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ABSTRACT This paper presents an efficient hybrid control approach through combining the idea of proportional-
integral-derivative (PID) controller and linear quadratic regulator (LQR) control algorithm. The proposed LQR-PID
controller, while having the advantage of the classical PID controller, is easy to implement in seismic-excited structures.
Using an optimization procedure based on a cuckoo search (CS) algorithm, the LQR-PID controller is designed for a
seismic- excited structure equipped with an active tuned mass damper (ATMD). Considering four earthquakes, the
performance of the proposed LQR-PID controller is evaluated. Then, the results are compared with those given by a LQR
controller. The simulation results indicate that the LQR-PID performs better than the LQR controller in reduction of
seismic responses of the structure in the terms of displacement and acceleration of stories of the structure.
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1 Introduction

Vibration control devices can be classified as passive,
active, semi-active and hybrid control devices. Vibration
control of structure is one area of current research that
focuses on mitigation of structural vibrations during
earthquakes and strong winds [1].
Tuned mass dampers (TMDs) are the oldest passive

seismic control devices, which are tuned with a vibration
frequency close to the fundamental frequency of structure.
Because of the uncertainty in the estimation of parameters
of the structure, accurate determination of the natural
frequency of the structure is not possible. This frequency
also varies in the face of strong dynamic loads, such as
earthquakes and strong winds. Therefore, the performance
of these systems because of its constant dynamic
parameters is limited and these systems can only provide
a favorable performance in a narrow range of load
frequencies. In over to overcome these shortcomings,
active tuned mass dampers (ATMDs) are suggested [2]. In
a structure equipped with ATMD, an actuator, which is
placed between the structure and the TMD system, applies

a control force in real time to the ATMD and its reaction
applied to the structure. The adopted control algorithm for
tuning the control force has a key role in successful
implementation of ATMDs. An effective control algorithm
can create a suitable trade-off between two conflicting
objective of reducing control force and reducing structural
responses. Considering the structures equipped with
ATMD, different control algorithms are employed. The
most common control algorithms for this case are LQR,
linear quadratic Gaussian (LQG), H1, fuzzy logic
controller [3–8].
Despite the recent advances in control methods, because

of the significant effectiveness and simplify implementa-
tion of the classical PID controllers, they are widely used in
various engineering applications. Due to these advantages,
PID controllers have been applied by several researchers
for vibration control of plates and beams [9–11].
Furthermore, in the area of structural control, several
researchers attempt to apply the PID controller toward
seismic control of structures [12–15]. Aguirre et al. [16]
suggested a proportional-integral (PI) controller to mini-
mize the structural vibrations of a 3-story building
equipped with MR dampers. Optimal PD/PID controllers
using genetic algorithm are developed by Etedali et al. [17]Article history: Received Jun 10, 2016; Accepted Sept 18, 2016
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for seismic control of a benchmark isolated structure
equipped with piezoelectric friction dampers. Also, they
proposed an independent robust modal PID control
approach for seismic control of buildings [18]. Subasri et
al. [19] proposed a control scheme based on a combination
of discrete PID controller and discrete direct adaptive
neural controller. The effect of feedback on PID controlled
active structures was considered by Nigdeli [20]. Yu et al.
[21] used the standard industrial proportional-derivative
(PD) and PID controllers for active vibration control of a
structure equipped with ATMD. Recently, Etedali et al.
[22] proposed a new design method based on decoupling
of PID controller for seismic control of smart structures.
LQR controller is one of the most famous and practical

control algorithms for solving control problems. This
controller used by researchers at the beginning of research
in the area of seismic control. Several modifications are
still done to enhance the performance of the traditional
LQR algorithm for application toward the structural
vibration control [23–28].
Since the process of seismic control of structures is

basically a multi-input multi-output process, the LQR
controller can easily be implemented, in the state space, for
seismic control of structures. However, in the case of
structural control, the off-diagonal terms in damping and
stiffness matrices of the structures cause the cross coupling
of the process channels. This issue makes it difficult to
implement of classical controllers such as PID controller
for seismic control of structures. Considering this issue, the
present paper proposes a new design of PID controller
based on the LQR controller. This controller is named the
LQR-PID controller. The proposed controller, while
having the advantage of the classical PID control, is easy
to implement in seismic-excited structures. When the
velocity vector of story is the feedback signal of the
controller, the differential term of the proposed controller
reduces floor acceleration and the integration term
considers the reduction in floor displacement. In fact, the
structure of PID controller plays a vital role in the
simultaneous reduction of the structural responses in the
terms of the maximum displacement and acceleration of
stories. The problem of LQR-PID control design for
seismic control of structures forms an optimization
problem. To solve this problem, a meta-heuristic optimiza-
tion algorithm keeping enough diversity of the population
is required. Compared with the genetic algorithms (GA),
particle swarm optimization (PSO) and ant colony
optimization (ACO) algorithms, the cuckoo search (CS)
is able to explore the search space more accurately and can
perform better for challenging objective functions [29–32].
Hence, we suggested the use of CS algorithm as a powerful
tool for optimization problems. In order to prove the
validity of the proposed controller, a 10-story structure
equipped with an ATMD is considered. Four well-known
earthquake records are adopted to evaluate the perfor-
mance of the proposed control strategy in different load

disturbance. In comparison with LQR, the performance of
the LQR-PID controller in reduction of seismic responses
is validated.
The paper is organized as follows. An overview of

structural model is presented in Sections 2. Brief over-
views of LQR and PID controllers are introduced in
Section 3 and 4, respectively. Control system design using
LQR-PID control approach is developed in Section 5. The
optimization procedure using CS algorithm is explained in
Section 6. Numerical studies are carried out on a 10 story
building in Section 7. Furthermore, the simulation results
are discussed in this Section. At the end, the concluding
remarks are drawn.

2 The mathematical equation of motion of
structures

The dynamic equation of motion of an n-story shear frame
structure, subject to ground acceleration, €xgðtÞ, can be
expressed as follows:

M€xðtÞ þ C _xðtÞ þKxðtÞ ¼ –MΛ€xgðtÞ, (1)

where M, C, and K are the n � n mass, damping, and
stiffness matrices of the structure, respectively. xðtÞ is the
n�1 relative displacement vector of the floors with respect
to the ground. The n�1 vector indicates the location of the
earthquake load applied to the structure.
For a smart structure, the control force vector uðtÞ is

entered to the equation of motion of the structure.
Therefore, the equation of motion of a smart structure is
given by Eq. (2).

M€xðtÞ þ C_xðtÞ þKxðtÞ ¼ –MΛ€xgðtÞ þ DuðtÞ, (2)

where matrix D is the n�nc location matrix of the control
forces.
The dynamic behavior of many systems can concur-

rently be expressed with a first order differential equation:

z
: ðtÞ ¼ gðzðtÞ,  uðtÞ,  tÞ, (3)

in which, t is time, z(t) is the state vector of the system,
and u(t) is the output vector of the controller. In many
systems, the state vector is selected with respect to the
physical nature of the system. Vector z(t) can be selected as
the following form for the structures:

z tð Þ ¼
xðtÞ
_xðtÞ

( )
: (4)

Therefore, the dynamic equations of motion of the
structure in the state space form can be expressed as
Eq. (5):

z
: ðtÞ ¼ AzðtÞ þ BuðtÞ þH€xgðtÞ, (5)
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in which the state matrix A, input matrix B and vector H
are given by Eq. (6).

A ¼
0n�n In�n

-M-1K -M-1C

" #
,   B ¼

0n�nc

M-1D

" #
,  H ¼ 0n�1

–Λ

" #
:

(6)

3 LQR controller

LQR controller is one of the most commonly-used
techniques to design of control system in seismic-excited
structures. This technique can be used for both active and
semi-active controls of buildings. In this controller, the
optimal control forces are determined by minimizing the
following cost function:

J¼!
td

0

½zTðtÞQzðtÞ þ uTðtÞRuðtÞ�dt, (7)

where td is the time interval of interest. Also, the symmetric
weighting matrices Q and R are the design parameters to
obtain the required performance. The active control forces
are given by Eq. (8).

uðtÞ¼ –GzðtÞ, (8)

where G is a feedback gain matrix. This matrix is obtained
as

G ¼ R – 1BTP, (9)

where P is semi-positive definite matrix obtained from
the Riccati equation. Because of simplicity in the structure
and its implementation, LQR controller is the most
popular controller among the optimal feedback control
algorithm. But, the main disadvantage of the algorithm are
the limitation of the number of sensors installed for
measuring the state variables as well as the high complex-
ity in determination of the weighting matrices in tall
building [7].

4 An overview of PID controller

PID controller is a generic control loop feedback controller
broadly applied in industrial control systems. A block
diagram of a PID controller in a feedback loop is shown in
Fig. 1.
g(s) is the transfer function of the plant, y(t) is the output

of the system representing the structural response, u(t) is
the output of the controller i.e., the PID control force, d(t)
is the load (input) disturbance applied to the system
simulating an earthquake dynamic force, yref(t) is the
desired feedback of the structural response. Also, e(t) is the
error which is the difference between the reference value
and the value of the output. It is common assumed yref(t)=
0 for structural control, therefore, e(t)= – y(t). Further-
more, GP, GI and GD are the proportional, integral and
derivative terms, respectively .As can be seen, the control
force, u(t), is determined using Eq. (10).

u tð Þ ¼ GPe tð Þ þ GI!
t

0
e tð Þdt þ GD

deðtÞ
dt

: (10)

The proportional, integral and derivative terms of the
PID controller are defined as GP ¼ kc,GI ¼ kc=τi and GD
¼ kcτd where kc is the proportional gain, τi is the integral
time, and τd is the derivative time. Also, the parameter t is
the duration of the control process. Considering these
definitions, the PID control force in the S and time domains
are determined using Eq. (11) and (12), respectively.

k sð Þ ¼ kc 1þ 1

τis
þ τds

� �
, (11)

u tð Þ ¼ kc e tð Þ þ 1

τi
!

t

0
e tð Þdt þ τd

deðtÞ
dt

� �
: (12)

As soon as an error is detected, the proportional term
takes immediate corrective action. Using only proportional
controller, however, a steady state error occurs after a
change in the load disturbance. The integral term can
eliminate the steady state error. But, a disadvantage of
integral action is that it tends to have a destabilizing effect.
The derivative mode tends to stabilize the closed-loop
system and increase the damping of the system. However,

Fig. 1 A block diagram of a PID controller in a feedback loop
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using the derivative action often leads to large control
actions [17].
Considering the PID control force, described in Eq. (10),

the control force vector of the structure, u(t), can be
expressed as

uðtÞ ¼ –GcWcðtÞ: (13)

in which Gc refer to nc � 3nc feedback gain matrix and
Wc(t) is a 3nc � 1 feedback vector of the controller. Also,
nc represents the number of actuators, i.e., the number of
controlled stories. When the displacement vector of the
controlled stories is adopted as feedback signal of control
system, Gc and Wc(t) are given by

Gc ¼ GIc GPc GDc

� �
,

WcðtÞ ¼ !xcðtÞxcðtÞ _xcðtÞ
� �T

,
(14)

where GIc ,GPc and GDc
are nc � nc matrices. Moreover,

xc(t) refer to nc � 1 displacement vector of the controlled
stories, respectively.

5 The proposed LQR-PID control approach

In this section, through combining the idea of PID
controller and LQR control theory, a hybrid modal LQR-
PID control design is proposed. Then, the gain feedback
matrix of the control system is designed according to the
contribution of the modal responses to the structural
response.
A set of n simultaneous differential equations forms

Eq. (2), which is coupled by the off-diagonal terms in the
stiffness and damping matrices. Using the coordinate
transformations as xðtÞ ¼ ΦyðtÞ, theses equations are
transformed into a set of n independent normal coordinate
equations in the modal space, in which y(t)=[y1(t), y2(t),…,
yn(t)]

T is the modal displacement vector and Φ is an n � n
orthonormalized mode shape matrix relative to the mass
matrix. In this case, considering the termΦTMr€xgðtÞ as the
load disturbance, which must be applied to the structure,
Eq. (5) can be rewritten in the state space as follows [18]:

y
:ðtÞ
y
::ðtÞ

" #
¼

0n�n In�n

–Ω2 –Cm

" #
  yðtÞ
y
:ðtÞ

" #
 

þ 0n�n

In�n

" #
umðtÞ, (15)

where Ω ¼ diagðω1,:::,ωi,:::,ωnÞ and Cm ¼ diagð2�1ω1,:::,
2�iωi,:::,2�nωnÞ. Parameters ωi and xi are the natural
frequency and modal damping ratio of the ith mode. Also,
umðtÞ is an n � 1 modal control force vector, given by
Eq. (16).

umðtÞ ¼ ΦTDuðtÞ: (16)

Considering Eq. (15), the state space equation of the ith
mode of the structure is given by

y
:

iðtÞ
y
::ðtÞ

" #
¼

0 1

–ω2
i – 2�iωi

" #
yiðtÞ
y
:

iðtÞ

" #
  þ 0

1

" #
umiðtÞ: (17)

Considering the above equation, the transfer function of
the structure in the ith mode and in the S domain can be
expressed as the following second-order model [18]:

gi sð Þ ¼ 1

s2 þ 2�iωi þ ω2
i

: (18)

As shown in Fig. 1, the relationship between the input
and output of the controller in the ith mode can be
described as [18]

yiðsÞ ¼ giðsÞkiðsÞ: (19)

It is notable that the term dðsÞ, as the load disturbance,
must be applied to the structure in each mode. Inserting Eq.
(18) in Eq. (19), the following equation can be given

ðs2 þ 2�iωi þ ω2
i Þyi sð Þ ¼ ki sð Þ: (20)

By defining eiðtÞ ¼ – yi, the above equation for the ith
mode can be expressed as below:

ei
$$ðtÞ þ 2�iωi ei

$ ðtÞ þ ω2
i eiðtÞ ¼ – uiðtÞ: (21)

Eq. (21) can be rewritten in the state space form as the
following form:

wi
$ ¼ AiwiþBiui, (22)

where

wi ¼
!eiðtÞ
eiðtÞ
e
:

iðtÞ

0
BB@

1
CCA,   Ai ¼

0 1 0

0 0 1

0 – ðωiÞ2 – 2�iωi

0
BB@

1
CCA,   

Bi ¼
0

0

– 1

0
B@

1
CA: (23)

Considering the traditional LQR algorithm, the following
quadratic performance index, Ji is defined.

Ji ¼ !
t

0

½wT
i ðtÞQiwiðtÞ þ uTi ðtÞRiuiðtÞ�dt, (24)

where Qi is the 3�3 weighting matrix for the ith modal
state vector and Ri is the positive weighting factor for the
corresponding modal control force, respectively. By
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solving the Riccati equation, shown in Eq. (25), the modal
LQR-PID control force can be obtained by Eq. (26).

AT
i Pi þ PiAi-PiBiR

– 1
i BT

i Pi þQi ¼ 0, (25)

uiðtÞ ¼ –GiwiðtÞ: (26)

With regard to the theory of the LQR controller, the ith
modal control gain is obtained as:

Gi ¼ –R-1
i B

T
i Pi: (27)

According to Eq. (27), the modal control force in the ith
mode of the structure is calculated as:

Gi ¼ –R – 1
i ½0    0    – 1�

P11i P12i P13i

P12i P22i P23i

P13i P23i P33i

0
B@

1
CA

¼ R – 1
i ½P13i    P23i     P33i   � ¼ ½GIi    GPi    GDi�: (28)

Considering the form of the PID controller, the modal
control force in the ith mode of the structure can be stated
as:

ui tð Þ ¼ –Giwi tð Þ

¼ GIi!eiðtÞdtþGPiei tð Þ þ GDi
deiðtÞ
dt

: (29)

Eq. (29) clearly indicates that with judicious select of the
weighting matrix Qi and the weighting factor Ri, a PID
controller can easily be designed which preserves the
defined performance of an LQR i.e., minimum the
structural responses and the controller effort, simulta-
neously.
The lower order modes of a structure subjected to

seismic excitations usually provide the greatest contribu-
tion to the structural responses. Thus, it is reasonable to
truncate analysis when the number of modes is sufficient.
In other words, a control system can be designed based on
the reduced modal space. By considering only nmc

(nmc<n) mode of the structure and determining the control
modal force at each selected mode of the structure, the gain
feedback matrix of the proposed LQR-PID controller is
obtained according to the contribution of the modal
responses to the structural response as the following
equation [22]:

Gc ¼
L – 1GmcΨ

– 1,                                                                      if    nmc ¼ nc,

ðLTLÞ – 1LTGmcΨ
T ðΨΨT Þ – 1,  if    nmc > nc,

LTðLLTÞ – 1GmcðΨTΨÞ – 1ΨT,   if    nmc<nc,

8>><
>>: (30)

where L ¼ ΦT
mcD is the modal participation matrix in

which Φmc is an n �nmc matrix of the first nmc modes of
mode shape matrix Φ. Also, Ψ is a 3nc � 3nmc matrix
defined as

Ψ ¼
φnc�nmc

0nc�nmc
0nc�nmc

0nc�nmc
φnc�nmc

0nc�nmc

0nc�nmc
0nc�nmc

φnc�nmc

2
64

3
75, (31)

where φ is an nc�nmc matrix obtained from removing the
rows corresponding to the uncontrolled stories of the
matrixFmc. Also, nc is the number of the controlled stories
of the structure. Furthermore, Gmc is obtained as:

Gmc ¼ GImc
GPmc

GDmc

� �
, (32)

in which GImc
, GPmc

, and GDmc
are nmc�nmc matrices

formed as following:

GImc
¼ diagðGI1 ,GI2 ,:::,GInmc

Þ,

GPmc
¼ diagðGP1 ,GP2 ,:::,GPnmc

Þ, (33)

GDmc
¼ diagðGD1

,GD2
,:::,GDnmc

Þ:
The modal control gains for the nmc selected mode can

be tuned using Eq. (28). Then, using Eqs. (33) and (32), the
modal feedback gain matrix of the structure, Gmc, is
formed and through substituting Gmc in Eq. (30), the
feedback gain matrix of controller, Gc, can be obtained. At
the end, the control force vector of the structure,u(t), can be
determined using Eq. (13) in real time.
Considering the structure equipped with an ATMD, nc =

1. It is notable that the statue of nmc<nc in Eq. (30) does
not exist for this case. On the other hand, it is common that
at least three modes of the structures to be considered in the
design of the controller. Therefore, Eq. (30) can be
represented for the structure equipped with an ATMD as
follows:

Gc ¼ ðLTLÞ – 1LTGmcΨ
TðΨΨTÞ – 1: (34)

6 The optimization procedure using cuckoo
search algorithm

Cuckoo search is a stochastic metaheuristic algorithm that
models the obligate brood parasitism of some cuckoo
birds. CS has been introduced by Yang and Deb [33] to
solve optimization problems. Two important features in
this algorithm make CS superior to many other metaheur-
istic algorithms. First, Having infinite mean and variance,
Lévy flights can explore the search space better than
standard Gaussian processes. Secondly, CS restores a
balance between local search and global search explora-
tion. Some studies showed that CS provides a better
performance than GA and PSO in terms of simplicity of
algorithms, having less parameter to tune, and higher speed
[29,30]. Also, a comparison between CS, PSO and ACO
shows that CS gives more robust results [31].
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The population size n, switching probability Pa, step-
size a and the Lévy flights exponent b are configurable
parameters of CS. Apart from the population size, the
switching probability is the key parameter of the CS. Other
parameters such as the Lévy flights exponent and step-size
can be set as a = 0.1 and b = 1.5 for most problems, pa and
n are variable and have great effects on the algorithm
performance. A balance between local and global
optimization is created by the switching probability. The
probability for global optimization is reduced with
increasing pa and vice versa [29,33].
The steps of the standard CS algorithm can be described

as follows [32,33]:
1) Each cuckoo lays one egg at a time and dumps it in a

randomly chosen nest (crossover operator).
2) Number of nests that contain eggs with high quality

will be transferred to the next generation (elitism).
3) The number of available host nests is fixed, and a host

can discover an alien egg with a Probability pa (mutation
operator).
The first rule produces a new solution using a Lévy

Flights and can be considered as a crossover operator.
Outline of generating new solution via Lévy flight is
summarized as below:

xtþ1
i ¼ xti þ α� LévyðβÞ, (35)

where α ¼ α0 � ðxtj-xtiÞ and Lévy βð Þ ¼ u=j�j
1
β . Here, α is

the step size parameter, α0 is the step size scaling factor, xtj
and xti are two randomly selected solutions, LévyðβÞ is the
step length which is produced according the Lévy Flights,
and β is Lévy flights exponent. In addition, the parameters
u and ν are given by the normal distributions as shown in
Eq. (36). In this equation, Γ is the standard Gamma

function.

�u ¼
Γð1þ βÞsinðπβ=2Þ

Γ½ð1þ βÞ=2�β2ðβ – 1Þ=2
� 	1=β

, �ν ¼ 1: (36)

The second rule applies elitism strategy to accelerate
convergence rate of CS. Finally, the third rule incorporates
probabilistic strategy to replace not so good solutions.
Indeed, it can be treated as a mutation search operator and
prevents algorithm of being trapped in a local minimum.
Eq. (37) indicates how a new solution can be generated by
this search operator .

xtþ1
i ¼ xti þ r � Hðpa – εÞ � ðxtj – xtkÞ: (37)

In which H(u) represents the Heaviside function, ε and r
are some random numbers with uniform distributions, and
xtj, x

t
k are two solutions that are selected randomly. The

basic steps of the CS can be summarized as the pseudo
code shown in Fig. 2.

7 Numerical studies

To evaluate the performance of the proposed controller, a
10-story structure with the same mass, stiffness and
damping for all stories, respectively with the values of
357.24 tons, 654.98 MN/m, and 6.15 MN.s /m has been
simulated. The main frequency of the structure has been
calculated as 1.02 Hz. The optimum TMD parameters
include the mass of TMD that is defined as a percent of the
total mass of the structure, the ratio of frequencies or b that
is obtained from dividing the natural frequency of the
TMD by the main mode frequency of the structure, and
xTMD that is calculated as a percentage of the critical

Fig. 2 Pseudo code of CS
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damping ratio of the structure. In order to achieve a
practical design, a preselected of the TMD mass ratio a =
0.03 is assumed. Then, the optimal TMD parameters b and
xTMD are tuned using CS as 11%, and 0.91, respectively.
For a structure equipped with an ATMD, as a smart
structure, an actuator applies a control force to the TMD
and its reaction is applied to the top floor story of the
structure. In this case, is an 11 � 1 vector of ones and

D ¼ ½0,  0,  0,  0,  0,  0,  0,  0,  0,  – 1,  1�T:
Considering seismic events as probabilistic events, it is

required several time-consuming analyses to access
reliable results. In order to overcome this problem, an
artificial acceleration of the ground motion is simulated for
modelling the possible earthquakes. It is generated by
passing a Gaussian White Noise process through filter
model proposed by Nagarajaiah and Narasimhan [34].This
filter is a modified filter form the well-known Kanai–
Tajimi filter. The power spectral density function of the

filter is given by:

s ωð Þ ¼ 4�gωgω

ω2 þ 24�gωgωþ ω2
g
, (38)

in which xg and ωg are the damping ratio and angular
frequency of the ground, respectively. In the study, they
considered as ωg ¼ 2π  rad=s and �g ¼ 0:3. The output of
this filter simulates the earthquake which has been used for
design of control system.
Considering the studied structure subjected to the

ground artificial acceleration, the optimal modal control
gains are tuned by minimizing the cost function described
in Eq. (24) for the first three modes of the structures.
Different ranges of effective parameters of CS including
population size n and the discovery probability Pa are
tested. The best values of these parameters are given n =
50, Pa = 0.25. Considering the best result for the first three
modes,GImc

,GPmc
andGDmc

are obtained and then theGmc is
formed as:

Gmc ¼
396:125 0 0

0 721:332 0

0 0 7:321

15:348 0 0

0 8:1087 0

0 0 2:011

3:356 0 0

0 1:322 0

0 0 0:008

2
64

3
75  : (39)

By substituting Gmc in Eq. (34), the feedback gain matrix
of the proposed LQR-PID controller i.e., Gc is obtained.
For comparison purposes, a LQR controller is designed

for seismic control of the studied structures. The weighting
matrix Q is adopted a diagonal matrix with the following
structure.

Q ¼ K 0

0 M

" #
, (40)

where M and K are the mass and stiffness matrices,
respectively. The above form of theQmatrix represents the
sum of the kinetic and strain energies, and it is commonly
adopted in structural control applications [27].
Time-history analyses of the structure are carried out

using MATLAB/Simulink software [35]. For this purpose,
two far-fault earthquakes, El Centro (1940) and Hachinohe
(1968), as well as two near-fault earthquakes, Northridge
(1994) and Kobe (1995), are considered. The peak ground
acceleration (PGA) of theses earthquakes are 0.83, 0.22,
0.34 and 0.82 g. All the above earthquakes have been
scaled to the maximum amount of 0.3 g.
Considering the El Centro earthquake, the time histories

of the top story displacement and acceleration of the
structure equipped with TMD, the structure equipped with
ATMD which controlled by LQR and LQR-PID controller,
are compared with the corresponding uncontrolled ones in
Figs. 3 and 4, respectively. The uncontrolled structure is
the structure without passive or active control devices.
Also, the time histories of the required control force using

these controllers are shown in Fig. 5. It is notable that the
first 15 seconds of the structural responses are shown in
these figures.
Figures. 3 and 4 indicate that TMD as a passive device

reduces the structural responses of the structure subjected
to El Centro. Also, it can be seen from these figures that the
proposed controller performs better than the LQR in
reducing the maximum displacement of the top floor. The
LQR and LQR-PID controllers give a reduction of 55%
and 62% in comparison with uncontrolled case, respec-
tively. These reductions are given about 42% and 54% in
the term of the maximum acceleration of top story.
Furthermore, Fig. 5 shows that the maximum required
active control force of ATMD for the LQR controller is
about 1172 kN while this value is 1232 kN for the LQR-
PID controller.
In order to evaluate the performance of the proposed

controller during different earthquake excitations, max-
imum relative displacement and absolute acceleration of
the floors of the structure are listed in Tables 1–4 for El
Centro, Kobe, Northridge and Hachinohe earthquakes,
respectively. The values are for the uncontrolled structure,
the structure equipped with TMD as a passive control
device, and the structure equipped with ATMD that
controlled with the LQR and the LQR-PID controllers.
The results show that the performance of TMDs largely

depends on the input earthquake to the structure. For
example, TMDs provided the greatest reductions in El
Centro earthquakes. But, the least effective is given in
Northridge earthquake. Unlike TMD, ATMD can signifi-
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Fig. 3 The time histories of the top story displacement of the structure during El Centro
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Fig. 4 The time histories of the top story acceleration of the structure during El Centro
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Fig. 5 The time histories of the required control force during El Centro earthquake using LQR and the proposed LQR-PID controllers

Table 1 Maximum structural responses of the structure during El Centro earthquake

maximum relative displacements of floors (cm) maximum absolute accelerations of floors (g)

TMD ATMD TMD ATMD

floor unctrl. passive LQR LQR-PID unctrl. passive LQR LQR-PID

1 2.62 1.61 1.14 0.96 0.26 0.24 0.14 0.11

2 5.13 3.14 2.06 1.68 0.35 0.19 0.20 0.13

3 7.46 4.56 3.18 2.84 0.44 0.31 0.25 0.20

4 9.55 5.83 4.24 3.99 0.50 0.35 0.26 0.20

5 11.37 7.00 5.60 4.39 0.54 0.36 0.28 0.22

6 12.90 8.02 6.19 5.02 0.58 0.33 0.32 0.24

7 14.13 8.93 6.72 5.61 0.60 0.40 0.35 0.28

8 15.12 9.66 6.90 5.90 0.64 0.45 0.34 0.31

9 15.87 10.17 7.11 6.21 0.72 0.49 0.41 0.33

10 16.25 10.43 7.33 6.25 0.76 0.51 0.44 0.35

TMD - 31.00 47.43 68.41 - 0.52 0.97 1.21
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Table 2 Maximum structural responses of the structure during Kobe earthquake

maximum relative displacements of floors (cm) maximum absolute accelerations of floors (g)

TMD ATMD TMD ATMD

floor unctrl. passive LQR LQR-PID unctrl. passive LQR LQR-PID

1 2.66 2.33 1.66 1.40 0.27 0.42 0.22 0.18

2 5.32 4.66 3.33 2.94 0.35 0.29 0.30 0.28

3 7.91 6.92 5.01 4.07 0.44 0.37 0.37 0.31

4 10.37 9.08 6.46 5.16 0.50 0.41 0.42 0.39

5 12.63 11.06 8.21 6.78 0.51 0.41 0.41 0.41

6 14.65 12.83 9.11 8.16 0.58 0.42 0.47 0.49

7 16.36 14.32 10.19 7.91 0.68 0.52 0.56 0.59

8 17.70 15.49 10.97 8.42 0.78 0.61 0.65 0.58

9 18.63 16.30 11.60 9.12 0.85 0.69 0.69 0.68

10 19.11 16.71 12.06 9.74 0.90 0.76 0.75 0.60

TMD - 41.64 89.54 111.94 - 0.80 1.77 1.82

Table 3 Maximum structural responses of the structure during Northridge earthquake

maximum relative displacements of floors (cm) maximum absolute accelerations of floors (g)

TMD ATMD TMD ATMD

floor unctrl. passive LQR LQR-PID unctrl. passive LQR LQR-PID

1 1.99 1.87 1.53 1.45 0.40 0.27 0.25 0.19

2 3.80 3.57 2.96 2.32 0.49 0.39 0.43 0.31

3 5.35 5.01 4.02 4.23 0.55 0.48 0.47 0.39

4 6.61 6.21 5.41 5.21 0.57 0.53 0.50 0.39

5 7.60 7.13 5.79 5.10 0.53 0.54 0.46 0.34

6 8.31 7.81 6.29 5.31 0.46 0.50 0.39 0.31

7 8.81 8.34 6.84 5.32 0.36 0.42 0.32 0.24

8 9.19 8.86 7.02 6.09 0.42 0.32 0.31 0.27

9 9.51 9.33 7.46 6.21 0.51 0.41 0.36 0.30

10 9.68 9.62 7.49 5.98 0.55 0.49 0.41 0.33

TMD - 28.87 44.25 54.76 - 0.53 0.91 1.45

Table 4 Maximum structural responses of the structure during Hachinohe earthquake

maximum relative displacements of floors (cm) maximum absolute accelerations of floors (g)

TMD ATMD TMD ATMD

floor unctrl. passive LQR LQR-PID unctrl. passive LQR LQR-PID

1 2.36 2.04 1.51 1.45 0.31 0.30 0.19 0.18

2 4.64 4.03 3.37 3.10 0.39 0.32 0.23 0.25

3 6.79 5.92 4.28 3.78 0.46 0.38 0.30 0.24

4 8.80 7.69 6.23 5.12 0.52 0.47 0.34 0.27

5 10.61 9.33 7.55 5.48 0.54 0.53 0.34 0.28

6 12.20 10.84 8.75 6.18 0.52 0.55 0.32 0.26

7 13.54 12.21 8.64 6.52 0.58 0.53 0.36 0.29

8 14.59 13.35 9.78 7.91 0.68 0.51 0.44 0.39

9 15.30 14.16 10.04 9.12 0.80 0.64 0.49 0.42

10 15.67 14.60 11.13 8.29 0.87 0.76 0.52 0.44

TMD - 35.04 69.65 82.44 - 0.82 1.43 1.52
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cantly control the structural responses in earthquakes with
different frequency content. Considering all earthquakes,
the results also show that the proposed controller performs
better than conventional LQR in the reduction of the
maximum displacement and acceleration of stories. For
example, the maximum relative displacements of the top
story during El Centro earthquake are 7.33 and 6.25 cm for
the LQR and the LQR-PID controllers. Similarly, these
values in the term of maximum absolute acceleration of the
top story are given 0.44 and 0.35 g, respectively. These
results show the proposed controller results in a reduction
about 15% and 20%, compared to the LQR, in the terms of
maximum relative displacements and acceleration of the
top story. Considering other earthquakes, the LQR-PID
controller reduces the maximum top displacement about
19%, 20% and 26%, in comparison with the LQR, for
Kobe, Northridge and Hachinohe earthquakes, respec-
tively. Similarly, these reductions are given about 20%,
20% and 15% in the term of the maximum top
acceleration, respectively.
For comparison purposes, the average of the reductions

in term of relative displacements and absolute acceleration
of all stories, in comparison with the passive TMD, are
inserted in Table 5.
Also, the maximum demand control force and mechan-

ical power of ATMD in both LQR and LQR-PID control
methods during the studied earthquakes are listed in this
table.
Considering the total average of reductions for 4

earthquakes, it can be seen that the proposed controller
results in a reduction of 36% and 28% in the terms of
displacement and acceleration of the structure while these
values are about 25% and 14% for the LQR-PID controller.
It can be concluded that the LQR controller is not as
effective in reducing the acceleration response as it is in
reducing the displacement response, but the proposed
controller performs better than LQR in reduction of the
peak floors acceleration. Considering the maximum
control force of ATMD, it can be seen that the proposed
controller has requested relatively more control force in
comparison with the LQR controller. However, they have

not exceeded the typical practical values. In exchange for
this increase, the proposed controller has provided a much
better performance for mitigation the seismic responses of
the structures. Furthermore, the maximum demand
mechanical powers of ATMD for the proposed controller
are rather more than the LQR controller. This disadvantage
is negligible compared to the significant superiority of the
proposed controller in reducing the seismic responses of
the studied structures.
A comparison of the frequency responses can indicate

the performance of two controllers in the face of
earthquakes with different frequency contents. The
frequency responses of the studied structure in the terms
of top floor displacement and acceleration are shown in
Fig. 6. As can be seen, LQR-PID controller decreases the
displacement and acceleration of top story, in resonance
state, better than the LQR controller. Also, the proposed
controller is very effective in the low frequency ranges
which have the most input seismic energy.
In the design of the LQR controller, the full state

feedback is needed. Therefore, if an integrator is used to
convert the measured velocity to the displacement and its
integration, 11 sensors and 11 computational resources is
required to design the LQR controller. However, the LQR-
PID controller reduces them to 1 sensor and 2 computa-
tional resources for the structure equipped with ATMD.

8 Conclusions

In order to enhance the performance of the traditional LQR
controller, a hybrid controller named LQR-PID controller
was proposed in this paper. The proposed LQR-PID
controller is a combination of the traditional LQR and the
classical PID controllers. To evaluate the performance of
the proposed controller, it was applied toward active
control of a seismic-excited structure equipped with
ATMD. The numerical studies were carried out on a 10-
story building equipped with an ATMD. For comparison
purposes, a LQR controller is also designed for the
structure. An optimization procedure based on CS was

Table 5 Average of reductions of structural responses in comparison with the passive TMD and the maximum demand control force and mechanical

power

earthquake average reduction in
relative displacements

of floors (%)

average reduction in
absolute

accelerations of floors
(%)

maximum demand
control force (kN)

maximum demand
mechanical power (kW)

LQR LQR-PID LQR LQR-PID LQR LQR-PID LQR LQR-PID

El Centro 27.71 38.60 17.37 35.54 1172 1232 781 821

Hachinohe 28.32 41.24 1.69 7.90 1204 1298 803 865

Kobe 18.71 28.84 9.72 28.83 1522 1685 1015 1123

Northridge 23.62 37.20 29.20 38.65 816 844 544 563

total aver-
age 24.59 36.47 14.50 27.73 1179 1265 786 843
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used for optimum tuning of the modal control gain in a
reduced modal space. Considering two far-fault earth-
quakes and two near-fault earthquakes, the simulation
results showed that the hybrid LQR-PID controller
performed better than the LQR in terms of reduction of
the maximum displacement and the maximum acceleration
of the stories of the structure. Considering the total average
of reduction for the four studied earthquake, it was
concluded that the proposed controller, in comparison
with the LQR controller, resulted in a reduction about 16%
and 15% in the terms of the maximum displacement and
the maximum acceleration of stories at the cost of a small
increase in the demanding control force.
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