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ABSTRACT Fragility curves are commonly used in civil engineering to assess the vulnerability of structures to
earthquakes. The probability of failure associated with a prescribed criterion (e.g., the maximal inter-storey drift of a
building exceeding a certain threshold) is represented as a function of the intensity of the earthquake ground motion (e.g.,
peak ground acceleration or spectral acceleration). The classical approach relies on assuming a lognormal shape of the
fragility curves; it is thus parametric. In this paper, we introduce two non-parametric approaches to establish the fragility
curves without employing the above assumption, namely binned Monte Carlo simulation and kernel density estimation.
As an illustration, we compute the fragility curves for a three-storey steel frame using a large number of synthetic ground
motions. The curves obtained with the non-parametric approaches are compared with respective curves based on the
lognormal assumption. A similar comparison is presented for a case when a limited number of recorded ground motions is
available. It is found that the accuracy of the lognormal curves depends on the ground motion intensity measure, the
failure criterion and most importantly, on the employed method for estimating the parameters of the lognormal shape.

KEYWORDS earthquake engineering, fragility curves, lognormal assumption, non-parametric approach, kernel density
estimation, epistemic uncertainty

1 Introduction

The severe socio-economic consequences of several recent
earthquakes highlight the need for proper seismic risk
assessment as a basis for efficient decision making on
mitigation actions and disaster planning. To this end, the
probabilistic performance-based earthquake engineering
(PBEE) framework has been developed, which allows
explicit evaluation of performance measures that serve as
decision variables (DV) (e.g., monetary losses, casualties,
downtime) accounting for the prevailing uncertainties
(e.g., ground motion characteristics, structural properties,
damage occurrence). The key steps in the PBEE frame-
work comprise the identification of seismic hazard, the
evaluation of structural response, damage analysis and
eventually, consequence evaluation. In particular, the mean
annual frequency of exceedance of a DV is evaluated as
[1–3]:

lðDVÞ¼∭PðDV jDMÞdPðDM jEDPÞdPðEDPjIMÞjdlðIMÞj,
(1)

in which P (x|y) is the conditional probability of x given y,
DM is a damage measure typically defined according to
repair costs (e.g., light, moderate or severe damage), EDP
is an engineering demand parameter obtained from
structural analysis (e.g., force, displacement, drift ratio),
IM is an intensity measure characterizing the ground
motion severity (e.g., peak ground acceleration, spectral
acceleration) and l(IM) is the annual frequency of
exceedance of the IM. Determination of the probabilistic
model P (EDP |IM) constitutes a major challenge in the
PBEE framework since the earthquake excitation con-
tributes the most significant part to the uncertainty in the
DV. The present paper is concerned with this step of the
analysis.
The conditional probability P EDP³edpjIMÞ�

, where

edp denotes an acceptable demand threshold, is commonly
represented graphically in the shape of the so-calledArticle history: Received Aug 23, 2016; Accepted Nov 15, 2016
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demand fragility curves [4]. Thus, a demand fragility curve
represents the probability that an engineering demand
parameter exceeds a prescribed threshold as a function of
an intensity measure of the earthquake motion. For the
sake of simplicity, demand fragility curves are simply
denoted fragility curves hereafter, which is also typical
in the literature [5,6]. We note however that the term
fragility may also be used for P DM³dmjIMÞ�

or

P DM³dmjEDPÞ�
, i.e., the conditional probability of the

damage measure exceeding a threshold dm given the
ground motion intensity [7] or the engineering demand
parameter [2,3], respectively.
Originally introduced in the early 1980s for nuclear

safety evaluation [8], fragility curves are nowadays widely
used for multiple purposes, e.g., loss estimation [9],
assessment of collapse risk [10], design checking [11],
evaluation of the effectiveness of retrofit measures [12],
etc. Several novel methodological contributions to fragility
analysis have been made in recent years, including the
development of multi-variate fragility functions [13], the
incorporation of Bayesian updating [14] and the con-
sideration of time-dependent fragility [15]. However, the
traditional fragility curves remain a popular tool in seismic
risk assessment and recent literature is rich with relevant
applications on various type of structures, such as irregular
buildings [6], underground tunnels [16], pile-supported
wharfs [17], wind turbines [18], nuclear power plant
equipments [19], masonry buildings [20]. The estimation
of such curves is the focus of the present paper.
Fragility curves are typically classified into four

categories according to the data sources, namely analytical,
empirical, judgment-based or hybrid fragility curves [21].
Analytical fragility curves are derived from data obtained
by analyses of structural models. Empirical fragility curves
are based on the observation of earthquake-induced
damage reported in post-earthquake surveys. Judgment-
based curves are estimated by expert panels specialized in
the field of earthquake engineering. Hybrid curves are
obtained by combining data from different sources. Each
of the aforementioned categories has its own advantages
and limitations. In this paper, analytical fragility curves
based on data collected from numerical structural analyses
are of interest.
The typical approach to compute analytical fragility

curves presumes that the curves have the shape of a
lognormal cumulative distribution function [22,23]. This
approach is therefore considered parametric. The
parameters of the lognormal distribution are determined
either by maximum likelihood estimation [13,22,24,] or by
fitting a linear probabilistic seismic demand model in the
log-scale [5,25–27]. The assumption of lognormal fragility
curves is almost unanimous in the literature due to the
computational convenience as well as due to the ease of
combining such curves with other elements of the seismic
probabilistic risk assessment framework. However, the

validity of this assumption remains questionable (see also
Ref. [28]).
In this paper, we present two non-parametric approaches

for establishing the fragility curves, namely binned Monte
Carlo simulation (bMCS) and kernel density estimation
(KDE). The main advantage of bMCS over existing
techniques also based on Monte Carlo simulation is that it
avoids the bias induced by scaling ground motions to
predefined intensity levels. In the KDE approach, we
introduce a statistical methodology for fragility estimation,
which opens new paths for estimating multi-dimensional
fragility functions as well. The proposed methods are
subsequently used to investigate the validity of the
lognormal assumption in a case study, where we develop
fragility curves for different thresholds of the maximum
drift ratio of a three-story steel frame subject to synthetic
ground motions. The comparison between KDE-based and
lognormal fragility curves is also shown for a concrete
bridge column subject to recorded motions using results
from an earlier study by the authors [29]. The proposed
methodology can be applied in a straightforward manner to
other types of structures or classes of structures or using
different failure criteria.
The paper is organized as follows: in Section 2, the

different approaches for establishing the fragility curves,
namely the lognormal and the proposed bMCS and KDE
approaches, are presented. In Section 3, the method
recently developed by Rezaeian and Der Kiureghian [30]
for generating synthetic ground motions, which is
employed in the following numerical investigations, is
briefly recalled. The case studies are presented in Sections
4 and 5 and the results are discussed in Section 6. The
paper concludes with a summary of the main findings and
perspectives on future research.

2 Computation of fragility curves

Fragility curves represent the probability of failure of a
system, associated with a specified criterion, for a given
intensity measure (IM) of the earthquake motion. Failure
herein represents the exceedance of a prescribed demand
limit. A commonly used demand parameter in earthquake
engineering is the maximal drift ratio D, i.e., the maximal
relative horizontal displacement normalized by the corre-
sponding height [6]. Thus, the fragility function is cast as
follows:

FragðIM ;δoÞ ¼ P½D³δojIM �, (2)

in which Frag(IM;δo) denotes the fragility at the given IM
for a threshold δo of D. To establish the fragility curves, a
number N of transient finite element analyses of the
structure under consideration are used to provide paired
values {(IMi, Di), i = 1,…,N}.

170 Front. Struct. Civ. Eng. 2017, 11(2): 169–186



2.1 Lognormal approach

The classical approach for establishing fragility curves
consists in assuming a log-normal shape for the curves
described in Eq. (2). Two techniques are typically used to
estimate the parameters of the lognormal fragility curves,
namely maxi-mum likelihood estimation and linear
regression. These are presented below.

2.1.1 Maximum likelihood estimation

One assumes that the fragility curves can be written in the
following general form:

^FragðIM ;δoÞ ¼ Φ
lnIM – lnα

β

� �
, (3)

where Φð$Þ denotes the standard Gaussian cumulative
distribution function (CDF), α is the “median” and β is the
“log-standard deviation” of the lognormal curve. Shino-
zuka et al. [22] proposed the use of maximum likelihood
estimation to determine these parameters as follows: One
denotes by w the event that the demand threshold δo is
reached or exceeded and assumes that Y (w) is a random
variable with a Bernoulli distribution. In particular, Y takes
the value 1 with probability Frag ($; δo) and the value 0
with probability 1-Frag($; δo). Considering a set of i = 1,
…,N ground motions, the the likelihood function reads:

Lðα, βfIMi, i ¼ 1,:::,NgÞ

¼∏
N

i¼1
½FragðIMi;δoÞ�yi ½1 – FragðIMi;δoÞ�1 –yi , (4)

where IMi is the intensity measure of the ith seismic motion
and yi represents a realization of the Bernoulli random
variable Y . The latter takes the value 1 or 0 depending on
whether the structure under the ith ground motion sustains
the demand threshold δo or not. The parameters (α,β) are
obtained by maximizing the likelihood function. In
practice, a straightforward optimization algorithm is
applied on the log-likelihood function:

fα*;β*gT ¼ arg max  ln  Lðα,β,fIMi, i ¼ 1,:::,NgÞ: (5)

2.1.2 Linear regression

One first assumes a probabilistic seismic demand model,
which relates a structural response quantity of interest
(herein drift ratio) to an intensity measure of the earthquake
motion. Specifically, the demand D is assumed to follow a
lognormal distribution of which the log-mean value is a
linear function of lnIM, leading to:

lnΔ ¼ AlnIM þ Bþ &Z, (6)

where Z~ N(0; 1) is a standard normal variable. Parameters

A and B are determined by means of ordinary least squares
estimation in a log-log scale. Parameter & is obtained by:

&2 ¼
XN
i¼1

e2i =ðN – 2Þ, (7)

where ei the residual between the actual value lnD and the
value predicted by the linearmodel: ei=lnDi –Aln (IMi) –B.
Then, Eq. (2) rewrites:

^FragðIM ;δoÞ ¼ P½lnΔ³lnδo� ¼ 1 –P½lnΔ£lnδo�

¼ Φ
lnIM – ðlnδo –BÞ=A

&=A

� �
: (8)

A comparison to Eq. (3) shows that the median and
log-standard deviation of the lognormal fragility curve in
Eq. (8) are α = exp [(lnδo -B) /A] and β ¼ &=A, respectively.
This approach to fragility estimation is widely employed in
the literature, see e.g., Refs. [23,31–33] among others.
The two methods described in this section are parametric

because they impose the shape of the fragility curves
(Eq. (3) and Eq. (8)), which is that of a lognormal CDF
when considered as a function of IM. We note that by using
the linear-regression approach, one accepts two additional
assumptions, namely the linear function for the log-mean
value of D and the constant dispersion (or homoscedasti-
city) of the residuals independently of the IM level. Effects
of these assumptions have been investigated by Karamlou
and Bocchini [28]. In the sequel, we propose two non-
parametric approaches to compute fragility curves without
relying on the lognormality assumption.

2.2 Binned Monte Carlo simulation

Having at hand a large sample set {(IMj, Dj) ; j = 1,…,N}, it
is possible to use binned Monte Carlo simulation (bMCS)
to compute the fragility curves, as described next. Let us
consider a given abscissa IMo. Within a small bin
surrounding IMo, say [IMo – h, IMo + h] one assumes
that the maximal drift D is linearly related to the IM. This
assumption is exact in the case of linear structures, but
would only be an approximation in the nonlinear case.
Therefore, the maximal drift Dj, which is related to
IMj 2 ½IMo – h,IMo þ h�, is converted into the drifteDjðIMoÞ, which is related to the jth input signal scaled to
have an intensity measure equal to IMo:

eDjðIMoÞ ¼ Dj
IMo

IMj
: (9)

This procedure is illustrated in Fig. 1. The fragility curve
at IMo is then obtained by a crude Monte Carlo estimator:

^FragðIMoÞ ¼
Nf ðIMoÞ
NsðIMoÞ

, (10)
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where Nf (IMo) is the number of points in the bin such thateDjðIMoÞ³δo and Ns(IMo) is the total number of points that
fall into the bin [IMo – h; IMo+ h].
We note that the bMCS approach bears similarities to the

stripe analysis introduced by Shome et al. [34]. However,
when using stripe analysis, one scales all ground motions
to the intensity level of interest. As a result, certain signals
are scaled with factors that are considerably larger or
smaller than unity, which may lead to gross approxima-
tions of the corresponding responses [35–37]. The reader is
referred to Ref. [37] for some illustrations of the effects of
the scale factor on the introduced bias, with the latter
represented by the ratio of the median nonlinear response
of the considered system subject to the scaled motions to
the respective median response of the system subject to
natural motions with all motions characterized by the same
IM level. In general, the bias ratio tends to become larger
with increasing deviation of the scale factor from unity. On
the other hand, the scaling in binned MCS is confined in
the vicinity of the intensity level IMo, where the vicinity is
defined by the bin width 2h chosen so that the scale factors
are close to unity. Accordingly, the bias due to ground
motion scaling is negligible in bMCS.
Following the above discussion, it should be noted that

bias from scaling can be avoided by a proper selection of
ground motions. For instance, Shome et al. [34] showed
that the scaling of motions that correspond to a narrow
interval of earthquake magnitudes and source-to-site
distances does not introduce bias into the nonlinear
response estimates. Furthermore, Luco and Bazzurro [35]
showed that the bias can be reduced by selecting records
that have appropriate response spectrum shapes. Accord-
ing to Bazzurro et al. [38] and Vamvatsikos and Cornell
[39], the existence of scale-induced bias also depends on
several other factors, such as the structural characteristics
and the considered intensity and damage measures. The

topic of ground motion scaling is complex and falls outside
the scope of this paper. We underline that by using the
bMCS approach, we avoid introducing bias in the results
independently of the ground motion characteristics or other
factors. In the following case studies, the resulting fragility
curves serve as reference for assessing the accuracy of the
various considered techniques for fragility estimation.

2.3 Kernel density estimation

The fragility function defined in Eq. (2) may be
reformulated using the conditional probability density
function (PDF) f ΔjIM as follows:

Fragðα;δoÞ ¼ PðD³δojIM ¼ αÞ ¼ !
þ1

δo

f ΔðδjIM ¼ αÞdδ:
(11)

By definition, this conditional PDF is given as:

f ΔðδjIM ¼ αÞ ¼ f Δ,IM ðδ,αÞ
f IM ðαÞ

, (12)

where f Δ,IM ð$Þ is the joint distribution of the vector (D;
IM) and f IM ð$Þ is the marginal distribution of the IM. If
these quantities were known, the fragility function in Eq.
(11) would be obtained by a mere integration. In this
section, we propose to determine the joint and marginal
PDFs from a sample set {(IMi,Di), i = 1,…,N} by means of
kernel density estimation (KDE).
For a single random variable X for which a sample set

{x1,…,xN} is available, the kernel density estimate of the
PDF reads [40]:

f̂ X ðxÞ ¼
1

Nh

XN
i¼1

K
x – xi
h

� �
, (13)

Fig. 1 (a) Maximal drifts versus IM before scaling; (b) maximal drifts versus IM after scaling within the bin marked with red color.
(Note: a large bin is considered in the figure only to facilitate visualization of the method)
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where h is the bandwidth parameter and K($) is the kernel
function which integrates to one. Classical kernel functions
are the Epanechnikov, uniform, normal and triangular
functions. The choice of the kernel is known not to affect
strongly the quality of the estimate provided the sample set
is large enough [40]. In case a standard normal PDF is
adopted for the kernel, the kernel density estimate rewrites:

f̂ X ðxÞ ¼
1

Nh

XN
i¼1

1

ð2πÞ1=2exp –
1

2

x – xi
h

� �2� �
: (14)

In contrast, the choice of the bandwidth h is crucial since
an inappropriate value of h can lead to an oversmoothed or
undersmoothed PDF estimate [41].
Kernel density estimation may be extended to a random

vector X 2 ℝd given an i.i.d sample {x1,…,xN} [40]:

f̂ X ðxÞ ¼
1

N jH j1=2
XN
i¼1

KðH – 1=2ðx – xiÞÞ, (15)

where H is a symmetric positive definite bandwidth matrix
with determinant denoted by jH j . When a multivariate
standard normal kernel is adopted, the joint distribution
estimate becomes:

f̂ X ðxÞ ¼
1

N jH j1=2
XN
i¼1

1

ð2πÞd=2exp –
1

2
ðx – xiÞTH – 1ðx – xiÞ

� �
,

(16)

where ð%ÞT denotes the transposition. For multivariate
problems ði:e:, X 2 ℝdÞ, the bandwidth matrix typically
belongs to one of the following classes: spherical,
ellipsoidal and full matrix, which respectively contain 1,
d and d(d + 1)/2 independent unknown parameters. The
matrix H can be computed by means of plug-in or cross-
validation estimators. Both estimators aim at minimizing
the asymptotic mean integrated squared error (MISE):

MISE ¼ E !
ℝd

f̂ X ðx;HÞ – fX ðxÞ
h i2

dx

24 35: (17)

However, the two approaches differ in the formulation of
the numerical approximation of MISE. For further details,
the reader is referred to Duong [41]. In the most general
case when the correlations between the random variables
are not known, the full matrix should be used. In this case,
the smoothed cross-validation estimator is the most reliable
among the cross-validation methods [42].
Eq. (14) is used to estimate the marginal PDF of the IM,

namely ^f IM ðαÞ, from a sample {IMi,i = 1,…,N}:

f̂ IM ðαÞ ¼
1

ð2πÞ1=2NhIM
XN
i¼1

exp –
1

2

α – IMi

hIM

� �2� �
: (18)

Eq. (16) is used to estimate the joint PDF f̂ Δ,IM ðδ,αÞ from

the data pairs{(IMi,Di),i = 1,…,N}:

f̂ Δ,IM ðδ,αÞ ¼
1

2πN jH j1=2

XN
i¼1

exp –
1

2

δ –Δi

α – IMi

 !T

H – 1
δ –Δi

α – IMi

 !" #
: (19)

The conditional PDF f ΔðδjIM ¼ αÞ is eventually estimated
by plugging the estimations of the numerator and
denominator in Eq. (12). The proposed estimator of the
fragility function eventually reads:

^Fragðα;δoÞ ¼
hIM

ð2πjH jÞ1=2

!
þ1

δo

XN
i¼1

exp –
1

2

δ –Δi

α – IMi

 !T

H – 1
δ –Δi

α – IMi

 !" #
dδ

XN
i¼1

exp –
1

2

α – IMi

hIM

� �2� � : (20)

The choice of the bandwidth parameter h and the
bandwidth matrixH plays a crucial role in the estimation of
fragility curves, as seen in Eq. (20). In the above
formulation, the same bandwidth is considered for the
whole range of the IM values. However, there are typically
few observations available corresponding to the upper tail
of the distribution of the IM. This is due to the fact that the
annual frequency of seismic motions with IM values in the
respective range (e.g., PGA exceeding 1g) is low (see e.g.,
Ref. [43]). This is also the case when synthetic ground
motions are used, since these are generated consistently
with statistical features of recorded motions. Preliminary
investigations have shown that by applying the KDE
method on the data in the original scale, the fragility curves
for the higher demand thresholds tend to be unstable in
their upper tails [44]. To reduce effects from the scarcity of
observations at large IM values, we propose the use of
KDE in the logarithmic scale, as described next.
Let us consider two random variables X, Y with positive

supports, and their logarithmic transformations U = lnX
and V = lnY. One has:

!
þ1

y0

fY ðyjX ¼ xÞdy ¼ !
þ1

y0

fX ,Y ðx,yÞ
fX ðxÞ

dy

¼ !
þ1

lny0

fU ,V ðu,vÞ
xy

fU ðuÞ
x

ydv ¼ !
þ1

lny0

fV ðvjU ¼ uÞdv: (21)

Accordingly, by substituting X = IM and Y = D, the
fragility function in Eq. (11) can be obtained in terms of U
= lnIM and V = lnD as:
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^Fragða;δoÞ ¼ !
þ1

lnδ0

f̂ ΔðδjIM ¼ αÞdδ

¼ !
þ1

lnδ0

f̂ V ðvjU ¼ lnαÞ  dv: (22)

The use of a constant bandwidth in the logarithmic scale
is equivalent to the use of a varying bandwidth in the
original scale, with larger bandwidths corresponding to
larger values of IM. The resulting fragility curves are
smoother than those obtained by applying KDE with the
data in the original scale.

2.4 Epistemic uncertainty of fragility curves

It is of major importance in fragility analysis to investigate
the variability in the estimated curves arising due to
epistemic uncertainty. This is because a fragility curve is
always computed based on a limited amount of data, i.e.,
a limited number of ground motions and related
structural analyses. Large epistemic uncertainties may
affect significantly the total variability of the seismic risk
assessment outcomes. Characterizing and propagating
epistemic uncertainties in seismic loss estimation has
therefore attracted attention from several researchers
[2,45,46].
The theoretical approach to determine the variability of

an estimator relies on repeating the estimation with an
ensemble of different random samples. However, this
approach is not feasible in earthquake engineering because
of the high computational cost. In this context, the
bootstrap resampling technique is deemed appropriate
[2]. Given a set of observations χ = (X1,...,Xn) of X
following an unknown probability distribution, the boot-
strap method allows estimation of the statistics of a random
variable that depends on X in terms of the observed data χ
and their empirical distribution [47].
To estimate statistics of the fragility curves with the

bootstrap method, we first draw M independent random
samples with replacement from the original data set {(IMi,
Di),i = 1,…,N}. These represent the so-called bootstrap
samples. Each bootstrap sample has the same size N as the
original sample, but the observations are different: in a
particular sample, some of the original observations may
appear multiple times while others may be missing. Next,
we compute the fragility curves for each bootstrap sample
using the approaches in Sections 2.1, 2.2 and 2.3. Finally,
we perform statistical analysis of the so-obtained M
bootstrap curves. In the subsequent example illustration,
the above procedure is employed to evaluate the median
and 95% confidence intervals of the estimated fragility
curves and also, to assess the variability of the IM value
corresponding to a 50% probability of failure.

3 Synthetic ground motions

3.1 Properties of recorded ground motions

Let us consider a recorded earthquake accelerogram a(t),
t 2 ½0,T � where T is the total duration of the motion. The
peak ground acceleration is PGA ¼ max

t2½0,T �
jαðtÞj.

The Arias intensity Ia is defined as:

Iα ¼
π
2g
!
T

0

a2ðtÞdt: (23)

Defining the cumulative square acceleration as:

IðtÞ ¼ π
2g
!
t

0

a2ðτÞdτ, (24)

one determines the time instant ta by:

tα : IðtαÞ ¼ αIα α 2 ½0,1�: (25)

In addition to the Arias intensity, important properties of
the accelerogram in the time domain include the effective
duration, defined as D5-95= t95%-t5%, and the instant tmid at
the middle of the strong-shaking phase [49]. Based on the
investigation of a set of recorded ground motions,
Rezaeian and Der Kiureghian [49] proposed that tmid is
taken as the time when 45% of the Arias intensity is
reached i.e., tmid � t45%.
Other important properties of the accelerogram are

related to its frequency content. Analyses of recorded
ground motions indicate that the time evolution of the
predominant frequency of an accelerogram can be
represented by a linear model, whereas its bandwidth can
be considered constant [30]. Rezaeian and Der Kiureghian
[30] describe the evolution of the predominant frequency
in terms of its value ωmid at the time instant tmid and the
slope of the evolution ω

0
The same authors describe the

bandwidth in terns of the bandwidth parameter &. A
procedure for estimating the parametersωmid,ω

0
and & for a

given accelerogram is presented in Ref. [30], whereas a
simplified version is proposed in Ref. [49].
Next, we describe a method for simulating synthetic

accelerograms in terms of the set of parameters ðIα,D5 – 95

,tmid,ωmid,ω
0
,& f Þ ; this method will be used to generate the

seismic motions in a subsequent case study.

3.2 Simulation of synthetic ground motions

The use of synthetic ground motions has been attracting an
increasing interest from the earthquake engineering
community. This practice overcomes the limitations
posed by the small number of records typically available
for a design scenario and avoids the need to scale the
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motions. Use of synthetic ground motions allows one to
investigate the structural response for a large number of
motions, which is nowadays feasible with the available
computer resources (see e.g., Ref. [48]).
Different stochastic ground motion models can be found

in the literature, which can be classified in three types [49]:
record-based parameterized models that are fit to recorded
motions, source-based models that consider the physics of
the source mechanism and wave travel-path, and hybrid
models that combine elements from both source- and
record-based models. Vetter and Taflanidis [50] compared
the source-based model by Boore [51] with the record-
based model by Rezaeian and Der Kiureghian [49] with
respect to the estimated seismic risks. It was found that the
latter leads to higher estimated risks for low-magnitude
events, but the risks are quantified in a consistent manner
exhibiting correlation with the hazard characteristics. This
model is employed in the present study to generate a large
suite of synthetic ground motions that are used to obtain
pairs of the ground motion intensity measure and the
associated structural response, (IM, D), in order to conduct
fragility analysis. The approach, originally proposed in
[30], is summarized below.
The seismic acceleration a(t) is represented as a non-

stationary process. In particular, the non-stationarity is
separated into two components, namely a spectral and a
temporal one, by means of a modulated filtered Gaussian
white noise:

aðtÞ ¼ qðt,αÞ
�hðtÞ !

t

0

h½t – τ,lðτÞ�ωðτÞdτ, (26)

in which q(t,α) is the deterministic non-negative modulat-
ing function, the integral is the non-stationary response of a
linear filter subject to a Gaussian white-noise excitation
and �hðtÞ is the standard deviation of the response process.
The Gaussian white-noise process denoted by ωðτÞ will
pass through a filter h½t – τ,lðτÞ�, which is selected as the
pseudo-acceleration response of a single-degree-of-free-
dom (SDOF) linear oscillator:

h½t – τ,lðτÞ� ¼ 0 for t<τ

h½t – τ,lðτÞ� ¼ ωf ðτÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 – &2f ðτÞ

q exp½ – & f ðτÞωf ðτÞðt – τÞ�

sin½ωf ðτÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 – &2f ðτÞ

q
ðt – τÞ�

for t³τ:

(27)

In the above equation, lðτÞ ¼ ðωf ðτÞ,& f ðτÞÞ is the vector
of time-varying parameters of the filter h, with ωf ðτÞ and
& f ðτÞ respectively denoting the filter's natural frequency
and damping ratio at instant τ . Note thatωf ðτÞ corresponds
to the evolving predominant frequency of the ground
motion represented, while & f ðτÞ corresponds to the
bandwidth parameter of the motion. As noted in

Section 3.1, & f ðτÞ may be taken as a constant ð& f ðτÞ � &Þ,
while ωf ðτÞ is approximated as a linear function:

ωf ðτÞ ¼ ωmid þ ω
0 ðτ – τmidÞ, (28)

where tmid, ωmid and ω
0
are as defined in Section 3.1. After

being normalized by the standard deviation �hðtÞ, the
integral in Eq. (26) becomes a unit-variance process with
time-varying frequency and constant bandwidth. The non-
stationarity in intensity is then captured by the modulating
function q(t,α), which determines the shape, intensity and
duration T of the signal. This is typically described by a
Gamma-like function [49]:

qðt,αÞ ¼ a1t
a2 – 1expða3tÞ, (29)

where α = {a1,a2,a3} is directly related to the energy
content of the signal through the quantities Ia, D5-95 and
tmid defined in Section 3.1 (see Ref. [49] for details).
For computational purposes, the acceleration in Eq. (26)

can be discretized as follows:

âðtÞ ¼ qðt,αÞ
Xn
i¼1

si
�
t,lðtiÞ

�
 Ui, (30)

where the standard normal random variable Ui represents

an impulse at instant ti ¼ i� T

n
,i ¼ 1,:::,n, (T is the total

duration) and siðt,lðtiÞÞ is given by:

siðt,lðtiÞÞ ¼
h½t – ti,lðtiÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXi

j¼1
h2½t – tj,lðtjÞ�

q : (31)

As a summary, the considered seismic motion genera-
tion model consists of the three temporal parameters (α1,
α2, α3), which are related to (Ia,D5-95, tmid), the three
spectral parameters ðωmid ,ω

0
,& f Þ and the standard Gaussian

random vector U of size n. Rezaeian and Der Kiureghian
[49] proposed a methodology for determining the temporal
and spectral parameters according to earthquake and site
characteristics, i.e., the type of faulting of the earthquake
(strike-slip fault or reverse fault), the closest distance from
the recording site to the ruptured area and the shear-wave
velocity of the top 30 m of the site soil. For the sake of
simplicity, in this paper these parameters are directly
generated from the statistical models given in Ref. [49],
which are obtained from analysis of a large set of recorded
ground motions.

4 Steel frame structure subject to synthetic
ground motions

4.1 Problem setup

We determine the fragility curves for the three-storey three-
span steel frame shown in Fig. 2. The dimensions of the
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structure are: storey-height H = 3 m, span-length L = 5 m.
The vertical load consists of dead load (weight of frame
elements and supported floors) and live load (in accor-
dance with Eurocode 1 [52]) resulting in a total distributed
load on the beams q = 20 kN/m. In the preliminary design
stage, the standard European I beams with designation IPE
300 A and IPE 330 O are chosen respectively for the beams
and columns. The steel material has a nonlinear isotropic
hardening behavior following the uniaxial Giuffre-Mene-
gotto-Pinto steel model as implemented in the finite
element software OpenSees [53]. Ellingwood and Kinali
[5] have shown that uncertainty in the properties of the
steel material has a negligible effect on seismic fragility
curves. Therefore, the mean material properties are used in
the subsequent fragility analysis: E0 = 210; 000 MPa for
the Young's modulus (initial elastic tangent in the stress-
strain curve), fy = 264 MPa for the yield strength [54,55]
and b = 0.01 for the strain hardening ratio (ratio of post-
yield to initial tangent in the stress-strain curve). Figure 2
depicts the hysteretic behavior of the steel material at a
specified section for an example ground motion. The
structural components are modeled with nonlinear force-
based beam-column elements characterized by distributed
plasticity along their lengths, while use of fiber sections
allows modeling the plasticity over the element cross-
sections [56]. The connections between structural elements

are modeled with rigid nodes. The first two natural periods
of the building obtained by modal analysis are T1 = 0.61 s
and T2 = 0.181 s, corresponding to natural frequencies f1 =
1.64 Hz and f2 = 5.53 Hz. Rayleigh damping is considered
with the damping ratio of the first two modes set equal to
2%.
The structure is subject to seismic motions represented

by synthetic acceleration time histories at the ground level.
Each time history is modeled in terms of six randomized
parameters ðα1,α2,α3,ωmid,ω#,& f Þ directly related to the
parameters in Table 1 and a Gaussian input vector U as
described in Section 3. The statistics of the parameters in
Table 1 are taken from Ref. [49]; in the latter study, the
authors derived the listed distributions and associated
parameters by analyzing a set of recorded ground motions
corresponding to strong strike-slip and reserve earthquakes
with moment magnitudes in the range 6–8 and rupture
distances in the range of 10–100 km. The reader is referred
to Ref. [49] for viewing the correlations between these
parameters. The duration of each time history is computed
from the corresponding set of parameters (α1, α2, α3) and is
used to determine the size of the Gaussian vector U. Two
example synthetic acceleration time histories are shown in
Fig. 3. Transient dynamic analyses of the frame are carried
out for a total of N = 20, 000 synthetic motions using the
finite element software OpenSees.

Fig. 2 (a) Steel frame structure; (b) hysteretic behavior of steel material at section 1-1 for an example ground motion.

Table 1 Statistics of synthetic ground motion parameters according to Ref. [49].

parameter distribution support �X �X

Ia (s � g) lognormal (0, + 1) 0.0468 0.164

D5-95 (s) beta [5,45] 17.3 9.31

tmid (s) beta [0.5, 40] 12.4 7.44

ωmid=2πðHzÞ gamma (0, + 1) 5.87 3.11

ω
0
=2πðHzÞ two-sided exponential [ – 2, 0.5] – 0.089 0.185

& f beta [0.02, 1] 0.213 0.143
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Numerous types of IM can be used to describe the
earthquake severity, see e.g., Ref. [57]. Peak ground
acceleration (PGA) is a convenient measure that is
straightforward to obtain from a given time history and
has been traditionally used in attenuation relationships and
design codes. However, structural responses may exhibit
large dispersions for a certain PGA, since they are also
highly dependent on other features of earthquake motions,
e.g., the frequency content and duration of the strong
motion phase. Structure-specific IMs, such as the spectral
acceleration Sa and the pseudo spectral acceleration Psa,
tend to be better correlated with structural responses
[57,58]. In the following, we compute fragility curves
considering both PGA and Sa as IMs. Sa represents Sa(T1)
i.e., the spectral acceleration for a single-degree-of-
freedom system with period equal to the fundamental
period T1 of the frame and viscous damping ratio equal to
2%.
The engineering demand parameter commonly consid-

ered in fragility analysis of steel buildings is the maximal
inter-storey drift ratio, i.e., the maximal difference of
horizontal displacements between consecutive storeys
normalized by the storey height (see e.g., Refs.
[5,59,60]). Accordingly, we herein develop fragility curves
for three different thresholds of the maximal inter-storey
drift ratio over the frame. To gain insight into structural
performance, we consider the thresholds 0.7%, 1.5% and
2.5%, which are associated with different damage states in
seismic codes. In particular, the thresholds 0.7% and 2.5%
are recommended in Ref. [61] to respectively characterize
light and moderate damage for steel frames, while the
threshold 1.5% corresponds to the damage limitation
requirement for buildings with ductile non-structural
elements according to Eurocode 8 [62]. These descriptions
only serve as rough damage indicators, since the relation-
ship between drift limit and damage in the PBEE
framework is probabilistic.

4.2 Fragility curves

As described in Section 2, the lognormal approach relies
on assuming that the fragility curves have the shape of a
lognormal CDF and estimating the parameters of this
CDF. Using the maximum likelihood estimation (MLE)
approach, the observed failures for each drift threshold are
modeled as outcomes of a Bernoulli experiment and the
parameters (α, β) of the fragility curves are determined by
maximizing the respective likelihood function. Using the
linear regression (LR) technique, the parameters of the
lognormal curves are derived by fitting a linear model to
the paired data (ln IM, lnD). Figure 4 depicts the paired data
(ln PGA, lnD) and (ln Sa; lnD) together with the fitted
models based on linear regression. It can be seen that a
single linear model is not appropriate for the cloud of
points (ln Sa; lnD) and thus, bilinear regression is used in
this case (see also [63–65] for use of a similar model). The
break point in the bilinear model (Sa = 0.45 g) is
determined according to the method presented in [66]
using the R package segmented. When PGA is used as IM,
the coefficient of determination of the fitted linear model is
R2 = 0.663; when Sa is used as IM, it is R2

1 ¼ 0:978 and
R2
2 ¼ 0:785 for the first and second part of the bilinear

model, respectively. Note that use of Sa as IM leads to a
smaller dispersion, i.e., a smaller & in Eq. (6), as compared
to PGA; this is expected since Sa is a structure-specific IM.
In the bMCS method, the bin width h is set equal to
0.25 IMo. The resulting scale factors vary in the range
[0.75; 1.25] corresponding to a bias ratio approximately
equal to unity [37]. The KDE approach requires estimation
of the bandwidth parameter and the bandwidth matrix.
Using the cross-validation estimation implemented in Ref.
[67], these are determined as h = 0.133, H = [0.031 0.024;
0.024 0.027] when PGA is used as IM, and h = 0.155, H =
[0.023 0.023; 0.023 0.024] when Sa is used as IM.
For the two types of IM and the three drift limits

Fig. 3 Examples of synthetic ground motions.
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considered, Table 2 lists the medians and log-standard
deviations of the lognormal curves obtained with both the
MLE and LR approaches. The median determines the
position where the curve attains the value 0.5, whereas the
log-standard deviation is a measure of the steepness of the
curve. Note that the MLE approach yields a distinct log-
standard deviation for each drift threshold, whereas a
single log-standard deviation is obtained with the LR
approach. The medians of the KDE-based curves are also
computed and are listed in Table 2 for comparison. The
KDE-based medians, which serve as the reference values,
may be overestimated or underestimated by the lognormal
approach, depending on the method used to estimate the
parameters, the considered IM and the drift threshold; the
absolute deviations tend to be larger for larger drift
thresholds.
For the case when PGA is considered as IM, Fig. 5(a)

shows the fragility curves obtained with the MLE- and LR-
based lognormal approaches and the bMCS- and KDE-
based non-parametric approaches. One first observes a
remarkable consistency between the curves obtained with

the two non-parametric approaches despite the distinct
differences in the underlying algorithms. This validates the
accuracy of the proposed methods. For the lower threshold
(δo = 0.7%), both parametric curves are in good agreement
with the non-parametric ones. For the two higher thresh-
olds, the LR-based lognormal curves exhibit significant
deviations from the non-parametric ones leading to an
overestimation of the failure probabilities. Note that for δo
= 1.5% and δo = 2.5%, the median PGA (leading to 50%
probability of exceedance) is respectively underestimated
by 19% and 15% when the LR aproach is used (see
Table 2). In contrast, the MLE-based lognormal curves are
in a fair agreement with their non-parametric counterparts
with the largest discrepancies observed for the highest
threshold δo = 2.5%.
Figure 5(b) shows the resulting fragility curves when Sa

is considered as IM. The non-parametric curves based on
bMCS and KDE remain consistent independently of the
drift threshold. For δo = 0.7%, the fragility curves are steep,
which is due to the strong correlation between Sa and D
when the structure behaves linearly. For this threshold, the

Fig. 4 Paired data {(IMi, Di), i = 1,…,N} and fitted models in log-scale (the units of the variables in the fitted models are the same as in
the axes of the graphs)

Table 2 Steel frame structure: parameters of the obtained fragility curves

PGA Sa

δo approach median (g) log-std median (g) log-std

0.7% MLE 0.35 0.70 0.49 0.36

LR 0.37 0.64 0.44 0.13

KDE 0.36 0.45

1.5% MLE 1.10 0.56 1.66 0.31

LR 0.87 0.64 1.47 0.24

KDE 1.08 1.53

2.5% MLE 1.76 0.56 2.82 0.37

LR 1.55 0.64 3.29 0.24

KDE 1.82 3.04
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LR-based curve is closer to the non-parametric curves than
the MLE-based one. For the two larger thresholds, the
MLE-based curves are fairly accurate, whereas the LR-
based curves exhibit significant deviations from their non-
parametric counterparts. In particular, the LR-based curves
overestimate the failure probabilities for δo = 1.5% and
underestimate the failure probabilities for δo = 2.5%. Note
that for δo = 1.5%, the median Sa is underestimated by 4%,
whereas for δo = 1.5%, the median Sa is overestimated by
8% when the LR aproach is used (see Table 2).
Summarizing the above results, the MLE-based lognor-

mal approach yields fragility curves that are overall close
to the non-parametric ones; however, it smooths out some
details of the curves that can be obtained with the non-
parametric approaches. On the contrary, the LR-based
lognormal curves can be highly inaccurate. As noted in
Section 2.1.2, the LR approach assumes that the residuals
of the fitted model in the log-scale (Eq. (6)) follow a
normal distribution with a constant standard deviation
independently of the IM level. Figure 6 shows histograms
of lnD at two example levels of PGA and Sa together with
the fitted normal distributions according to Eq. (6). The
responses D at each IM level are obtained consistently with
the bMCS approach. Obviously, the assumption of a
normal distribution is not valid, which is more pronounced
when Sa is used as IM. This explains the inaccuracy of the
LR-based fragility curves for both types of IM, despite the
relatively high coeffcients of determination of the fitted
models in the case of Sa.

4.3 Estimation of epistemic uncertainty by bootstrap
resampling

In the following, we use the bootstrap resampling
technique (see Section 2.4) to investigate the epistemic

uncertainty in the fragility curves estimated with the
proposed non-parametric approaches.
We examine the stability of the estimated curves by

comparing those with the bootstrap medians, and the
variability in the estimation by computing bootstrap
conffdence intervals. For the two considered IMs and the
three drift thresholds of interest, Fig. 7 shows the median
bMCS- and KDE-based fragility curves and the 95%
confidence intervals obtained by bootstrap resampling with
100 replications together with the respective estimated
curves (also shown in Fig. 5). Figure 7 clearly shows that
both the bMCS-based and the KDE-based median fragility
curves obtained with the bootstrap method do not differ
from the curves estimated with the original set of
observations. This shows the stability of the proposed
approaches. For a specified IM and drift limit, the
confidence intervals of the bMCS- and KDE-based curves
have similar widths. The interval widths tend to increase
with increasing drift limit and increasing IM value.
To quantify the effects of epistemic uncertainty, one can

estimate the variability of the median IM, i.e., the IM value
leading to 50% probability of exceedance. Assuming that
the median IM (PGA or Sa) follows a lognormal
distribution [68], the median IM is determined for each
bootstrap curve and the log-standard deviation of the
distribution of the median is computed. Table 3 lists the
log-standard deviations of the median IM values for the
same cases as in Fig. 7. These results demonstrate that
epistemic uncertainty is increasing with increasing thresh-
old δo. In all cases, the log-standard deviations are
relatively small indicating a low level of epistemic
uncertainty, which is due to the large number of transient
analyses (N = 20, 000) considered in this study. Although
use of such large sets of ground motions is not typical in
practice, it is useful for the refined analysis presented here.

Fig. 5 Fragility curves with parametric and non-parametric approaches using PGA and Sa as intensity measures (LR: linear regression;
MLE: maximum likelihood estimation; bMCS: binned Monte Carlo simulation; KDE: kernel density estimation)
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5 Concrete column subject to recorded
ground motions

To demonstrate the comparison between the lognormal and
the non-parametric approaches for the case when fragility
curves are based on recorded ground motions, we herein
briey summarize a case study by the authors originally
presented in Ref. [29].
In this study, we estimate the fragility of a reinforced

concrete column with a uniform circular cross-section,
representing a pier of a typical California highway
overpass bridge [63] (see Fig. 8). The column is modeled
in the finite element code OpenSees as a fiberized
nonlinear beam-column element. For details on the
modeling of the concrete material and the steel reinforce-
ment, the reader is referred to Ref. [29]. The loading-
unloading behavior and the pushover curve of the column
are shown in Fig. 8. Three-dimensional time-history
analyses of the bridge column are conducted for N = 531
earthquake records (each comprising three orthogonal
component accelerograms). These records are obtained
from the PEER strong motion database and cover a wide
range of source-to-site distances and earthquake moment
magnitudes [63]. The developed fragility curves represent
the probability of the maximal drift ratio D in the transverse
direction exceeding specified thresholds δo as a function of
the peak ground acceleration PGA or the pseudo-spectral
acceleration Psa corresponding to the first transverse mode
(T1 = 0.535 s). The considered drift ratio thresholds, shown
in Table 4, are recommended for the operational and life

Fig. 6 Histograms and fitted normal distributions for lnD at two levels of PGA and Sa. (a) PGA = 0.5 g; (b) PGA = 1.5 g; (c) Sa = 0.5 g;
(d) Sa = 1.5 g

Table 3 Log-standard deviation of median IM

δo approach PGA (g) Sa (g)

0.7% bMCS 0.0003 0.005

KDE 0.0005 0.005

1.5% bMCS 0.037 0.054

KDE 0.037 0.050

2.5% bMCS 0.114 0.090

KDE 0.120 0.080

180 Front. Struct. Civ. Eng. 2017, 11(2): 169–186



safety levels by two different sources [69,70].
The fragility curves are established with the MLE-based

and LR-based lognormal approaches and the KDE-based
non-parametric approach. Due to the relatively small
number of data, the bMCS method is not considered
herein. Figure 9 depicts the clouds of points (IMi, Di) in the
logarithmic scale for the two IMs together with the linear
fitted models. The coeffcients of determination of the latter
are R2 = 0.729 for the case of PGA and R2 = 0.963 for the
case of Psa. Note that for small values of Psa (Psa< 0.2 g)
a linear function provides a perfect fit, which is due to the

fact that in this range of Psa, the column behavior can be
represented by a linear single-degree-of-freedom model.
Further details on the parameters of the different fragility
functions can be found in Ref. [29].
Figure 10 depicts the obtained fragility curves for the

two types of IM and the four drift-ratio thresholds of
interest. When PGA is used as IM, the curves obtained with
the two lognormal approaches are close to each other for
all thresholds, but exhibit deviations from the non-
parametric curves, which tend to be larger for higher
PGA levels and larger drift limits. When Psa is used as IM,

Fig. 7 Estimated and mean bootstrap fragility curves and 95% confidence intervals for the binned Monte Carlo simulation and the kernel
density estimation approaches. (a) Binned Monte Carlo simulation (PGA); (b) Kernel density estimation (PGA); (c) Binned Monte Carlo
simulation (Sa); (d) Kernel density estimation (Sa)

Table 4 Bridge performance and respective drift-ratio threshold

reference level description damage drift ratio δo

[69] II Operational Minor 0.01

[69] III Life safety Moderate 0.03

[70] II Operational Minor 0.005

[70] III Life safety Moderate 0.015
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the MLE-based curves are in a fair agreement with the
KDE-based ones; however, the former smooth out some
details that can be obtained with the non-parametric
approach. In contrast, the LR-based curves are inaccurate
for all but the smaller drift threshold. Overall, the LR-
based curves exhibit larger deviations from the non-
parametric ones for Psa than for PGA as IM, although the
R2 coefficient of the linear fit is higher for Psa. This can be
explained by the fact that the assumption of homoscedastic
errors, inherent in Eq. (6), is not valid for the specific data
set (Psa, D), as one can observe in Fig. 9.

6 Discussion

Using the non-parametric fragility curves as reference, the
accuracy of the lognormal curves is found to depend on the
method used to estimate the parameters of the underlying
CDF, the considered IM and the drift threshold of interest.
In most cases, the MLE-based curves are fairly close to the
non-parametric ones, whereas the LR-based curves exhibit
significant deviations. The lognormal curves tend to
deviate more from the non-parametric ones for larger
drift limits. Considering both case studies, the MLE-based
curves are more accurate for a structure-specific IM (Sa,
Psa) than for PGA. Different IMs have been recommended
in the literature for structures of different type, size and
material [58,71]. Accordingly, the accuracy of the
lognormal fragility curves may depend on those factors
as well. Possible dependence of the accuracy of the
lognormal curves on the considered response quantity
needs to be investigated as well.
As noted in Section 2.2, the bMCS approach bears

similarities with the so-called stripe analysis [34,38,72]. A
comparison between the stripe and cloud analyses, where
the latter corresponds to the LR-based lognormal approach
[59,73–75], was carried out by Celik and Ellingwood [74].
In the mentioned study, concrete structures were subject to
40 synthetic ground motions. Differences in the response
statistics obtained with the two methods for three IM levels
were found insignificant and hence, use of the cloud
analysis was justified. In contrast, Baker [73] showed that
cloud analysis can significantly underestimate the mean
annual rate of exceeding a large maximum interstory drift.
Karamlou and Bocchini [28] recently conducted large-
scale simulations on bridge structures in order to
investigate the underlying assumptions of the cloud
analysis. Their results showed that, in general, the
conditional distribution of a demand parameter for a

Fig. 8 Bridge configuration [63] and hysteretic behavior.

Fig. 9 Paired data {(IMi, Di), i = 1,…,N} and fitted models in log-scale (the units of the variables in the fitted models are the same as in
the axes of the graphs).
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given IM level is not lognormal. In addition, it was found
that the assumptions of a linear function for the
probabilistic seismic demand model in the log-scale
(power function in the normal scale) and of constant
dispersion of the respective errors can lead to significant
errors in fragility analysis. These findings are consistent
with our results shown in Fig. 6. The limitations of the LR-
based approach have also been mentioned by Jalayer et al.
[75].
Based on the results of our case studies and the above

discussion, we recommend the use of the MLE approach if
fragility curves are developed in a parametric manner. The
superiority of the MLE over the LR approach relies on the
fact that the former avoids the assumptions of the linear
model and the homoscedasticity of the errors that are
inherent in the latter. However, when a detailed description
of the fragility function is important, a non-parametric
approach should be used. The bMCS method requires a
large number of data, which can be typically obtained by
use of synthetic motions; note that due to the current
computer capacities and the use of distributed computing,
large-scale simulations are becoming increasingly popular
among both researchers and practitioners. On the other
hand, the KDE approach can be employed even with a
limited number of recorded motions at hand, as shown in
our second case study. We again emphasize that the two
non-parametric approaches lead to almost identical curves
in the case when they could be applied independently with
the same (large) data set.

7 Conclusions

Seismic demand fragility evaluation is one of the basic
elements in the framework of performance-based earth-
quake engineering (PBEE). At present, the classical

lognormal approach is widely used to establish such
fragility curves mainly due to the fact that the lognormality
assumption makes seismic risk analysis more tractable.
The approach consists in assigning the shape of a
lognormal cumulative distribution function to the fragility
curves. However, the validity of this assumption remains
an open question.
In this paper, we introduce two non-parametric

approaches in order to examine the validity of the classical
lognormal approach, namely the binned Monte Carlo
simulation and the kernel density estimation. The former
computes the crude Monte Carlo estimators for small
subsets of ground motions with similar values of a selected
intensity measure, while the latter estimates the conditional
probability density function of the structural response
given the ground motion intensity measures using the
kernel density estimation technique. The proposed
approaches can be used to compute fragility curves when
the actual shape of these curves is not known as well as to
validate or calibrate parametric fragility curves. Herein, the
two non-parametric approaches are confronted to the
classical lognormal approach in two case studies, con-
sidering synthetic and recorded ground motions.
In the case studies, the fragility curves are established for

various drift thresholds and different types of the ground
motion intensity measure, namely the peak ground
acceleration (PGA), and the structure-specific spectral
acceleration (Sa) and pseudo-spectral acceleration (Psa).
The two non-parametric curves are always consistent,
which proves the validity of the proposed techniques.
Accordingly, the non-parametric curves are used as
reference to assess the accuracy of the lognormal curves.
The parameters of the latter are estimated with two
approaches, namely by maximum likelihood estimation
and by assuming a linear probabilistic seismic demand
model in the log-scale. The maximum likelihood estima-

Fig. 10 Fragility curves with parametric and non-parametric approaches using PGA and Psa as intensity measures (LR: linear regression;
MLE: maximum likelihood estimation; KDE: kernel density estimation.
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tion approach is found to approximate fairly well the
reference curves in most cases, especially when a structure-
specific intensity measure is used; however, it smooths out
some details that can be obtained with the non-parametric
approaches. In contrast, the assumption of a linear demand
model in the log-scale is found overall inaccurate. When
integrated in the PBEE framework, inaccuracy in fragility
estimation may induce errors in the probabilistic conse-
quence estimates that serve as decision variables for risk
mitigation actions. The bootstrap resampling technique is
employed to assess effects of epistemic uncertainty in the
non-parametric fragility curves. Results from bootstrap
analysis validate the stability of the fragility estimates with
the proposed non-parametric methods.
Recently, fragility surfaces have emerged as an innova-

tive way to represent the vulnerability of a system [13];
these represent the failure probability conditional on two
intensity measures of the earthquake motions. The
computation of these surfaces is not straightforward and
requires a large computational effort. The present study
opens new paths for establishing the fragility surfaces:
similarly to the case of fragility curves, one can use kernel
density estimation to obtain fragility surfaces that are free
of the lognormality assumption and consistent with the
surfaces obtained by Monte Carlo simulation.
We note that the computational cost of the two proposed

approaches is significant when they are based on large
Monte Carlo samples. To reduce this cost, alternative
approaches may be envisaged. Polynomial chaos (PC)
expansions [76,77] appear as a promising tool. Based on a
smaller sample set (typically a few hundreds of finite
element runs), PC expansion provides a polynomial
approximation that surrogates the structural response.
The feasibility of post-processing PC expansions in order
to compute fragility curves has been shown in Refs.
[78,79] in the case a linear structural behavior is assumed.
The extension to nonlinear behavior is currently in
progress.
We underline that the proposed non-parametric

approaches are essentially applicable to other probabilistic
models in the PBEE framework, relating decision variables
with structural damage and structural damage with
structural response. Once all the non-parametric probabil-
istic models are available, they can be incorporated in the
PBEE framework by means of numerical integration. Then
a full seismic risk assessment may be conducted by
avoiding potential inaccuracies introduced from simplify-
ing parametric assumptions at any step of the analysis.
Optimal high-fidelity computational methods for incorpor-
ating non-parametric fragility curves in the PBEE frame-
work will be investigated in the future.
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