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ABSTRACT To facilitate long term infrastructure asset management systems, it is necessary to determine the bearing
capacity of pavements. Currently it is common to conduct such measurements in a stationary manner, however the
evaluation with stationary loading does not correspond to reality a tendency towards continuous and high speed
measurements in recent years can be observed. The computational program SAFEM was developed with the objective of
evaluating the dynamic response of asphalt under moving loads and is based on a semi-analytic element method. In this
research project SAFEM is compared to commercial finite element software ABAQUS and field measurements to verify
the computational accuracy. The computational accuracy of SAFEM was found to be high enough to be viable whilst
boasting a computational time far shorter than ABAQUS. Thus, SAFEM appears to be a feasible approach to determine
the dynamic response of pavements under dynamic loads and is a useful tool for infrastructure administrations to analyze
the pavement bearing capacity.
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1 Introduction

Infrastructure management and maintenance concepts are
of upmost importance to ensure a long life whilst
maintaining sufficient quality and aid the decision
processes linked to rehabilitation strategies. The material
performance as well as the remaining service life can be
determined by analyzing the bearing capacity of asphalt
pavements [1,2]. Currently deflection measurements are
the only dependable means of determining the bearing
capacity of asphalt pavements [3,4]. Obtaining such
measurements with conventional devices such as the
falling weight deflectometer (FWD) necessitates the
interruption of traffic. To make the process more
economically feasible and to conduct the measurement
along the full length high speed deflection measurement
devices have been developed in recent years. These
include the quest/dynatest rolling weight deflectometer
(RWD), Swedish road deflection tester, Texas rolling

dynamic deflectometer and traffic speed deflectometer
(TSD) [5], which all operate at velocities between 40 km/h
and 80 km/h [6].
An inverse mapping of the theoretical response model

must be determined to characterize the bearing capacity of
asphalt pavements which can be obtained by measuring
deflections; this is referred to as the pavement back-
calculation technique [7]. The processes in the back-
calculation can generally be subdivided into forward
calculations and backward calculations. Effectively the
forward direction computes deflections in the pavement for
given loading scenarios whilst the backward direction is
used to adjust the calculation by comparing the computed
values with measured deflections; parameter identification
is used to determine the actual material parameters [7]. At
present the forward calculation process is limited to
approaches such as finite element (FE) or elastic layered
theory and stationary deflection measurement methods.
The more realistic approach of using dynamic moving
loads requires significantly more computational resources
resulting in low time efficiency; thus, further developmentArticle history: Received Nov 19, 2016; Accepted Nov 30, 2016
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is still needed.
In this research project the forward calculation, i.e.,

dynamic displacements of pavement structures are calcu-
lated under moving loads by applying a semi-analytical
finite element method (SAFEM) [8–13]. The pavement
structure problem was reduced to a 2D plane strain
problem by exploiting spatial conditions of a typical
pavement structure (Fig. 1) such as the fact that the
geometric and material properties do not vary in one
coordinate direction (z-direction in this case); however,
loading conditions vary strongly in said direction. The
computational time can be reduced significantly under the
assumption that a Fourier series can be used to describe the
displacement in the out-of-plane direction (y-direction in
this case). By making use of the orthogonal properties such
a class of problems can be reduced to a series of 2D FE-
meshes [8–13].

The mathematical basis of SAFEM will be outlined,
followed by the result verification by means of commercial
FE-software ABAQUS and results obtained from field
measurements. Finally, the findings are summarized and
conclusions are drawn.

2 Description of semi-analytical finite
element method

A Fourier series with z ranging from zero to a is used to
represent the general shape functions defining the
displacement variations in SAFEM (Fig. 2) [8–12]:
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With l is the term of the Fourier series; L is the number of

terms considered; Nk & Nk is the shape functions of a node
in the XY plane(equal to displacement approximations in
2D problems).

Variation of loads along the z-axis is given by a loading
function correspondingly [9]:
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With pðx,yÞ and pðx,yÞ is the external load function.
The pavement degrees of freedom are fixed at the

boundaries z = 0 and z = a whilst unrestricted motion in the
z-direction.
The displacement function in u, v and w can be written

as such [10]:
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With ulk , v
l
k and w

l
k is the displacements of the node at the

term of the Fourier series along x-, y- and z-directions,
respectively.
The loading function for the pavement analysis can be

simplified as [9]:
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Fig. 1 Pavement structure geometry and load mode [13]

Fig. 2 Schematic illustration of loading conditions in SAFEM
[12]
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With Pt is tire loading pressure; Zt1 is z coordinate of tire
load beginning; Zt 2 is z coordinate of tire load ending.
Beginning with the displacement of a single element the

resulting strain and stress can be determined with
geometric and physical equations; resulting in the strain-
displacement matrix Bl

k as follows:
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The element stiffness matrix can be represented through
a sub-matrix ðKlmÞe by means of the principle of minimum
potential energy [10]:

ðKlmÞe ¼ ∭vol
ðBlÞTDBmdxdydz (7)

The force vector is typically:

ðFlÞe ¼ ∭vol
ðNlÞTfpgldxdydz (8)

With Eqs. (6), (7) the stiffness matrix of one element
includes [10]:
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The orthogonal properties of the integrals ensure that the
following relations are true:

I2 ¼ I3 ¼
1
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a, for l ¼ m;
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In the case that both l and m are odd or even numbers the
integral I1 becomes zero. When I1 is zero all terms in the Bl

matrix containing I1 become zero as well, resulting in the
diagonalization of the ðKlmÞe matrix. Thus, the stiffness
matrix can be reduced to resemble the following:
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The final equation shows that system of equations is
reduced to contain exactly L individual problems.

KllUl þ Fl ¼ 0 (12)

To increase the computational efficiency, it is important
to decouple problems and allow for parallel computing as
opposed to sequential schemes. In this case the equilibrium
equations are decoupled for the harmonics of the Fourier
series (Eq. (12)) [14]. The time independent FE analysis is
conducted with Eq. (12). As the dynamic loading and the
respective response include a temporal component all
objects are four dimensional (x, y, z, t); therefore Eq. (12)
must be rewritten. The time coordinates must be included
in the FE algorithm. The derivation of this is found in
numerous literature sources [15] and will not be described
further.

3 Verification of the safem

Results from the commercial FE-software ABAQUS [16]
and in field measurements on a test track of German
Federal Highway Research Institute (BASt) were used to
analyze the accuracy of SAFEM. The experiments and
calculations were conducted based on a truck passing
at 30 km/h due to spatial restrictions of the test track
(Fig. 3).
The pavement length was set to be 4800 mm, which

is 20-fold the minimum required loading length for a
computational calculation. The width was set to 3750 mm
corresponding to the width of the test track [18–20]. The
pavement layer materials and the respective material
properties are given in Table 1. The first three layers are
totally bound. Each contact layer among the asphalt base
course, gravel base layer, frost protection layer and sub-
grade was defined as being partially bound.
The geometric information of the truck from the

experiment is given in Fig. 4. To simplify the model
only the first wheel of the left axle was regarded. The
distances of the wheels are estimated to be far enough
away from the left wheel on the first axle that their
influence is negligible. The loading area is assumed to be
rectangular with dimensions 240 mm�290 mm, and
exhibit a loading pressure of 0.515 MPa. The center of
the loading path is 1100 mm from the left boundary of the
test track.
The respective meshes from SAFEM and ABAQUS are

depicted in Fig. 5. The SAFEM mesh consisted of 2D 6-
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node triangular elements in the XY plane (Fig. 5(a)). The
ABAQUS mesh consisted of 3D 10-node quadratic

tetrahedron elements (Fig. 5(b)).
In both meshes the element size increases from the

loading path towards the periphery. In ABAQUS the finest
elements within the loading area are 24 mm�29 mm (two
right-angle sides); in SAFEM the finest elements are
24 mm (the surface side). The total number of increments
is 210; the increment time is 0.00288s as a result of the
loading speed of 30 km/h. Thus, the total step time for the
load to move through the pavement section is 0.6048s.
Some stages of the moving load on the pavement surface
are given in Fig. 6 (ABAQUS).
The surface deflection from ABAQUS and SAFEM are

compared in Fig. 7 when the loading arrived at the center
(X = 2400 mm). The dynamic response of the pavement
results in the deflection curve not being axis symmetrical.

Table 1 Material properties and thickness of pavement layers

layer thickness (mm) μ E (MPa) density (t/mm3)

Surface course 40 0.35 11150 2.377 E-09

Binder course 50 0.35 10435 2.448 E-09

Asphalt base course 110 0.35 6893 2.301 E-09

Gravel base layer 150 0.49 157.8 2.400 E-09

Frost protection layer 570 0.49 125.7 2.400 E-09

Sub-grade 2000 0.49 98.9 2.400 E-09

Fig. 4 Geometric data and tires of the truck S23 [17]

Fig. 3 (a) The test track at BASt [18–20]; (b) top view with loading wheel path

Fig. 5 Automatic mesh generation for the test track (a) SAFEM; (b) ABAQUS
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The maximum deflection results from ABAQUS and
SAFEM are 0.221 mm and 0.212 mm. Given that
ABAQUS exhibits a coefficient of determination R2 of
0.999 the relative error of SAFEM of 4.21% is regarded as
acceptable, taking the different meshes into account.

The results from SAFEM and ABAQUS were checked
against obtained measurement data. The comparison was
based on measurements by sensors embedded in the test
track which measured the strain on the bottom of the base
course and the vertical tensile stress on the top of the gravel
base course in the moment when the load was exactly
above.
The results are given in Table 2. The computational

strains and stresses exceed the field measurements on the
underside of the asphalt base course and are smaller on the
top of the gravel base course.
Discrepancies of 20% can be tolerated as a result of the

uncertainties and fluctuations of in field measurements
[17–19] resulting in well coinciding strain values obtained
from the computation. However, the stress values of both
computational models are far beyond the 20% threshold.
This may be attributed to non-linear material properties of
the gravel base layer and will be the focus of future
research. The two computational models exhibit very good
correspondences indicating the reliability of SAFEM.
The verification results prove the reliability and

accuracy of SAFEM. To assess the factor of computational

Fig. 6 The schematic illustration of simulation process with the moving load in ABAQUS. (a) step time = 0, increment = 0; (b) step
time = 0.3024 s, increment = 105; (c) step time = 0.59904 s, increment = 208; (d) Loading area when the step time is 0.3024 s

Fig. 7 Surface deflections from ABAQUS and SAFEM
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efficiency the computational time of SAFEM as well as
ABAQUS were run on an Intel Core Duo 3.4 GHz, 32 GB
RAM; the results are given in Table 3. The different mesh
algorithms and resulting element and node numbers only
allow for a qualitative comparison. SAFEM appears to be
21 times more efficient than ABAQUS.

4 Summary and conclusion

This research project analyzes the suitability of SAFEM
for predicting asphalt responses under moving loads with
regard to strain and stress values as well as computational
efficiency. The accuracy is assessed based on comparisons
with the commercial FE-software ABAQUS as well as
field measurements. The computed strain at the critical
point in SAFEM corresponds well with field measure-
ments. The computed stresses of both SAFEM as well as
ABAQUS on the other hand, are far beyond a tolerable
margin; this will be the focus of future research.
Furthermore the analysis of computational time showed
that SAFEM is far more efficient than ABAQUS.
The conclusion to be drawn is that the SAFEM exhibits

the potential to reliably predict dynamic responses of
asphalt pavement under moving loads and represents a
theoretical tool for administrations in the scope of
analyzing pavement bearing capacity under high speed
measurement regimes and can be included in strategic
processes. SAFEM also supports the implementation of
material properties such as viscoelasticity for asphalt and
nonlinear elasticity for the sub-base of the pavement. The
inclusion of these enhancements will make SAFEM far
more accurate at predicting the response of asphalt
pavements under moving loads.
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