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ABSTRACT In this article, multi-objective optimization of braced frames is investigated using a novel hybrid
algorithm. Initially, the applied evolutionary algorithms, ant colony optimization (ACO) and genetic algorithm (GA) are
reviewed, followed by developing the hybrid method. A dynamic hybridization of GA and ACO is proposed as a novel
hybrid method which does not appear in the literature for optimal design of steel braced frames. Not only the cross section
of the beams, columns and braces are considered to be the design variables, but also the topologies of the braces are taken
into account as additional design variables. The hybrid algorithm explores the whole design space for optimum solutions.
Weight and maximum displacement of the structure are employed as the objective functions for multi-objective optimal
design. Subsequently, using the weighted sum method (WSM), the two objective problem are converted to a single
objective optimization problem and the proposed hybrid genetic ant colony algorithm (HGAC) is developed for optimal
design. Assuming different combination for weight coefficients, a trade-off between the two objectives are obtained in the
numerical example section. To make the final decision easier for designers, related constraint is applied to obtain practical
topologies. The achieved results show the capability of HGAC to find optimal topologies and sections for the elements.

KEYWORDS multi-objective, hybrid algorithm, ant colony, genetic algorithm, displacement, weighted sum method, steel
braced frames

1 Introduction

The aim of optimal design is to obtain the best solution
based on the objective function in the given condition.
Structural optimization is a complex, not simply solved,
problem. If the layout of the structure is assumed, under the
loading and boundary conditions, the structural responses
could be obtained using the finite element analysis. The
purpose of the optimization, however, is to attain an
optimal structural system under the constraints. Since, the
structural optimization problems usually include nonlinear
and implicit functions, the analytical methods are unable to
solve these practical problems. Therefore, numerical
methods remain to be the only option in solving practical
real optimization problems.
Three types of optimal designs in structural optimization

include topology, shape and size optimization. The aim of

topology optimization is to determine the optimal connec-
tion and relation of structural elements, which define the
existence or non-existence of the elements. Shape
optimization is the process of looking for an optimum
geometry for the structure, and optimal sizing is focused on
the determination of optimal cross sections for the
structural elements. The proposed hybrid genetic ant
colony algorithm (HGAC) in this paper is to find optimal
topology and sizing for steel braced frames.
During the recent decades, there has been a tendency to

develop heuristic methods to solve discrete optimization
problems, which have been inspired from the nature.
Although in these methods, there is no guarantee for
feasibility and optimality of the solutions, however, they
are able to obtain near optimal solutions, which are not
possible to attain by conventional gradient-based methods.
The developed heuristic methods for optimal design of
structures consist of genetic algorithm (GA) [1,2],
evolutionary programming (EP) [3], simulated annealingArticle history: Received May 14, 2015; Accepted Aug 20, 2016
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(SA) [4], evolution strategies (ESs) [5], ant colonies (AC)
[6,7], particle swarm optimization (PSO) [8], tabu search
(TS) [9], and cellular automata (CA) [10]. Elbeltagi et al.
[11] presented a comparative study on five evolutionary
heuristic optimization algorithms in 2005. GAs,
among the heuristic algorithms, are most famous for
structural optimal design and have a great potential in
producing optimal solutions for practical problems
[12,13].
In 2005, Espinoza et al. demonstrated that hybrid GAs

(HGAs) with local search algorithms required significantly
fewer function evaluations to achieve convergence when
compared with the simple GA [14]. As stated in the
literature, GA has strong ability to exploit using crossover
and mutation operators, while ant colony (ACO) is more
famous to explore providing diverse population [15,16].
Chan andWong [17] proposed a hybrid algorithm based on
GA and optimality criteria (OC) for structural topology and
size optimization of tall steel frames. Chen et al. proposed a
co-evolutionary model based on dynamic combination of
GA and ACO [18]. Kicinger and Arciszewski [19]
reported that HGAs have formed a rapidly growing
research area with great potential in solving structural
design problems. They studied empirical analysis of
memetic algorithms for conceptual design of tall buildings.
Kareem et al. reported a strong work by utilizing
computational fluid dynamics to optimize tall building
design [20]. Spence and Kareem [21] investigated data-
enabled design and optimization for tall buildings.
Performance-based topology optimization for wind-sensi-
tive tall buildings has been studied and successive results
reported [22].
Practical optimal topology for reinforced concrete

moment resisting frames (RCMRFs) is reported in the
literature [23]. Similar studies are reported in the literature
for steel moment resisting frames with and without
bracings [24,25]. Kaveh et al. worked on plastic analyses
of frames using genetic algorithm and ant colony algorithm
[26]. Babaei et al. studied multi-objective optimization of
RCMRFs using a non-dominated sorting genetic algorithm
II (NSGA-II) [27]. To solve quadratic assignment
problems (QAP), Xu et al. [28] proposed a novel adaptive
GA-ACO-local search hybrid algorithm, which is a
synergy between the main algorithms. More recently,
optimization of tall buildings with outrigger belt trusses
were investigated and optimum location and number for
trusses were proposed based on two objective functions
[29].
The following section defines the optimal design

problem formulation, to review the application of GA
and ACO algorithms, and to develop the proposed novel
hybrid algorithm. Section 3 includes case studies to
illustrate the capability of the HGAC method for topology
and size optimization of steel braced frames. Significant
conclusions are drawn in Section 4.

2 Formulation and optimization method

A minimization problem obtains the design variables so
that the objective function is minimized by satisfying all
the defined constraints. In general, constrained minimiza-
tion problems are formulated as follows:

minimize :           f ðxÞ,
subject  to :           gmðxÞ£0        ðm ¼ 1,2,:::MÞ,
xLi £xi£xUi       ðn ¼ 1,2,:::,NÞ,

(1)

where f ðxÞ is objective function; x ¼ fx1,x2,:::,xNg is the
design variable vector of N members; andM is the number
of constraints.
In multi-objective minimization problems, the design

variables are obtained based on the different combinations
of the objective functions. Typically, a multi-objective
minimization problem could be defined as follows:

minimize :           FðxÞ ¼ ðf1ðxÞ,  f2ðxÞ,  :::,fnðxÞÞ,
subject  to :           gmðxÞ£0        ðm ¼ 1,2,:::MÞ,
xLi £xi£xUi       ðn ¼ 1,2,:::,NÞ,

(2)

where f1ðxÞ,  f2ðxÞ,  :::,  fnðxÞ are objective functions; n is the
number of objective functions; x ¼ fx1,x2,:::,xNg is the
design variable vector of N members; andM is the number
of constraints.
There are many different methods to convert a multi-

objective optimization problem into a single objective
optimization problem [30], the most popular one of which
is the weighted sum method (WSM) [31]. In this method,
the main objective function is obtained by a linear
combination of all weighted objective functions as follows:

FðxÞ ¼
XM

i¼1

wifiðx1,  x2,  :::, xnÞ, (3)

where w is a nonzero weight vector for objective functions,

defined so that
XM

i¼1
wi ¼ 1. If all the weights are

positive, then the minimum value of the main objective
function is Pareto front [32].
The objective function for multi-objective optimal

design of steel braced frames using weighted sum method
could be written as:

f ðxÞ ¼ w1f1ðxÞ=f1minðxÞ þ w2f2ðxÞ=f2minðxÞ

¼ w1:
Xn

i¼1

�i:li:xi=f1minðxÞ þ w2:roof =f2minðxÞ: (4)

The stress constraints are as:

j�i

�a
i
j£1;      i ¼ 1   to   n: (5)
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In addition, the displacements constraints are:

δi£δmax;      i ¼ 1   to  m, (6)

where f1ðxÞ and f2ðxÞ are the total weight and displacement
objective function of the structure, respectively; f1minðxÞ
and f2minðxÞ are the minimum weight and displacement
objective functions obtained by assigning the weakest and
the strongest cross sections to the elements, respectively;�i
and �ai are the existing and allowable bending stresses,
respectively; δi and δmax are the story and allowable
deflections; and �i is the density of the structural elements.
The penalized objective function is as follows:

f ðxÞ ¼ w1$f1ðxÞ$ð1þ CwÞPw=f1minðxÞ
þ w2$f2ðxÞ$ð1þ CdÞPd=f2minðxÞ

¼ w1$ð
Xm

i¼1

gi$Li$AiÞ$ð1þ CwÞPw=f1minðxÞ

þ w2$Δroof $ð1þ CdÞPd=f2minðxÞ, (7)

where Cw,  Cd and pw,  pd are the penalty value and
exponent for weight and displacement objective functions,
respectively.

Assuming w1 ¼ α and w2 ¼ 1 – α, (since
XM

i¼1
wi ¼ 1)

, the objective function may be written as:

f ðxÞ ¼ α$f1ðxÞ$ð1þ CwÞPw=f1minðxÞ
þ ð1 – αÞ$f2ðxÞ$ð1þ CdÞPd=f2minðxÞ

¼ α$ð
Xm

i¼1

gi$Li$AiÞ$ð1þ CwÞPw=f1minðxÞ

þ ð1 – αÞ$Δroof $ð1þ CdÞPd=f2ðxÞ: (8)

Since the two objective functions are not in the same
scale, they must be normalized properly. Therefore, the
normalized compound objective function could be written
as follows:

f ðxÞ ¼ α$F1ðxÞ$ð1þ CwÞpw

þ ð1 – αÞ$F2ðxÞ$ð1þ CdÞpd , (9)

where F1ðxÞ and F2ðxÞ are the normalized total weight and
displacement objective functions of the structure, respec-
tively.
Genetic algorithm is one of the stochastic search

methods, which is inspired by the nature. GAs have
many applications in solving optimization problems. In the
nature, better generations are achieved by combination of
better chromosomes. Sometimes, during the combinations,
mutation in chromosomes occurs, which may result in a
better chromosome. There are, usually, some operators for
selection, combination and mutation of chromosomes,
however, GAs utilizes four operators of fitness, selection,
crossover and mutation to solve the problems.
GAs, initially, create a number of solutions, renowned as

first generation/population, stochastically or systemati-
cally. Each solution is named a chromosome. Subse-
quently, new generations are created, using selection,
crossover and mutation operators. Finally, the old popula-
tion is combined and replaced by some or all of the new
population.
Ant system-rank (AS-rank) algorithm is the most

famous method of ant colony algorithms, introduced by
Bullnheimer et al. [33]. In this algorithm, each ant trails a
pheromone base on its rank and the best ant contains the
largest value of pheromone, similar to elite ant system
(EAS). The pheromone updating formula is can be written
as:

τji ¼ ð1 – �Þ$τji þ
Xw – 1

r¼1

ðw – 1ÞFðsrÞ þ wFðsbsÞ, (10)

where τji is the intensity of trial; � is the evaporation
constant between 0 and 1; FðsrÞ is the trial change for the
ranked ants; wFðsbsÞ is the extra trial for best, elite,
solution.
Since better performance of GA and ACO is represented

in the literature [33], they are employed as the main
algorithms of this research. Many different combinations
of these methods are developed [34]. In this paper, a
dynamic hybridization of GA and ACO is developed and
applied to solve multi-objective optimal design of steel
braced frames, which has not applied in the literature for
steel braced frames optimization. The phenomenon of long
time convergence, precocity, and stagnation sometimes
emerge from GA and ACO. The status of execution
process in each algorithm is different. In the other words, in
the executing procedure stage, best chromosome, in GA, is
different from best ant. Therefore, a hybrid algorithm is
presented to run ACO and then switches to GA by
evaluating the running state.
According to the code requirements and engineering

experiences, in a frame structure the elements of lower
levels are stronger than the upper levels. Although it
depends on the loading condition and the topology of the
structure, but in a building frame structure, beam, column
or even brace sections in the first floor need to be the
heaviest, while the sections at the top level of the structure
need to be the lightest profiles. In this article, sorting of the
element sections based on their section number is proposed
and applied in the developed algorithm, as a new operator.
Many tested examples and their results have shown the
effectiveness of this new operator, as illustrated in
experimental section.
The stagnation and slow convergence phenomenon

emerges in GA and ACO. To overcome this phenomenon
during the optimization process, the following definition is
applied in the hybrid algorithm:

ConvergenceðiÞ ¼ jfavgðiÞ – favgði – 1Þj, (11)
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favgðiÞ ¼
1

n

Xn

j¼1

f javgðiÞ, (12)

where i is the generation of GA or ACO; favgðiÞ is the

average fitness in GA or ACO in the i th generation; f javgðiÞ
is the fitness of the j th chromosome in GA or ant in ACO; n
is the number of chromosomes in GA or ants in ACO. The
defined convergence will become small when the speed
convergence tends to slow or stop.
HGAC starts by running ACO. By checking the status of

the process using Eqs. (10) and 11, the algorithm switches
to the other main approach and continues the process until
the termination criteria met. During the process, the new
operator searches for the better solution alongside the other
operators. The penalized objective function is introduced
and employed during the optimization process. However,
not only the penalized total weight of the structure is
obtained, but the total weight of the frame is also obtained
to compare the results.

3 Numerical results and discussion

3.1 Ten-storey braced frame

In this case study, multi-objective topology and size
optimization of a ten-storey three-span braced frame is
considered to evaluate the developed hybrid algorithm, as
shown in Fig. 1. Braces may be added to the middle span.
Span length and storey height of the frame are set to 5 and
3.5 m, respectively. Uniform distributed gravity loads on
the beams are considered to be 50kN/m and a lateral point
load of 30 kN is applied at each story. Topology of the
braces and cross section of the columns, beams and braces
are defined to be design variables.
Two objective functions of the total weight and the

maximum roof displacement are converted to a single
objective function using Eq. (8). Columns and beams

sections may be selected between W4 � 13 and W44 �
335 AISC W-shaped sections. Element groupings are
illustrated in Fig. 2, to consider the symmetry for the
frame. There are 10 topological and 10 cross sectional
design variables for braces, and 40 cross sectional
variables for beams and columns. As a whole, a total of
60 design variables are considered in this example.

The termination criterion is applied when the number of
iteration is 100 or when the results of 10 consecutive
iterations are similar. Since two objective functions are
employed, there is not one specific optimal solution for this
problem and trade-off between two objectives are obtained
using WSM, as illustrated in Fig. 5. As shown in this
figure, a large value of α results in for the structural weight,
the first objective function, to be important throughout the
optimization procedure and decrease the number of braces,
but it leads to an increase in the displacement of the best
solution, and vice versa. When α ¼ 0, the displacement of
the frame is very small, however the weight of the structure
increases drastically to control the displacement.
The results of the three different scenarios, assuming

α ¼ 1,  0:6,  0:2, are given in Table 1. The effect of this
coefficient on the trade-off between objective functions is
clear. Since all constraints are satisfied, both the penalized
weight and the net weight of the structure are the same.
Figure 3 shows the convergence history for HGAC, GA,
and ACO, and Fig. 4 illustrates the effect of sorting
elements cross section on the HGAC convergence. More-
over, Fig. 5 displays Pareto front, illustrating the topology
of different scenarios. This figure shows that to optimize

Fig. 1 The topology of the fully braced frame

Fig. 2 Grouping scheme for the elements

Table 1 Optimal results for the scenarios

scenario 1 scenario 2 scenario 3

penalized weight (kN) 304 471 747.7

net weight (kN) 304 471 747.7

displacement (cm) 3.85 1.63 0.72
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the weight of the structure, the frame does not need more
braces, while to minimize the displacement more floors (at

least 60 percent) need bracing elements. The best final
topology of the structure, when the total weight of the
frame is minimized by satisfying the displacement
constraint, is shown in Fig. 6.

3.2 Forty-storey braced frame

In this example, multi-objective topology and sizing
optimization of a 40-storey three-span braced frame is
considered. The topology and loading conditions are given
in Fig. 7. Span length, storey heights, bracing locations,
elements grouping and uniform distributed gravity loads
on the beams are the same as example 3.1. Topology of the

Fig. 3 Convergence history of HGAC, GA and ACO three
algorithm for 10-storey braced frame

Fig. 4 The effect of new operator in convergence of the GA

Fig. 5 Trade-off between total weight and roof displacement for 10-storey braced frame

Fig. 6 The best final topology for ten-storey braced frame
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braces and cross section of the columns, beams and braces
are defined to be the design variables. Two objective
functions of the total weight and the maximum roof
displacement are converted to a single objective function
using Eq. (8). Columns and beams sections may be
selected between W4 � 13 and W44 � 335, AISC W-
shaped sections. There are 40 topological and 40 cross
sectional design variables for braces, 160 cross sectional
variables for beams and columns, adding up to a total of
240 design variables, to be considered in this example.
A number of 100 chromosomes are set as the initial

population. Mutation rate for topology and elements cross
sections are set to be 20 and 5 percent, respectively. To
explore design space efficiently in order to find better
structural forms, a large value of topology mutation rate is
assigned.
Figure 8 shows optimal topologies obtained by HGAC

for the five different runs of the algorithm. These results are
achieved when displacements are set as constraints during
the optimization procedure. Since HGAC is a stochastic
evolutionary method, different results may be obtained;
however, the results have a small variance. The optimal
penalized weight and the required bracings (in percentage)
for every run are given in Table 2. At least 42 percent of the
stories are needed to be strengthened by bracings to control
displacements. The convergence history of HGAC for the
five different runs and the average of these runs are
illustrated in Fig. 9.
It is difficult for designers to make a decision on

selecting the best topology based on the obtained forms in
Fig. 8, which are not practical. To overcome this problem,
another constraint is imposed in the optimization problem
to find practical topologies. In this case, the algorithm does
not allow a chromosome/ant with a separated bracing
layout to be selected as an individual during the
optimization procedure. Only ordered bracing patterns
remain in the population. The total weight and the
maximum displacement are converted to a single objective
function using different weights of 0.50 and 0. When α is
set to be 0.50, the optimal topologies are obtained
assuming the same importance for two objective functions,
and both objectives are minimized. In the case of α ¼ 0,
only the maximum displacement is minimized. The
optimal topologies for the second scenario are drawn in
Fig. 10 for the five runs. The optimal penalized weight and
the number of the required bracings for every run of these
two scenarios are given in Table 3. As shown in this table,
almost similar results are obtained for a specific scenario.

4 Conclusions

In this paper a novel hybrid genetic ant colony (HGAC)
algorithm is developed for optimal design of steel braced
frames. The topology and sizing of the braces along with

Fig. 7 The topology and loading of the fully braced 40-storey
frame.

Table 2 Optimal results obtained for five different runs of HGAC

run 1 run 2 run 3 run 4 run 5

penalized weight (kN) 3442.4 3361.6 3262.0 3138.4 3121.8

required braces (%) 42 42 45 47 58
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sizing of the frame elements are considered as design
variables and they are formulated to apply optimization
method to the numerical examples. For multi-objective
optimization, the total weight and the maximum lateral
displacement of the frames are taken as the objectives to be
minimized. Formulation of the problem is converted to a
single-objective optimization procedure, using weighted
sum method (WSM). A trade-off between the objective
functions are then obtained and shown. The following
results were achieved by applying the algorithm to multi-
objective optimization of 10 and 40-storey braced frames:
a) the algorithm is capable of finding the optimal
topologies and sizing; b) the greater the weight coefficient
for displacement objective function, the more braces it

Fig. 8 Final topologies for different runs of HGAC

Fig. 9 Convergence history of different runs of HGAC for 40-
storey braced frame
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needs to control the displacement; c) similarity in the
convergence history results for different runs of HGAC; d)
proven capability of the algorithm in fast convergence and
achieving solutions better than those obtained by GA and

ACO.

Acknowledgement The authors would like to thank Dr. Maryam Sanaei for
checking the language of the manuscript.

Fig. 10 Final practical topologies: scenario 2, different runs of HGAC

Table 3 Optimal practical results obtained for five different runs of HGAC

alpha run 1 run 2 run 3 run 4 run 5

scenario 1 0.50 penalized weight (kN) 3201.4 3223.7 3201.4 3223.7 3264.0

number of braces 1 0 1 0 3

scenario 2 0.00 penalized weight (kN) 3752.9 3891.3 3743.4 3683.5 3601.7

number of braces 14 13 13 9 12
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