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ABSTRACT In the present study, the free vibration of laminated functionally graded carbon nanotube reinforced
composite beams is analyzed. The laminated beam is made of perfectly bonded carbon nanotubes reinforced composite
(CNTRC) layers. In each layer, single-walled carbon nanotubes are assumed to be uniformly distributed (UD) or
functionally graded (FG) distributed along the thickness direction. Effective material properties of the two-phase
composites, a mixture of carbon nanotubes (CNTs) and an isotropic polymer, are calculated using the extended rule of
mixture. The first-order shear deformation theory is used to formulate a governing equation for predicting free vibration of
laminated functionally graded carbon nanotubes reinforced composite (FG-CNTRC) beams. The governing equation is
solved by the finite element method with various boundary conditions. Several numerical tests are performed to
investigate the influence of the CNTs volume fractions, CNTs distributions, CNTs orientation angles, boundary
conditions, length-to-thickness ratios and the numbers of layers on the frequencies of the laminated FG-CNTRC beams.
Moreover, a laminated composite beam combined by various distribution types of CNTs is also studied.

KEYWORDS free vibration analysis, laminated FG-CNTRC beam, finite element method, first-order shear deformation
theory, composite material

1 Introduction

Carbon nanotube (CNT), a new advantaged material with
exceptional electronic and mechanical properties over
carbon fibers [1], was considered as a newly excellent
candidate for reinforcement of composite materials [2–15].
Moreover, the CNTs were successfully studied in regard to
functionally graded (FG) distribution along the thickness
direction [16], which significantly change the mechanical
behavior of CNT reinforced composite structures. Owing
to these CNT’s advantages, a large number of studies have
recently focused on the mechanical analysis of functionally
graded carbon nanotubes reinforced composite (FG-
CNTRC) structures. For example, recent works done on
analysis structural behavior of FG-CNTRC structures (e.g.,
beams and plates) are reported in Refs. [4,17–34]. A

comprehensive review of the mechanical analysis of FG-
CNTRC structures is reported by Liew et al. [35].
Due to various exceptional mechanical properties like

high strength-to-weight ratio, high stiffness-to-weight
ratio, superior fatigue properties, high corrosion resistance,
and flexibility in design, composite beams have been
widely used in aircraft structures, space vehicles, turbo-
machines and other engineering applications. It is well
known that composite beams in these applications often
operate in complex environmental conditions and are
commonly exposed to a variety of dynamic excitations
which may result in excessive vibration and fatigue
damage [36]. Therefore, to design composite beams
working effectively in these applications, the accurate
knowledge of the vibration behaviors of composite beams
is very importance (see, for example, some references on
frequency optimization of composite structures [37–39]).
Moreover, for damage assessment of composite beamArticle history: Received Jun 11, 2017; Accepted Sep 15, 2017
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during their service life, the vibration characteristic of
composite beams is really necessary [40–42]. In the last
few decades, a lot of relevant papers [43–53] have fully
addressed the free vibration of the traditional composite
beams. Meanwhile, research works pertaining to the free
vibration analysis of FG-CNTRC beams [17,22,23,34]
have been developed. There still exist some issues that
need to be addressed adequately, e.g., the free vibration
analysis of multi-layer FG-CNTRC beams and the effect of
different stacking of FG-CNTRC lamina.
This paper hence makes an effort to fulfill in the above-

mentioned research gaps by studying the free vibration
analysis of laminated FG-CNTRC beams. Here, it was
considered that the laminated beam is composed of
perfectly bonded carbon nanotubes reinforced composite
(CNTRC) layers and distinct distributions of single-walled
carbon nanotubes (SWCNTs) through the thickness of the
layers. Concerning the effective material properties of the
laminated nanocomposite beams, the extended rule of
mixture is used. In order to build the system of equations
ruling the beam deformation, we used the linear two-node
element combined with the first-order shear deformation
theory. In this work, two types of multilayered composite
beams are analyzed including: (1) The multilayered with
the same CNT distributions; and (2) the multilayered with
various CNT distributions, and the corresponding nume-
rical results are presented. In addition, the effects of CNT
distributions, CNT volume fractions, CNT orientation
angles, number of layers, length-to-thickness ratios and
boundary conditions on the free vibration response of
laminated FG-CNTRC beams are also illustrated.
The remainder of the paper is organized as follows.

Section 2 presents material properties of the FG-CNTRC
materials. Section 3 describes the finite element method for
free vibration analysis of the laminated FG-CNTRC beam
based on the first-order deformation theory. Section 4
examines some numerical examples. Section 5 draws some
conclusions.

2 Material properties of FG-CNTRC beams

In this study, laminated composite beams composed of
many layers of CNTRC materials are considered. In each
layer, it is assumed that CNTs are (10,10) armchair
SWCNTs and the matrix is supposed to be isotropic and
homogeneous. The effective material properties of the two-
phase composites, mixture of CNTs and an isotropic
polymer, can be defined according to the extended rule of
mixtures [16],

E11 ¼ η1VCNTE
CNT
11 þ VmEm, (1)

η2
E22

¼ VCNT

ECNT
22

þ Vm

Em
, (2)

η3
G12

¼ VCNT

GCNT
12

þ Vm

Gm
, (3)

v12 ¼ VCNTv
CNT
12 þ Vmvm, (4)

� ¼ VCNT�CNT þ Vm�m, (5)

where ECNT
11 , ECNT

22 andGCNT
12 are Young’s moduli and shear

modulus of the CNTs, Em and Gm are Young’s modulus
and shear modulus of the isotropic matrix, η1, η2 and η3 are
CNT/matrix efficiency parameters which can be deter-
mined by matching the elastic modulus of CNTRCs
observed from the molecular dynamics (MD) simulation
results with the numerical ones obtained from the rule of
mixture, vCNT12 and vm are Poisson’s ratios of CNTs and
matrix, respectively, �CNT and �m are mass densities of the
CNTs and matrix, respectively, VCNT and Vm, related by
VCNT þ Vm ¼ 1, are respectively the volume fractions for
CNTs and matrix.
Currently, CNTRC materials have been developed to

five distributions of CNTs along the thickness direction,
including a uniformly distributed (UD) and four different
FG, namely FG-V, FG-Λ, FG-X and FG-O. The volume
fraction of CNTs, therefore, depends on its distribution as
follows:

where V *
CNT is the volume fraction of CNTs that is

determined by

V *
CNT ¼ wCNT

wCNT þ
�CNT
�m

–
�CNT
�m

wCNT

, (6)

in which wCNT is the mass fraction of the CNTs in
composite beams.

V CNTðzÞ ¼ V *
CNT UD

V CNTðzÞ ¼ 1þ2z
h

� �
V *

CNT
FG-V

V CNTðzÞ ¼ 1 – 2z
h

� �
V *

CNT
FG-Λ

V CNTðzÞ ¼
4jzj
h
V *

CNT
FG-X

V CNTðzÞ ¼ 2 1 – 2jzj
h

 !
V *

CNT
FG-O
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3 Free vibration of laminated FG-CNTRC
beams

In the literature, many papers have been published in
recent decades and many mathematical models and
solution techniques have been developed for structural
analysis (see, for example, Refs. [44,54–71]). In these
approaches, the finite element method is one of the most
popular methods because it is simple to understand and to
implement. Besides, the first-order shear deformation
theory (FSDT) provides a balance between computational
efficiency and accuracy for the global structural behavior
of thin and moderately thick composite beams. Under such
circumstances, in the present work, the finite element
method based on the first order shear deformation theory is
used for free vibration analysis of laminated FG-CNTRC
beams. More detail on the formulation of this method is
presented below.
Let us consider a laminated composite beam consisting

of N layers. The size of the beam is characterized by the
length L, the width b and the thickness h. A global
coordinate Oxyz is attached at the center of the beam such
that the x-axis is in the longitudinal direction, as depicted in
Fig. 1. Here the bending of the beam on the yz-plane is not
considered. In each layer, we denote the fiber orientation
angles by θ(1), θ(2), θ(3), ...., θ(N), the fiber volume fractions
by V 1

CNT, V
2
CNT, ..., V

N
CNT, and the vertical coordinate of

layers by z1, z2, ..., zN, zN +1.
Based on FSDT where the influence of shear deforma-

tion and rotary inertia is considered, the displacement field
of the laminated composite beam is given by

uðx,zÞ ¼ u0 þ zβxðxÞ
wðx,zÞ ¼ w0ðxÞ

,

(
(7)

where u and w are x-direction and z-direction displace-
ments of the beam, respectively, u0 and w0 are the x-
direction and z-direction displacements of the beam neutral
axis, respectively, and βx is the rotation of the cross section.

According to Eq. (7), the strain field of the beam is
expressed as follows

ε ¼ εx
γxz

� �
¼

u0,x þ zβx,x

w0,x þ βx

" #
: (8)

If transverse normal stresses are neglected, the consti-
tutive relations for the kth layer of the beam take the form

σðkÞ ¼ Q
ðkÞðzÞεðkÞ, (9)

where

σðkÞ ¼
�
ðkÞ
x

τðkÞxz

2
4

3
5, εðkÞ ¼ εðkÞx

γðkÞxz

2
4

3
5,

Q
ðkÞðzÞ ¼

Q
ðkÞ
11 ðzÞ 0

0 Q
ðkÞ
55 ðzÞ

  35,2
4 (10)

where

Q
ðkÞ
11 ðzÞ ¼ QðkÞ

11 ðzÞcos4�ðkÞ þ 2
�
QðkÞ

12 ðzÞ þ 2QðkÞ
66 ðzÞ

�

$sin2�ðkÞcos2�ðkÞ þ QðkÞ
22 ðzÞsin4�ðkÞ, (11)

Q
ðkÞ
55 ðzÞ ¼ QðkÞ

44 ðzÞsin2�ðkÞ þ QðkÞ
55 ðzÞcos2�ðkÞ, (12)

where the stiffness coefficients QðkÞ
ij ðzÞ of the kth lamina in

the material coordinate system are

QðkÞ
11 ðzÞ ¼

EðkÞ
11 ðzÞ

1 – vðkÞ12 ðzÞvðkÞ21 ðzÞ
,

QðkÞ
12 ¼ vðkÞ12 E

ðkÞ
22 ðzÞ

1 – vðkÞ12 ðzÞvðkÞ21 ðzÞ
,

Fig. 1 Sketch of a laminated composite beam

326 Front. Struct. Civ. Eng. 2019, 13(2): 324–336



QðkÞ
22 ¼ EðkÞ

22 ðzÞ
1 – vðkÞ12 ðzÞvðkÞ21 ðzÞ

,

QðkÞ
44 ðzÞ ¼ GðkÞ

23 ðzÞ,

QðkÞ
55 ðzÞ ¼ GðkÞ

13 ðzÞ,

QðkÞ
66 ðzÞ ¼ GðkÞ

12 ðzÞ, (13)

where EðkÞ
11 and EðkÞ

22 are the effective Young’s moduli, GðkÞ
12 ,

GðkÞ
13 and GðkÞ

23 are the shear moduli, vðkÞ12 and vðkÞ21 are
Poisson’s ratios. These parameters depend on the CNT
volume fraction of the kth layer. The five distributions of
CNTs for the kth layer of the laminated CNTRC beam are
rewritten by

VCNTðzÞ ¼ V *
CNT UD

VCNTðzÞ ¼ 2
z – zk

zkþ1 – zk
V *
CNT FG-V

VCNTðzÞ ¼ – 2
z – zkþ1

zkþ1 – zk
V *
CNT FG-Λ

VCNTðzÞ ¼ 4
  ���z – zkþ1 þ zk

2
  ���

zkþ1 – zk
V *
CNT FG-X

VCNTðzÞ ¼ 2 – 4
  ���z – zkþ1 þ zk

2
  ���

zkþ1 – zk

0
B@

1
CAV *

CNT FG-O

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

:

(14)

The governing equation for free vibration of the
laminated composite beam can be obtained by using the
Hamilton’s principle

δ!
t1

t0

1

2
!
V

ðσðkÞÞTεðkÞdV –
1

2
!
V

�ðkÞ _u2 þ _w2	 

dV

2
4

3
5dt ¼ 0,

(15)

where δ is the notation of variation operator, �ðkÞ is the
mass density of the kth layer and the over-dot represents a
partial derivative with respect to time t.
Then the Galerkin weak form of free vibration analysis

of the laminated composite beam is given by

!
L
δðΛuÞTDðΛuÞdxþ!

L
δuTm€udx ¼ 0, (16)

where

Λ ¼

∂
∂x

0 0

0 0
∂
∂x

0
∂
∂x

1

2
6666664

3
7777775
, u ¼

u0
w0

βx

2
64

3
75, (17)

and €u is the second-order derivative with respect to time of
u. The formulas for D and m are expressed as follows:

D ¼
A11 B11 0

B11 D11 0

0 0 κA55

2
64

3
75, m ¼

I0 0 I1

0 I0 0

I1 0 I2

2
64

3
75, (18)

where κ ¼ 5=6 is the shear correction factor and A11,B11,
D11,A55, I0, I1, I2 are defined by

ðA11,B11,D11Þ ¼ b
XnL
k¼1

!
zkþ1

zk
Q

ðkÞ
11 ðzÞð1,z,z2Þdz,

A55 ¼ b
XnL
k¼1

!
zkþ1

zk
Q

ðkÞ
55 ðzÞdz,

ðI0,I1,I2Þ ¼ b
XnL
k¼1

!
zkþ1

zk
�ðkÞðzÞð1,z,z2Þdz: (19)

By using finite element method, the beam is divided into
Ne elements and each element has two nodes. On each
element, the displacement field of the beam, ue, is
approximated by linear shape functions in the natural

coordinate, Ne
1ð�Þ ¼

1

2
1 – �ð Þ and Ne

2ð�Þ ¼
1

2
1þ �ð Þ, as

follows:

ue ¼ N ede, (20)

in which de ¼ u01 w01 βx1 u02 w02 βx2½ �T is the
nodal displacement vector of element e and

N e ¼
Ne
1 0 0 Ne

2 0 0

0 Ne
1 0 0 Ne

2 0

0 0 Ne
1 0 0 Ne

2

2
64

3
75: (21)

After substituting Eq. (20) into Eq. (16), the discrete
equation for free vibration analysis of the laminated
composite beam is represented by

M€d þ Kd ¼ 0, (22)

where d is the displacement vector, €d is the second-order
derivative with respect to time of the displacement, M and
K are the global mass matrix and stiffness matrix which are
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the assemblies of elemental ones and given by

K ¼
XNe
e¼1

Ke ¼
XNe
e¼1

!
1

– 1

ðBeÞTDBe l
e

2
d�

M ¼
XNe
e¼1

Me ¼
XNe
e¼1

!
1

– 1

ðN eÞTmN e l
e

2
d�

(23)

where le is the length of the eth element and Be is defined
by

Be ¼

Ne
1,�

2

le

� �
0 0 Ne

2,�
2

le

� �
0 0

0 0 Ne
1,�

2

le

� �
0 0 Ne

2,�
2

le

� �

0 Ne
1,�

2

le

� �
Ne
1 0 Ne

2,�
2

le

� �
Ne
2

2
6666664

3
7777775
: (24)

To ensure the well-behaved element performance that is
devoid of shear locking in slender beams, a selective
reduced integration scheme [72,73] is used. The idea of the
reduced integration scheme is to split the strain energy into
two parts: The bending-related term and the shear-related
one. Two different integration rules are then used,
respectively, for the bending strain energy and the shear
strain energy. In this study, a single Gaussian point is used
for calculating the bending stiffness (with respect to the
bending strain energy) and transverse shear stiffness (with
respect to shear strain energy). More detail on this
technique, interesting readers can refer to Refs. [72,73].
The natural frequency (ω) and mode shape (f) of the

beam are obtained by solving the eigenvalue problem
which is derived from Eq. (22) as follows

ðK –ω2MÞf ¼ 0: (25)

The support conditions for clamped (C), hinged (H) and
free (F) at the ends x = 0, L are

C u0 ¼ w0 ¼ βx ¼ 0

H u0 ¼ w0 ¼ 0

F no contraints

:

8><
>: (26)

It should be mentioned that in the previous work by Lin
and Xiang [34], they analyzed the free vibration of FG-
CNT beams. However, this study only limited to single
layer-FG-CNTRC beams. Therefore, their finite element
formulation is simpler than the present formulation while
the effects of CNT orientation angles (Eq. (10)) and the
change of CNT distributions in each layer (as in Eq. (14))
are neglected in their work.

4 Numerical examples

4.1 Comparison study

As mentioned before, to the best of our knowledge there is
no work reported on free vibration analysis of laminated

FG-CNTRC beams. Therefore, to assure the validity of
free vibration analysis for single-layer FG-CNTRC beams
and multilayered composite beams, two comparison
studies are given in this section.
For the first comparison study, the fundamental

frequency parameter of a single layer FG-CNTRC beam
is evaluated and compared with the results of Yas and
Samadi [2] using the generalized differential quadrature
method (GDQM) and Lin and Xiang [34] using the p-Ritz
method. The material properties of the FG-CNTRC beam
at room temperature (300 K) are the same as those used in
study of Yas and Samadi [2] in which poly methyl
methacrylate, referred to PMMA, is considered as the
matrix and the armchair (10,10) SWCNTs are selected as
reinforcements. Details of the parameters are listed in

Table 1. It is also assumed thatGðkÞ
23 ðzÞ ¼ GðkÞ

13 ðzÞ ¼ GðkÞ
12 ðzÞ

and vðkÞ21 ðzÞ ¼ vðkÞ12 ðzÞ. Three different values of CNTs
volume fraction and their corresponding CNT/matrix
efficiency parameters are given as follows: V *

CNT = 0.12,
η1 = 1.2833 and η2 = 1.0556; V *

CNT = 0.17, η1 = 1.3414 and
η2 = 1.7101; and V *

CNT = 0.28, η1 = 1.3238 and η2 = 1.7380.
In addition, it is assumed that η3 = η2. The beam for length
to thickness ratio (L/h) of 15 is divided into 32 elements
equal of lengths for finite element analysis. The obtained
dimensionless frequencies with various CNT volume
fractions, boundary conditions and types of distributions
are provided in Tables 2 and 3. It can be seen that the
present results are in good agreement with those solved in
Refs. [2,34]. This result demonstrates the reliability of the
finite element analysis for the FG-CNTRCs beams.
For the second comparison study, the dimensionless

 8>>>>><>>>>>: ,

Table 1 Material parameters of a FG-CNTRC beam

parameters (unit) matrix fiber

Poisson’s coefficient nm = 0.3 vCNT12 = 0.19

mass density (kg/m3) rm = 1190 rCNT = 17.2

Young’s modulus (GPa) Em = 2.5 ECNT
11 = 600, ECNT

22 = 600

shear modulus (GPa) – GCNT
12 = 10
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frequency of a four-layered angle-ply [θ/–θ/–θ/θ] beam
with four different types of boundary conditions and
various CNTs orientation angles is calculated from the
present approach, and the obtained results are compared
with those by Chandrashekhara et al. [43] and Nguyen
et al. [50]. The beam is made of AS/3501-6 graphite-epoxy

materials whose properties are used the same as in
Refs. [43,50]. For finite element analysis, the beam is
divided into 32 elements equally. The frequencies for ratio
L/h = 15 of the present study and the reference are shown
in Table 4. It can be observed that the difference between
the results is very small.

Table 2 Comparison of dimensionless frequency parameters, ω ¼ ω
L2

h

ffiffiffiffiffiffiffi
�m
Em

r
of FG-CNTRC beams for V *

CNT = 0.12 and 0.17

V *
CNT BC mode

FG-X UD FG-V FG-O

FEM (present) GDQM [2] FEM (present) GDQM [2] FEM (present) GDQM [2] FEM (present) GDQM [2]

0.12 CC 1 1.5953 1.6000 1.5052 1.5085 1.4046 1.4068 1.3166 1.3180

2 3.2568 3.2629 3.1317 3.1353 2.9980 2.9997 2.8763 2.8762

3 5.1517 5.1514 5.0022 4.9979 4.8433 4.8363 4.6940 4.6840

CH 1 1.3547 1.3577 1.2426 1.2444 1.1518 1.1529 1.0327 1.0331

2 3.1768 3.1817 3.0137 3.0159 2.8468 2.8472 2.6827 2.6814

3 5.1103 5.1092 4.9393 4.9342 4.7556 4.7474 4.5731 4.5619

HH 1 1.1139 1.1150 0.9748 0.9753 0.9451 0.9453 0.7529 0.7527

2 3.0780 3.0814 2.8722 2.8728 2.6436 2.6424 2.4588 2.4562

3 5.0713 5.0695 4.8765 4.8704 4.6768 4.6675 4.4445 4.4320

CF 1 0.4411 0.4416 0.3761 0.3764 0.3192 0.3193 0.2808 0.2809

2 1.8461 1.8497 1.6984 1.7006 1.5460 1.5473 1.4260 1.4266

3 3.8743 3.8777 3.6643 3.6648 3.4393 3.4380 3.2519 3.2489

0.17 CC 1 2.0409 2.0498 1.9083 1.9144 1.7677 1.7721 1.6471 1.6500

2 4.1962 4.2111 4.0088 4.0187 3.8242 3.8312 3.6527 3.6565

3 6.6638 6.6753 6.4310 6.4348 6.2143 6.2139 6.0025 5.9970

CH 1 1.7131 1.7188 1.5567 1.5602 1.4321 1.4344 1.2757 1.2769

2 4.0718 4.0843 3.8328 3.8402 3.6020 3.6064 3.3758 3.3772

3 6.5991 6.6094 6.3347 6.3370 6.0789 6.0765 5.8204 5.8126

HH 1 1.3808 1.3830 1.1989 1.1999 1.1601 1.1609 0.9155 0.9155

2 3.9201 3.9293 3.6235 3.6276 3.3075 3.3084 3.0591 3.0577

3 6.5365 6.5447 6.2367 6.2363 5.9550 5.9498 5.6247 5.6139

CF 1 0.5406 0.5413 0.4583 0.4587 0.3863 0.3866 0.3393 0.3394

2 2.3364 2.3437 2.1319 2.1365 1.9258 1.9287 1.7669 1.7685

3 4.9590 4.9706 4.6554 4.6614 4.3471 4.3500 4.0915 4.0913

*Note: BC = boundary condition

Table 3 Comparison of dimensionless frequency parameters, ω ¼ ω
L2

h

ffiffiffiffiffiffiffi
�m
Em

r
of FG-CNTRC beams for V *

CNT = 0.28

BC mode
FG-X FG-UD FG-Λ

FEM (present) GDQM [2] p-Ritz [34] FEM (present) GDQM [2] p-Ritz [34] FEM (present) GDQM [2] p-Ritz [34]

HH 1 1.6423 1.6493 1.6409 1.4362 1.4401 1.4348 1.3990 1.4027 1.3975

2 4.4443 4.4752 4.4333 4.1162 4.1362 4.1050 3.8487 3.8639 3.8370

3 7.2596 7.3068 7.2258 6.8940 6.9245 6.8595 6.7349 6.7618 6.6976

CF 1 0.6566 0.6586 0.6566 0.5601 0.5612 0.5600 0.4754 0.4761 0.4753

2 2.6797 2.6987 2.6763 2.4482 2.4614 2.4449 2.2578 2.2685 2.2543

3 5.5759 5.6150 5.5589 5.2175 5.2446 5.2005 4.9767 5.0007 4.9590
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4.2 Parametric study

After performing comparison studies, parametric studies
are done in this section to analyze the influences of
involved parameters on the free vibration of a laminated
FG-CNTRC beam. In this study, the material and
geometrical parameters of the beam are the same as in
the first comparison study of the previous examples. It
should be noted that the length-to-thickness ratio is chosen
to be 15 for all examinations except for the case of
examination the effect of length-to-thickness ratio on the
frequencies.
Table 5 presents the dimensionless frequencies of the

cross-ply [0°/90°] FG-CNTRC beams for the case of V *
CNT

= 0.12 with different boundary conditions. It can be seen
that the trend of frequency looks very similar to the case of

only one layer, as shown in Table 2, i.e., the FG-X, UD,
FG-V and FG-O beams have decreasing frequency,
respectively for all boundary conditions. In this case,
however, there is a small difference when the first
frequency of the FG-O beam is greater than that of the
FG-V beam for boundary conditions of CH and HH.
Table 6 shows the dimensionless frequencies of the

cross-ply [0°/90°/0°] FG-CNTRC beams for the case of
V *
CNT = 0.12 with different boundary conditions. Similar to

the results in Table 2, the FG-X beam yields the largest
frequency while the FG-O beam has the smallest frequency
for all boundary conditions.
Tables 7–10 provide the dimensionless frequency of

four-layered angle-ply [θ/–θ/–θ/θ] FG-CNTRC beams for
the case of V *

CNT = 0.12 with various CNTs orientation
angles and different types of boundary conditions. In
addition, the effect of CNTs orientation angle on frequency
for other cases of CNT volume fraction is also performed
and illustrated in Fig. 2 where the FG-X beam with
boundary condition of CC is examined. As can be
observed, the frequency decreases as the CNTs orientation
angle θ decreases from 90° to 0° for all distributions of
CNT, boundary conditions and for three values of CNTs
volume fraction.
Figure 3 shows the dimensionless frequency of the

angle-ply [45°/–45°/–45°/45°] FG-CNTRC beam with
different distributions and boundary conditions for the
case of V *

CNT = 0.17. It can be seen from the figure that the
frequencies of FG-X beam are the largest; however, the
difference of frequencies between FG-X beam and the
other beams is small for all boundary conditions.
Figure 4 shows the dimensionless frequency of the

angle-ply [45°/–45°/–45°/45°] FG-X beam with clamped-
clamped boundary condition and various length-to-thick-
ness ratios. As can be seen from Fig. 4, the dimensionless

Table 4 Comparison of dimensionless frequency parameter ω ¼ ω
L2

h

ffiffiffiffiffiffiffiffi
�

E11

r
of four-layered angle-ply [θ/–θ/–θ/θ] beams

BC method
frequency

0° 15° 30° 45° 60° 75° 90°

CF FSDT [43] 0.9820 0.9249 0.7678 0.5551 0.3631 0.2723 0.2619

HSDT [50] 0.9832 0.9259 0.7683 0.5553 0.3631 0.2722 0.2618

present 0.9821 0.925 0.7679 0.5552 0.3632 0.2724 0.2619

HH FSDT [43] 2.6560 2.5105 2.1032 1.5368 1.0124 0.7611 0.7320

HSDT [50] 2.6563 2.5108 2.1033 1.5367 1.0121 0.7608 0.7317

present 2.6589 2.5133 2.1056 1.5386 1.0136 0.7620 0.7329

CH FSDT [43] 3.7305 3.5593 3.0573 2.3032 1.5511 1.1753 1.1312

present 3.7362 3.565 3.0625 2.3075 1.5541 1.1776 1.1335

CC FSDT [43] 4.8487 4.6635 4.0981 3.1843 2.1984 1.6815 1.6200

HSDT [50] 4.9116 4.7173 4.1307 3.1973 2.2019 1.6825 1.6205

present 4.8577 4.6725 4.1069 3.1922 2.2045 1.6862 1.6244

* Note: FSDT: First-order shear deformation theory; HSDT: Higher-order shear deformation theory

Table 5 First three dimensionless frequencies of cross-ply [0°/90°]

FG-CNTRC beams

BC mode FG-X UD FG-V FG-O

CC 1 1.0433 0.9373 0.8185 0.7923

2 2.4475 2.2568 2.0305 1.9750

3 4.1450 3.8868 3.5747 3.4902

CH 1 0.8319 0.7506 0.6294 0.6443

2 2.2198 2.0285 1.7828 1.7613

3 3.9548 3.6757 3.3259 3.2623

HH 1 0.7117 0.6576 0.5191 0.5850

2 1.8890 1.6831 1.4651 1.4086

3 3.8043 3.5198 3.1156 3.1153

CF 1 0.1939 0.1679 0.1415 0.1361

2 1.0830 0.9614 0.8306 0.8011

3 2.6458 2.4040 2.1320 2.0635
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frequency of the beam is reduced when the length-to-
thickness ratio increases.
Table 11 shows the dimensionless frequency of a

laminated FG-CNTRC beam for the case of V *
CNT = 0.12

with various types of distributions, boundary conditions
and numbers of layers. The CNTs orientation angle of each
lamina is 0°. It is seen from Table 11 that when the number
of layers increases the frequency of the FG-V and FG-O
beams increase while that of the FG-X beam decreases.
Moreover, the frequency of these beams converges to that
of the UD beam. The illustration of this comment can be
seen in Fig. 5 that depicts the first dimensionless frequency
of these beams for the boundary condition of CC.
Table 12 lists the dimensionless frequency of the three-

layered [0°/0°/0°] beams that are combined by different
types of CNTs distributions for the case of V *

CNT = 0.12.

Table 6 First three dimensionless frequencies of a cross-ply [0°/90°/

0°] FG-CNTRC beams

BC mode FG-X UD FG-V FG-O

CC 1 1.5074 1.4961 1.4920 1.4885

2 3.1376 3.1195 3.1170 3.1123

3 5.0127 4.9876 4.9880 4.9824

CH 1 1.2436 1.2317 1.2269 1.2211

2 3.0184 2.9976 2.9917 2.9850

3 4.9491 4.9223 4.9205 4.9137

HH 1 0.9747 0.9621 0.9602 0.9486

2 2.8755 2.8516 2.8406 2.8330

3 4.8856 4.8567 4.8532 4.8443

CF 1 0.3758 0.3703 0.3663 0.3642

2 1.6999 1.6842 1.6760 1.6707

3 3.6698 3.6437 3.6350 3.6273

Table 7 First three dimensionless frequencies of four-layered angle-ply [θ/–θ/–θ/θ] FG-X beam

BC mode
frequency

0° 15° 30° 45° 60° 75° 90°

CC 1 1.5147 1.4807 1.3610 1.1086 0.7332 0.4749 0.4454

2 3.1475 3.1019 2.9388 2.5600 1.8553 1.2603 1.1870

3 5.0244 4.9699 4.7711 4.2954 3.3204 2.3617 2.2349

CH 1 1.2525 1.2120 1.0789 0.8336 0.5235 0.3319 0.3107

2 3.0315 2.9713 2.7608 2.3090 1.5833 1.0442 0.9807

3 4.9628 4.8990 4.6644 4.1056 3.0377 2.0942 1.9753

HH 1 0.9851 0.9382 0.7976 0.5782 0.3452 0.2149 0.2009

2 2.8921 2.8156 2.5534 2.0319 1.3121 0.8413 0.7883

3 4.9015 4.8272 4.5520 3.8996 2.7437 1.8317 1.7223

CF 1 0.3806 0.3596 0.2992 0.2115 0.1241 0.0768 0.0718

2 1.7115 1.6589 1.4862 1.1628 0.7394 0.4711 0.4412

3 3.6864 3.6100 3.3476 2.8006 1.9308 1.2780 1.2008

Fig. 2 The first dimensionless frequency of angle-ply [θ/–θ/–θ/
θ] FG-X beam with boundary condition of CC

Fig. 3 The first dimensionless frequency of the angle-ply [45°/
–45°/ –45°/45°] FG-CNTRC beam with various distributions and

boundary conditions for the case of V *
CNT = 0.17
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The combined beams are named by joining the letter of
distributions of each layer. For examples, UD-X-UD
means that the first and third layers have uniform
distributions and the second layer has FG-X distribution.
From the results in Table 12, it can be recognized that the
Λ-X-V beam yields the largest frequency while the V-X-V
beam produces the smallest frequency in comparison with
X-UD-X and X-V-X beams. Also, the frequency of the X-
UD-X and X-V-X beams is nearly the same. It can also be
seen that the frequency of these combined beams is higher
than that of the initial UD-UD-UD and V-V-V beams for
all boundary conditions.

5 Conclusions

The paper presents the free vibration analysis of laminated

Table 8 First three dimensionless frequencies of four-layered angle-ply [θ/–θ/–θ/θ] UD-CNTRC beam

BC mode
frequency

0° 15° 30° 45° 60° 75° 90°

CC 1 1.5052 1.4710 1.3507 1.0985 0.7265 0.4729 0.4441

2 3.1317 3.0858 2.9216 2.5414 1.8402 1.2550 1.1836

3 5.0022 4.9471 4.7468 4.2687 3.2962 2.3521 2.2283

CH 1 1.2426 1.2021 1.0690 0.8250 0.5185 0.3305 0.3098

2 3.0137 2.9532 2.7417 2.2897 1.5695 1.0397 0.9778

3 4.9393 4.8749 4.6383 4.0771 3.0139 2.0855 1.9695

HH 1 0.9748 0.9282 0.7886 0.5715 0.3417 0.2139 0.2003

2 2.8722 2.7952 2.5323 2.0122 1.2998 0.8377 0.7859

3 4.8765 4.8015 4.5238 3.8692 2.7203 1.8239 1.7172

CF 1 0.3761 0.3553 0.2956 0.2090 0.1229 0.0765 0.0716

2 1.6984 1.6457 1.4731 1.1511 0.7324 0.4691 0.4399

3 3.6643 3.5874 3.3242 2.7773 1.9140 1.2726 1.1973

Fig. 4 The first dimensionless frequency of angle-ply [45°/–45°/
–45°/45°] FG-X beam with boundary condition of CC versus
various length-to-thickness ratios

Table 9 First three dimensionless frequencies of four-layered angle-ply [θ/–θ/–θ/θ] FG-V beam

BC mode
frequency

0° 15° 30° 45° 60° 75° 90°

CC 1 1.5024 1.4677 1.346 1.0928 0.7235 0.4733 0.4448

2 3.1309 3.0843 2.9177 2.5339 1.8345 1.2564 1.1855

3 5.0047 4.9487 4.7451 4.2618 3.2890 2.3550 2.2322

CH 1 1.2390 1.1981 1.0642 0.8203 0.5164 0.3308 0.3103

2 3.0100 2.9486 2.7348 2.2803 1.5638 1.0408 0.9794

3 4.9400 4.8743 4.6339 4.0670 3.0053 2.0879 1.9729

HH 1 0.9733 0.9266 0.7870 0.5703 0.3413 0.2142 0.2006

2 2.8641 2.7862 2.5209 2.0001 1.2939 0.8385 0.7872

3 4.8757 4.7992 4.5170 3.8566 2.7116 1.8259 1.7201

CF 1 0.3727 0.3520 0.2928 0.2071 0.1222 0.0766 0.0717

2 1.6921 1.6391 1.4656 1.1438 0.7291 0.4695 0.4406

3 3.6584 3.5807 3.3149 2.7655 1.9069 1.2739 1.1992
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functionally graded carbon nanotube reinforced composite
beams. Here, it was considered that the laminated beam is
composed of perfectly bonded CNTRC layers and distinct
distributions of SWCNTs through the thickness of the
layers. In order to build the system of equations ruling the
beam deformation, the linear two-node element combined
with the first-order shear deformation theory is used. The
influence of the CNTs volume fractions, CNTs distribu-
tions, CNTs orientation angles, boundary conditions, the
numbers of layers and length-to-thickness ratios on the free
vibration of a laminated FG-CNTRC beam is investigated.
Moreover, a laminated composite beam combined by
various CNTs distributions is also studied. The numerical
results indicate that

Table 10 First three dimensionless frequencies of four-layered angle-ply [θ/–θ/–θ/θ] FG-O beam

BC mode
frequency

0° 15° 30° 45° 60° 75° 90°

CC 1 1.4997 1.4647 1.3425 1.0888 0.7199 0.4721 0.4442

2 3.1273 3.0804 2.9129 2.5273 1.8269 1.2534 1.1841

3 5.0004 4.9440 4.7392 4.2533 3.2775 2.3498 2.2297

CH 1 1.2344 1.1934 1.0594 0.8158 0.5133 0.3299 0.3098

2 3.0048 2.9431 2.7283 2.2724 1.5563 1.0381 0.9782

3 4.9347 4.8686 4.6267 4.0570 2.9935 2.0829 1.9705

HH 1 0.9639 0.9174 0.7785 0.5638 0.3381 0.2135 0.2003

2 2.8581 2.7799 2.5137 1.9924 1.2875 0.8362 0.7861

3 4.8688 4.7917 4.5075 3.8440 2.6988 1.8213 1.7179

CF 1 0.3710 0.3504 0.2913 0.2060 0.1215 0.0763 0.0716

2 1.6879 1.6348 1.4609 1.1390 0.7252 0.4683 0.4400

3 3.6524 3.5744 3.3076 2.7568 1.8982 1.2707 1.1977

Table 11 First three dimensionless frequencies of a beam with various

numbers of layers

distribution BC mode 2 layers 3 layers 5 layers 10 layers

FG-X CC 1 1.5349 1.5202 1.5121 1.5086

2 3.1746 3.1549 3.1440 3.1392

3 5.0565 5.0332 5.0203 5.0146

CH 1 1.2772 1.2591 1.2493 1.2451

2 3.0675 3.0413 3.0269 3.0206

3 5.0002 4.9730 4.9580 4.9514

HH 1 1.0148 0.9930 0.9814 0.9764

2 2.9381 2.9046 2.8862 2.8782

3 4.9448 4.9133 4.8958 4.8882

CF 1 0.3942 0.3842 0.3789 0.3766

2 1.7437 1.7201 1.7074 1.7018

3 3.7325 3.6989 3.6805 3.6725

FG-V CC 1 1.4866 1.4984 1.5042 1.5066

2 3.1095 3.1256 3.1334 3.1366

3 4.9790 4.9983 5.0076 5.0114

CH 1 1.2243 1.2353 1.2407 1.2429

2 2.9832 3.0033 3.0131 3.0171

3 4.9107 4.9327 4.9433 4.9477

HH 1 0.9689 0.9722 0.9738 0.9745

2 2.8279 2.8551 2.8683 2.8737

3 4.8439 4.8677 4.8793 4.8840

CF 1 0.3630 0.3702 0.3739 0.3754

2 1.6675 1.6859 1.6949 1.6987

3 3.6224 3.6494 3.6626 3.6680

(Continued)

distribution BC mode 2 layers 3 layers 5 layers 10 layers

FG-O CC 1 1.4742 1.4934 1.5025 1.5062

2 3.0932 3.1189 3.1311 3.1360

3 4.9594 4.9903 5.0049 5.0108

CH 1 1.2044 1.2270 1.2378 1.2422

2 2.9598 2.9937 3.0098 3.0163

3 4.8867 4.9230 4.9400 4.9469

HH 1 0.9297 0.9553 0.9678 0.9730

2 2.8011 2.8441 2.8645 2.8728

3 4.8128 4.8552 4.8749 4.8830

CF 1 0.3558 0.3672 0.3728 0.3751

2 1.6490 1.6783 1.6923 1.6980

3 3.5955 3.6384 3.6588 3.6671
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i) The FG-X distribution yields the largest frequency
while the FG-O distribution yields the smallest frequency
of laminated FG-CNTRC beams.
ii) The CNT orientation angle of 0° for each layer yields

the largest frequency of the laminated FG-CNTRC beams.
iii) When the number of layers increases, the frequency

of FG-X distribution decreases while the frequency of the
FG-V and FG-O increases. In addition, the frequencies of
other CNT distributions tend to approach to the frequency
of the UD distribution.
iv) The stacking sequence of CNT distributions has little

influence on the frequency of the FG-CNTRC beams.
Also, the stacking sequence of FG-Λ-X-V gives the largest
frequencies.
v) Boundary conditions, CNT volume fractions and

length-to-thickness ratios strongly effect on the frequency
of laminated FG-CNTRC beams.
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