system

mode mean[f(t)] mean[x(t)]

1st DOF 2nd DOF 3rd DOF 1st DOF 2nd DOF 3rd DOF

1 0.567 0.567 0.568 0.010 0.010 0.010

2 1.006 unavailable 1.006 0.010 unavailable 0.010

3 1.095 1.094 1.095 0.010 0.010 0.010
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ison. It can be seen that the identified results agree very
well with the theoretical results. This example demon-

strates that the proposed method is capable to identify the
modal parameters of systems with closely space modes,
which is very commonly seen in civil structures.

3.2 2-DOF system with frequency shift

The second example is a 2-DOF system with FDR s(t) =
v1(t) + v2(t), as shown in Eq. (15), where � = 0.02, f1 =
0.5 Hz, f2 = 1 Hz, f #2 = 0.95 Hz. The second mode exhibits
a sudden frequency shift and amplitude variation at t =
15 s, which is used to simulate the occurrence of a sudden
damage in the structure. This example is analyzed to
demonstrate the ability of the proposed method in
capturing a transient frequency change in a signal, which
generally reflects a sudden change in structural property
during online system monitoring.

v1ðtÞ ¼ e – 2πξf1tcosð2πf1tÞ, (15a)

v2ðtÞ ¼
e – 2πξf2tcosðf2tÞ, 0 < t£15

0:4e – 2πξf #2 tcos½f #2 ðt – 15Þ�, 15 < t£30

(
:

(15b)

The FDR (sampling frequency = 100 Hz) and its
amplitude spectra are shown in Fig. 8. The amplitude
spectra failed to detect the frequency shift due to the
limitation of frequency resolution of the Fourier transform.
Although the frequency resolution can be increased by
increasing the signal length, the Fourier transform cannot
capture the exact time instant of the frequency shift.
s(t) is decomposed into two modes using VMD (K = 2,

as the amplitude spectra in Fig. 8 have two dominant
bands), and the results are shown in Fig. 9, in which the
exact modal responses (Eq. (15)) are also shown for
comparison. It can be seen that the modal responses
extracted by VMD agree well with the true ones. EMD is
also able to separate the two modes in s(t), while EMD
results in several low-energy pseudo-components, as
shown in Fig. 10. The instantaneous modal frequencies
(denoted as f1(t) and f2(t), respectively) of 2 modes are
shown in Fig. 11. f1(t) and f2(t) agree well with the
corresponding true values, and the sudden frequency shift
in v2(t) is successfully captured. The calculated instanta-
neous modal damping ratios (denoted as �1(t) and �2(t),
respectively) shown in Fig. 12 also agree very well with

Table 2 Mean values of modal frequencies and modal damping ratios of a 3-DOF system for different SNRs

SNR (dB) mean[f(t)] mean[x(t)]

Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3

40 0.567 1.006 1.095 0.010 0.010 0.010

30 0.567 1.006 1.095 0.011 0.010 0.010

20 0.570 1.009 1.097 0.012 0.010 0.010

10 0.572 1.010 1.099 0.012 0.011 0.011

Fig. 6 Modal responses for Mode 1 of a 3-DOF system and
instantaneous amplitudes

Fig. 7 Amplitude ratios of modal responses for Mode 1

Table 3 Mode shape vectors a 3-DOF system

Mode Mode shape vector

identified theoretical

1 [1.00, 2.73, 1.00]T [1.00, 2.73, 1.00]T

2 [1.00, 0.00, – 1.00]T [1.00, 0.00, – 1.00]T

3 [1.00, – 0.72, 1.00]T [1.00, – 0.73, 1.00]T
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the true values (� = 0.02). The remarkable fluctuations of
�1(t) and �2(t) around t = 15 s are induced by the sudden
amplitude variation.
The above example proves that the proposed method is

capable to capture a sudden frequency change in a
structural vibration signal and the variations of modal
parameters. Therefore, the proposed method may serve as
an effective tool for detecting the occurrences of sudden
damages in online system monitoring of civil structures.

3.3 SDOF nonlinear system: laboratory experimental vali-
dation

The third example is a spring-suspended flat plate with
1500 � 600 � 10 (length � width � depth) mm3 in size
and 8.90 kg in mass, as schematically shown in Fig. 13.
Such systems have been widely used to study the wind-
induced effects on bridge decks [6,47,48], and the specific
case in Fig. 13 is designed by Ref. [47] to study the
nonlinear air-induced forces on typical bridge decks in
wind-off condition. The flat plate (made of wooden plates)
is suspended with eight coil springs to simulate the vertical

and torsional modes. The longitudinal distance (LD in
Fig. 13) between the springs is 1100 mm, and the
transverse distance (TD in Fig. 13) is adjustable to
accommodate various torsional frequencies. Three accel-
erometers (DeltaTraon 4508, Brüel&Kjær, Copenhagen,
Denmark) are installed on the flat plate to monitor the
vertical accelerations at a sampling frequency of 1024 Hz.
The transverse distance between the central axis and the
accelerometers is 250 mm. To guarantee two-dimensional
flow field [48], two elliptic end plates (major axis = 1200

Fig. 8 FDR of a 2-DOF system and amplitude spectra

Fig. 9 Modal responses of a 2-DOF system

Fig. 10 EMD results for FDR of a 2-DOF system. (a) IMF1 and
IMF2; (b) IMF3 ~ IMF6

Fig. 11 Modal frequencies of a 2-DOF system

Fig. 12 Modal damping ratios of a 2-DOF system
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mm, minor axis = 600 mm, thickness = 4 mm) are attached
to both ends of the section models. SDOF (vertical or
torsional) free vibration tests were carried out in wind-off
conditions to study the nonlinear vibration characteristics
of the flat plate, in which the flat plate was excited by
releasing from an initial displacement impulse. The time-
varying vertical and torsional accelerations of the central
axis can be calculated from the signals recorded by the
accelerometers. Detailed descriptions of the experimental
setup are available in Ref. [47].
One of the recorded FDR and its amplitude spectra is

shown in Fig. 14. It can be seen that the FDR contains one
dominant frequency band around 1.5 Hz and slight low-
frequency components. The low-frequency components
may be induced by the zero shifts of the accelerometers,
which are commonly encountered by many types of
accelerometers [49,50]. Fortunately, it has been demon-
strated that VMD is suitable for removing low-frequency

and high-frequency noises [34]. The FDR is then
decomposed by VMD with K = 2. The extracted modal
response (denoted as v(t)) and its amplitude spectra shown
in Fig. 15 indicate that the low-frequency noises are
successfully removed. Actually, the low-frequency noises
can be removed simply by a high-pass digital filter.
However, the phase of the modal response may be affected
by the filter, and filters cannot be used to separate closely
spaced modes.

The calculated f(t) and �(t) of the modal response are
plotted against the vibration amplitude in Figs. 16 and 17,
respectively. The observable fluctuations in f(t) and �(t) can
be ascribed to the slight high-frequency noises, discrete
sampling of the recorded signal, and numerical error. f(t)
and �(t) show clearly features of amplitude-dependence.
Therefore, f(q) and �(q) are calculated using Eq. (9), as
shown in Figs. 16 and 17, respectively.

Fig. 13 Schematic diagram of a spring-suspended flat plate
system

Fig. 14 FDR of a SDOF system and amplitude spectra

Fig. 15 Modal response of a SDOF system and amplitude spectra

Fig. 16 Modal frequencies of a SDOF system

Fig. 17 Modal damping ratios of a SDOF system
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To verify the identification accuracies of the modal
parameters, f(q) and �(q) are substituted into the motion
equation [47], and the modal response is calculated step by
step using the Newmark-β method from the first sampled
peaks. The comparison between the extracted modal
response and the calculated one is shown in Fig. 18. The
calculated time history agrees very well with the recorded
one during the whole length for both amplitudes and
phases. Therefore, the accuracies of the identified modal
parameters are verified. This example demonstrates that
the proposed method can be used for identifying system
with amplitude-dependent modal parameters, which is
commonly seen in many types of civil structures.

4 Modal parameter identification from
ambient vibration response

The preceding section comprehensively demonstrated the
capability of the proposed method in identifying modal
parameters for different types of systems using free
vibration data. However, it is not always possible to
conduct free vibration tests especially for large-scale or in-
operating structures. Therefore, it is of great interest to
show the ability of the proposed method in modal
parameter identification using ambient vibration responses.
In this section, the proposed method is combined with the
widely used RDT [14] to identify the modal parameters of
the 3-DOF system in Section 3.1 from ambient vibration
responses.
The 3-DOF system is excited by a series of 7200 s long

Gaussian white noise (sampling frequency = 100 Hz) with
zero mean and 0.2 cm/s2 standard deviation at the third
DOF, and the ambient vibration response of the third DOF
is shown in Fig. 19. Such an excitation is definitely
unrealistic because a real ambient excitation (wind, traffic,
etc.) is by no means fixed at a single point. However, as the
main purpose of this section is to show the ability of the
proposed method in modal parameter identification from
ambient vibration responses, the ambient excitation is
predigested to simplify the analysis. The FDR recon-
structed from the ambient response in Fig. 19 using RDT is
shown in Fig. 20 together with its amplitude spectra. The
reconstructed FDR is decomposed into 3 modes (denoted
as v1(t), v2(t), v3(t), respectively) by VMD (K = 3) as its

amplitude spectra have three dominant bands. The
extracted v1(t), v2(t), v3(t) and their instantaneous ampli-
tudes are shown in Fig. 21. The instantaneous modal
frequencies (denoted as f1(t), f2(t), f3(t), respectively) and
instantaneous modal damping ratios (denoted as �1(t),
�2(t), �3(t), respectively) are shown in Figs. 22 and 23,
respectively. The instantaneous modal frequencies and
instantaneous modal damping ratios agree satisfactorily
with the true values. The results for Mode 3 exhibit
observable fluctuations, possibly because the energy of
Mode 3 in the reconstructed FDR is very low so that the
modal response is deteriorated by noises.
The instantaneous modal frequencies and instantaneous

modal damping ratios are extracted from the FDRs at all 3
DOFs separately, and the mean values are listed in Table 4.
Again, the mean values almost exactly reflect the
theoretical values. This example demonstrates that the
proposed method can be combined with RDT to identify
modal parameters from ambient vibration response.

5 Conclusions

In the present work, an out-put only modal parameter
identification method based on VMD is developed for civil
structure identifications. VMD is used to decompose the
recorded or reconstructed FDR into modal responses. To

Fig. 18 Comparison between extracted and calculated modal
responses

Fig. 19 Ambient vibration response of a 3-DOF system

Fig. 20 Reconstructed FDR of a 3-DOF system and its amplitude
spectra
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capture the possible nonlinear and/or nonstationary
features of the modal parameters, the instantaneous
modal frequencies are calculated with the EE method,
and the instantaneous modal damping ratios are calculated
using a newly developed procedure. The proposed method
also identifies the mode shape vectors in a straightforward
manner by using the modal responses extracted from the
FDRs at all available sensors on the structure.
To verify the efficiency and highlight the superiority of

the proposed method, several numerical and experimental
case studies are analyzed. The superiority of VMD relative
to EMD in decomposing certain types of vibration signals
is demonstrated. The instantaneous modal frequencies and
instantaneous modal damping ratios can detect the
existence of nonlinearities and any transient modal
parameter variations. The case studies show that the
proposed method is efficient and accurate in modal
parameter identification for systems with closely spaced
modes, sudden modal parameter variation, and amplitude-
dependent modal parameters, etc.
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Appendix. Empirical Envelop method

The process of the EE method to calculate the instanta-
neous amplitude and instantaneous frequency of a mono-
component signal v(t) is briefly listed as follows:
1) Perform the AM-FM decomposition [45] to v(t),

yields

AðtÞ ¼ qðtÞ, (A1)

FðtÞ ¼ cos½φðtÞ�, (A2)

where A(t) is the AM part obtained by cubic spline fitting
and an iterative process; F(t) is the FM part.
2) The derivative of F(t) with respect to time can be

expressed as

F#ðtÞ ¼ – φ#ðtÞsin½φðtÞ�: (A3)

3) Perform the AM-FM decomposition to F#ðtÞ, yields

Fig. 21 Modal responses of a 3-DOF system extracted from
ambient vibration and instantaneous amplitudes

Fig. 22 Modal frequencies of a 3-DOF system extracted from
ambient vibration

Fig. 23 Modal damping ratios of a 3-DOF system extracted from
ambient vibration

Table 4 Mean values of modal frequencies and modal damping ratios of a 3-DOF system extracted from ambient vibrations

Mode mean[f(t)] mean[x(t)]

1st DOF 2nd DOF 3rd DOF 1st DOF 2nd DOF 3rd DOF

1 0.567 0.567 0.566 0.010 0.010 0.010

2 1.006 unavailable 1.005 0.010 unavailable 0.010

3 1.094 1.093 1.097 0.010 0.010 0.010
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F# tð Þ ¼ b tð Þcos φ� tð Þ½ � ¼ – b tð Þsin φ� tð Þ þ π
2

i
:

h
(A4)

4) It can be seen from Eqs. (A4) and (A5) that
bðtÞ ¼ φ#ðtÞ. Therefore, the instantaneous frequency of
v(t) can be expressed as

f tð Þ ¼ bðtÞ
2π

: (A5)

As the EE method obtains the instantaneous frequency of a
mono-component signal through two AM-FM decomposi-
tions without involving the HT, the limitations of the
Bodrosian theorem [43] and Nuttall theorem [44] can be
satisfied automatically and the end effects can be greatly
reduced [39].
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