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ABSTRACT Intelligent compaction (IC) is a relatively new technology for asphalt paving industry. The present study
evaluated the effectiveness and potential issues of the IC technology for flexible pavement resurfacing construction using
two field projects. In the first project, a geostatistical semivariogram model was established and the parameters derived
from it were compared with univariate statistical parameters for the Compaction Meter Value (CMV) data. Further
analyses illustrated the effect of temperature on the CMV value and compaction uniformity. In the second project, a
multivariate analysis was performed between in situ tests and IC data. The possibility of combining various IC data to
predict the asphalt layer density and improve the current quality control and assurance system was discussed.
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1 Introduction

Compaction is one of the key processes to acquire desired
long-term pavement performance, especially for hot-mix
asphalt (HMA) layers. Conventional compaction methods
have worked reasonably to achieve the target compaction
level of asphalt materials over the past decades. However,
there are some long existing and nontrivial shortcomings.
Typically, a conventional compaction method applies a
standard vibratory roller for a certain number of passes to
the material being compacted. A uniform roller pattern
covering an entire lane is not an easy task to achieve
because rollers are manually controlled by roller operators,
and even a uniform fixed number of passes cannot
guarantee a uniform compaction level since many other
critical factors, such as changes in the underlying support,
or non-uniform temperatures in HMA, also affect the
degree of compaction. Unfortunately, these critical factors
are invisible to roller operators sitting on a conventional
roller compactor. Therefore, no timely adjustment can be
made to avoid potential over-compaction or under-
compaction.
Conventional methods for density quality control and

assurance (QC/QA) of asphalt materials are also question-
able [1,2]. Some spot tests, either core-drilling or nuclear
gauge test (NG), are usually performed at selected spots
and then the results are extended to determine whether the
entire asphalt layer has achieved the required density level.
As mentioned before, the changes in the critical factors
affecting compaction may compromise the representative-
ness of these spot tests performed at limited locations.
Also, merely using asphalt layer density as the acceptance
criterion does not ensure the required stiffness and/or
strength of the particular layer, or the quality of entire
pavement structure to withstand traffic loading.
During the past decade, a new compaction technology –

Intelligent Compaction (IC) – has gained an increasing
attention in the asphalt paving industry. According to the
Federal Highway Administration (FHWA), IC refers to “an
improved compaction process using rollers equipped with
an integrated measurement system that consists of a highly
accurate GPS, accelerometers, onboard computer report-
ing system, and infrared thermometers for HMA feedback
control. By integrating measurement, documentation, and
control systems, the use of IC rollers allows for real-time
monitoring and corrections in the compaction process. IC
rollers also maintain a continuous record of color-coded
plots that indicate the number of roller passes, compactionArticle history: Received Feb 12, 2016; Accepted May 6, 2016
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level, temperature measurements, and the precise location
of the roller drum [3].”With the IC technique, some critical
factors affecting compaction, such as roller passes and
temperature, are made visible to roller operators in real
time with color-coded displays. Therefore, it has the
potential to improve the quality and uniformity of asphalt
layers by timely adjusting the compaction pattern. The IC
technology may also overcome the shortcomings of
conventional QC/QA methods in two aspects: First, it
can cover the compacted area with 100% coverage other
than limited spots; second, the IC measurement value
(ICMV) can served as an index to evaluate the stiffness or
strength of pavement to a certain depth [4,5].
While applied successfully on soil compaction for many

years [6–9], IC is still a relatively new technology for
HMA compaction. Only few strong correlations between
ICMV and in situ spot test results of HMA have been
reported by former researches [2,10,11]. The effect of
HMA temperature on the evaluation of compaction
uniformity was rarely discussed in the existing literature.
Therefore, further studies are needed to utilize ICMVas an
index to evaluate the compaction effect under the current
QC/QA system. Diverse ICMV definitions from different
roller manufacturers also impede the standardization and
implementation of IC technology on HMA compaction.
The features of HMA resurfacing projects can further
complicate the situation: mapping existing support materi-
als using IC rollers prior to subsequent HMA paving can
identify weak locations, but usually it is unfeasible for
resurfacing projects when considering the potential
damage both to the milled original surface and to the
roller. For some resurfacing projects all rollers are in a
vibration off mode, and no ICMV data can be displayed as
an index for the roller operator.
The objective of this paper is to evaluate the effective-

ness and to identify the potential issues of IC technology
on HMA resurfacing projects. The IC data and in situ tests
of two HMA resurfacing projects in Tennessee were
collected and analyzed for this purpose. This study
identified the challenges of utilizing geostatistical model
in characterizing the compaction uniformity, and analyzed
the correlation between the IC data and in situ testing
results. ArcGIS, Veda and JMP software packages were
used as tools in the analysis process.

2 Methodology

For the IC technology, a number of different measurements
are made during the compaction process, including GPS
roller position, speed, number of roller passes, surface
temperature and distribution of ICMV. Based on the
collected data, the univariate statistics and geostatistics can
be performed to evaluate the compaction uniformity. A
brief introduction of ICMV and geostatistics is as follows.

2.1 IC Measurement Value (ICMV)

As mentioned above, different vendors use different types
of ICMV with the same purpose of evaluating the level of
compaction. Currently, at least six manufacturers adopted
five different ICMVs on their machines [2]. IC roller
basically records the machine–ground interaction data
from an accelerometer that is mounted to the roller drum,
and simultaneously calculates the ICMV value as an index
related to the material stiffness [9,12]. Since all rollers in
the two resurfacing projects used the vibratory-based
Compaction Meter Value (CMV) as the ICMV, a brief
description of CMV is provided here.
Developed by Geodynamik, CMV is a dimensionless

compaction parameter that depends on roller dimensions
(i.e., drum diameter and weight) and roller operation
parameters (e.g., frequency, amplitude, and speed) and is
determined using the dynamic roller response [13]. In the
frequency domain, it is calculated as the ratio of vertical
drum acceleration amplitudes at fundamental vibration
frequency and its first harmonic. The fundamental
vibration frequency is the operating frequency of roller.

CMV ¼ C � A2Ω

AΩ
, (1)

where C = constant; A2Ω = acceleration amplitude of the
first harmonic component of the vibration; AΩ = accelera-
tion amplitude of the fundamental component of the
vibration. It was found that the force amplitude ‘F’ of the
roller blows is proportional to A2Ω, and the displacement
“s” during the blow can also be approximated by AΩ [9].
As the ratio of the force and the corresponding displace-
ment, the CMV can represent a “cylinder deformation
module” Ec. Many studies have tried to correlate CMV to
soil dry unit weight, strength, and stiffness [14,15].

2.2 Geostatistical model

Geostatistics is a branch of statistics focusing on spatial
data sets, which is a much better method than the univariate
model to characterize and quantify spatial variability. The
semivariogram is a common tool used in geostatistical
studies to describe spatial relationships. It is defined as
one-half of the average squared differences between data
values that are separated at a certain distance [16]. If this
value is calculated repeatedly for as many different values
of distance as the sample data support, a semivariogram
plot can be obtained as shown in Fig. 1 [13]. The
mathematical expression to achieve the experimental
semivariogram r(h) is as follows:

r hð Þ ¼ 1

2nðhÞ
XnðhÞ

i¼1
½zðxi þ hÞ – zðxiÞ�2, (2)

where h = lag distance; z(xi) = measurement taken at
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location xi; n(h) = number of data pairs for lag distance h of
a specific lag area [17].

Three important parameters of a semivariogram plot are
explained below:
1) Sill is defined as the plateau that the semivariogram

reaches. A semivariogram generally has a sill that is
approximately equal to the variance of the data.
2) Range is defined as the distance at which the

semivariogram reaches the sill. Longer range values
suggest greater spatial continuity or spatial coherence.
3) Nugget effect is defined as the vertical height of the

discontinuity at the origin which mostly represents
sampling error or short scale variations.
From a semivariogram model, a lower “sill” and longer

“range” indicates an improved uniformity and spatial
continuity, while the opposite represents an increasingly
non-uniform condition. An empirical semivariogram
model is used to fit to the observed semivariogram as
shown in Fig. 1. The major purpose of it is to quantify the
geospatial variability using the model parameters. Many
models can be used here to fit an observed semivariogram,
such as linear, spherical, exponential, and Gaussian models
[16]. The exponential model is used in the Veda software,
which is developed by the Transtec Group for viewing and
analyzing geospatial IC data.

3 Project I

3.1 Information

The first resurfacing project using the IC technology was
performed in Crockett County, Tennessee in October 2013.
The project was 8.704 miles in length on a four lane
portion of State Route 20, which consisted of a 1.25 inches
(3.2 cm) thick overlay on an existing asphalt pavement
surface in accordance with the Tennessee Department of
Transportation (TDOT) specification. The HMA job mix
formulas are presented in Table 1. This type of HMA has
been successfully applied on resurfacing program by
TDOT for many years.

A high frequency double drum vibratory roller, HAMM
HD120, was equipped with IC system as shown in Fig. 2.
The roller was operated at a nominal frequency of 38 Hz
and at an amplitude of 0.8 mm during breakdown rolling.
One accelerometer was mounted in the front drum and the
ICMV data were collected in both forward and reverse
directions. An offset has been validated between GPS
antenna and center of front drum before the compaction.
Two temperature sensors were mounted to collect the
temperature data in both directions. The number of
breakdown roller passes for this project was set at two.
Another same model roller, also equipped with IC but in
static mode, was used for intermediate rolling. The roller
parameters such as speed and frequency were selected by
the paving crew based on their experience. All IC data for
both rollers during construction, including roller passes,
temperature, CMV, etc., were recorded and stored during
compaction for further analysis.

3.2 Compaction curve

Many prior studies have demonstrated the advantages of
IC on improving the roller pattern and identifying the
optimum roller pass, or applying the geostatistical model to
evaluate the compaction uniformity [18,19]. However,
unlike the soil and base materials, these benefits may
require a more comprehensive consideration due to the
effects of temperature and the viscoelastic nature of HMA.
Before the IC data from Project I can be used for further
analysis, it is necessary to filter some invalid data since the
roller left the compacting area occasionally. A criterion as
surface temperature> 50°C should perform this duty well.
The reason of choosing a 50°C to filter some data out is
because that the roller left the compacting area occasion-
ally. When the roller is on the old cold pavement and the

Fig. 1 Typical sample semivariogram

Table 1 Job Mix Formula

aggregate
gradation

sieve Size percent passing (%)

project I project II

5/8 in. 100 100

1/2 in. 97 98

3/8 in. 88 88

No.4 68 65

No.8 52 44

No.30 29 25

No.50 17 13

No.100 9.4 7.7

No.200 6.2 5.4

mix properties AC content, % 6.2 5.9

AC binder type PG70-22 PG64-22

theoretical maximum 2.301 2.420

density (g/cm3)
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vibration mode is still on, it will give a higher and useless
CMV data and impair the result of analyses. Using this
filter can remove the data from the old pavement.
One major benefit of the IC technology is the capability

of tracking and evaluating the compaction pattern: The
mean CMV of a compacted area for each roller pass is
computed with the Veda (compaction curve function), then
the optimum roller pass number can be identified based on
the changes of mean CMV. Figure 3 shows the compaction
curves for the breakdown roller for four working days. As
mentioned above, the CMV value can be used as an index
relating to the material stiffness with certain depth for the
same location. Since the property of the underlying
material keeps constant for the same location, the decrease
of CMV value will largely reflect the change in the
stiffness of the surface HMA material. It is found in Fig. 3
that generally the mean CMV increases in the second pass
and then decreases in the third pass of the roller. Therefore,

the optimum roller pass number according to compaction
curves coincided with the target number set by experience.
The compaction curve also demonstrates that excess
vibrating passes on compacted asphalt material does not
help the compaction of HMA.
With the help of IC record, the compaction quality can

be evaluated more accurately. According to the optimum
pass number from compaction curves, the IC data of this
project revealed that over 85% paving areas had reached
two passes compaction of the breakdown roller. This
project also successfully demonstrated the capability of the
IC roller to track the surface temperature of HMA,
therefore the compaction job could be accomplished
during the appropriate temperature range.

3.3 Compaction uniformity

Using geostatistical semivariogram model, many research-

Fig. 2 Rollers with IC equipment. (a) Project I; (b) project II

Fig. 3 Compaction curves. (a) October 14; (b) October 15; (c) October 17; (d) October 18
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ers, such as Pavana K. R. Vennapusa et al., have
successfully quantified the nonuniformity of compacted
earth materials [13]. Utilizing Veda, a summary of spatial
and univariate statistics results of CMV for the breakdown
roller for each construction day are presented in Table 2
and Fig. 4, which usually had a sample size over 10,000
and a compaction length over 1 mile. The exponential
model is used here and the nugget value equals zero. The
daily surface temperature records are also presented here as
a reference. In general, the results of spatial statistics
showed a trend similar to that from the univariate statistics.
When the mean m and standard deviation s of univariate
model had a significantly rise, the range and sill of
semivariogram model usually also became large on that
day. In particular, the sill and the standard deviation shared
an identical trend, which agrees with the statement that a
semivariogram generally has a sill that is approximately
equal to the variance of the data. On other hand, the mean
of surface temperature showed an opposite trend compar-
ing to the mean of CMV. From Table 2, the semivariogram
model generally shared similar results with the univariate
model using daily record. However, this conclusion no
longer holds for relatively small sections. When the daily
IC data on 24 October were divided into sections around
300 ft in length, some sections had various values for
semivariogram model when the univariate model results
kept very alike.
To further investigate the effect of temperature on

semivariogram and CMV, a section around 1500 ft in
length at the beginning part of 24 October was chosen, and
only the data of the first pass of the breakdown roller were
used to eliminate the possible effect of different HMA
density on the CMV value. The exponential model in
ArcGIS was used to fit the observed semivariograms with

different surface temperature filters as shown in Table 3
and Fig. 5. It can be seen that filtering the data of relatively
low surface temperature decreased the sill value. Accord-
ing to that a lower “sill” and longer “range” indicates an
improved uniformity and spatial continuity, this operation
improves the results of semivariogram model.
As an index related to the material stiffness, the CMV

value measured from the roller drum is actually an integral
value influenced by deeper layer. The literature shows
inconclusive results about the measurement depth of a
vibration roller (from 50 to 100 cm), which is much larger
than the thickness of resurfacing layer [13,20]. For both
soil and HMA compaction, a desired uniform density is the
goal of current QC/QA system, which is also the
semivariogram model attempting to quantify. If the
underlying support is stable, for the soil compaction,
semivariogram model may reveal the uniformity of soil
density. However, the situation is more complicated for the
HMA compaction, since the stiffness of HMA relies not
only on the density of HMA, but also on the temperature of
asphalt. The original Witczak model, which relates the
dynamic modulus of HMA to parameters such as
temperature, asphalt content, and air voids content, was
utilized here to further demonstrate the effect of tempera-
ture [21]. Using the job mix formula and roller parameters
of this project, the dynamic modulus of HMA was
calculated under the scope of air voids and temperatures
during compaction. As shown in Fig. 6, if the same air
voids is assumed as 10% for the first pass, the dynamic
modulus of HMAwill still vary from 53 ksi in 88°C to 14
ksi in 143°C during the same roller pass.
The temperature has a significant effect on the CMV

value, therefore one should be careful when using CMV to
evaluate the compaction level of asphalt. For example, a

Table 2 Comparison of spatial and univariate statistics of CMV

date univariate model
of CMV

semivariogram model
of CMV

temperature
(°C)

μ σ range (ft) sill μ σ

15/10 61.68 18.80 7.87 320.31 109.6 18.25

17/10 60.84 20.10 9.19 387.01 114.2 15.87

18/10 55.76 18.30 9.19 308.86 118.2 16.26

21/10 63.32 19.80 7.87 335.14 108.6 18.58

22/10 76.14 26.80 11.81 438.67 98.6 21.32

23/10 85.30 27.46 15.75 495.73 99.1 19.50

24/10 70.53 19.57 11.81 309.52 106.4 17.62

Table 3 Results of statistics of CMV with different temperatures range

temperature (°C) univariate model of CMV semivariogram model of CMV sample size

μ σ range (ft) sill

all data 78.08 22.76 13.07 297.35 4,169

> 80 71.84 17.96 11.30 251.94 3,462

> 105 71.67 17.61 11.77 239.23 3,164
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higher CMV may be accompanied with low temperature.
However, the viscoelastic properties of asphalt and other
factors such as underlying support may complicate the
correlation between temperature and CMV. It is clear that
the variability of temperature will cause changes in HMA
modulus, resulting in variations in CMV and semivario-
gram value eventually. Back to Fig. 4, when comparing the
statistical results of CMV on daily basis, the underlying
layer support and the average density of asphalt layer can
be assumed constant on daily basis with relatively large
data set, therefore the means of temperature and that of
CMV had a direct opposite relationship. For the purpose of
evaluating the compaction uniformity, the authors suggest
that the statistical results of CMV should be corrected to a
same reference temperature in the future research. When
considering the correlation between CMVs and in situ spot
test results, both the effects of temperature and underlying
layer support are significant, so it is not surprising that the
relationship between them is hard to define [2,17]. Thirty
cores were randomly selected after the whole compaction
and the laboratory densities (Gmm%) were measured. Due
to the variability of temperature and underlying pavement
structure, there is no direct correlation between CMVs and
core densities for this project using Veda as shown in
Fig. 7.

4 Project II

4.1 Information

The second resurfacing project using the IC technology
was conducted in Lincoln County, Tennessee in October
2013. The project was 6.386 miles in length on a four lane
portion of State Route 15, which also consisted of a 1.25
inches thick overlay on an existing asphalt pavement
surface in accordance with the TDOT specification. The
job mix formula is shown in Table 1. A HAMM HD120
was used as the breakdown roller as shown in Fig. 2, and
the number of breakdown roller passes for this project was
also set at two. An Ingersoll Rand DD110 was used as the
intermediate roller. It should be noted that both the

breakdown and intermediate roller were in static mode
for the entire project.

4.2 Analyzing IC data from project II

According to the result of the first project, using CMV
solely to predict the point density of HMA is hard to
achieve under the existing ICMV model. Apparently,
combining more IC parameters, such as the number of
roller passes, locations and temperature measurements, is
necessary to improve the current density QC/QA system
besides the function of real-time monitoring.

Fig. 4 Comparison of spatial and univariate statistics of CMV

Fig. 5 Semivariograms with different temperature filters. (a) All
data included; (b) temperature> 80°C; (c) temperature> 105°C
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Since all rollers were in the static mode, no CMV data
were available to evaluate the stiffness or strength of
pavement. For the second project, the possibility of
combining other IC data to predict the HMA density and
improve the current QC/QA system was evaluated.
Generally, many variables can affect the ability of the
roller to properly densify an HMA layer, such as aggregate
gradation, type and amount of asphalt binder, type and
condition of underlying pavement layers, thickness of the
HMA layer, as well as environmental factors. Though not
all factors can be monitored by IC roller, some important
factors, the number of passes and the surface temperature,
can be obtained through daily compaction.
The NG tests were calibrated with asphalt cores on the

first day of the project. Later, it was performed randomly
during the whole construction period and approximately
60 NG measurements with GPS location were obtained.
The multivariate analysis was utilized to test the correla-
tion between the IC data and NG densities. After
considering any possible factors in a preliminary analysis,
five factors were included for the correlation analysis: the

number of passes for the breakdown roller (roller 1) and
the intermediate roller (roller 2) respectively, the start
temperature for roller 1 and 2 respectively, the total interval
from the first pass of roller 1 to the last pass of roller 2,
since the temperature may be inappropriate for the latter
compaction if the total interval is too long. Only the closest
IC data were connected to the NG data because the
measurements for the neighboring IC data are same or
quite similar (passes, temperature, time, etc.). The
distributions of five factors and the degree of compaction
of HMA are shown in Fig. 8, and the statistical results are
summarized in Table 4.
Figure 8 and Table 4 show that the number of passes of

the breakdown roller and the total interval had a
statistically significant effect on the HMA density: More
passes of the breakdown roller in shorter interval helped to
increase HMA density in vibration off mode. The large p
value in Table 4 of the start temperature may suggest it did
not affect the result of compaction beyond some certain
range. However, the role of temperature should not be
under-estimated. In fact, the significance of total intervals
indicates that compaction should be finished before the
temperature is too low. These findings, when consistent
with the former experience, are necessary to quantify and
integrate the IC data into the density QC/QA system for a
particular HMA and area.
To further validate the accuracy of the IC data, using the

IC recorded locations, three groups of cores for same day
were taken based on the number of passes and tempera-
tures of IC records. The core densities and the correspond-
ing IC data are presented in Table 5. It can be seen that the
weak compaction areas could be located using the records
of IC data, and unsurprisingly, most of core samples in
group 1 were located on the edge of the pavement. Among
the total 17,492 proofing data on that day, the breakdown
roller had 278 samples with only one total pass and surface
temperature under 100°C. Apparently, comprehensive use
of IC data could potentially provide a more reliable QC/
QA method than the current point-testing QC/QA
approach.

5 Conclusions and summary

In this study, the effectiveness of IC technology was
evaluated through two HMA resurfacing projects in
Tennessee. In the first project, the challenges of utilizing
geostatistical model in characterizing the compaction
uniformity of HMA layer were identified. The geostatis-
tical semivariogram model of the CMV data was compared
with the univariate model, and the effect of temperature on
statistical results and CMV was illustrated. In the second
project, the IC data and in situ measured HMA density
results were correlated when all rollers were in the
vibration-off mode. The possibility of combining various
IC data to predict the HMA density and to improve the

Fig. 6 Distribution of HMA modulus

Fig. 7 Relationship between CMV and core densities
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current QC/QA system was discussed. The conclusions
and recommendations are summarized as follows:
1) The compaction curves during construction period for

the first project showed a consistent pattern, which could
be used to prevent over or under compaction.
2) The spatial and univariate statistical results of CMV

on daily basis showed very similar tendency. However, this
similarity may vary if the IC data were divided into small
sections.
3) Filtering the data of relatively low surface tempera-

ture improved the results of semivariogram. It was
suggested that the semivariogram of CMV should be
corrected to a same reference temperature to better quantify
the compaction uniformity.
4) The results of the multivariate analysis and the results

of core samples showed that the IC technology was able to
accurately locate poor compaction areas even without the

CMV data.
5) Although more researches are still needed, compre-

hensive use of IC data could potentially provide a more
reliable QC/QA method than the current density-only QC/
QA approach.
To improve the understanding of IC for the asphalt

compaction application, more future studies are needed
and the compaction uniformity should be evaluated by
considering the effect of underlying support, the drum
behavior and the HMA temperature on the ICMV value. It
is also recommended that the IC data be incorporated into a
pavement management system (PMS) so that long-term
benefits of IC technology may be realized in the future.
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Table 4 Results from multivariate correlation

term estimate Std error t ratio p value

intercept 93.9701 2.4119 38.96 < 0.0001

roller1 passes 0.3587 0.1347 2.66 0.0105

roller1 start temp 0.0053 0.0096 0.55 0.5824

roller1 passes 0.1709 0.1481 1.15 0.2543

roller1 start temp -0.0090 0.0073 -1.22 0.2272

total interval -0.0014 0.0004 -3.18 0.0026

Table 5 Core densities and IC records

group core number %density range of IC records

roller 1 roller 2

mean range number of passes start temp
(°C)

number of passes start temp
(°C)

1 3 87.5 86.3-89.8 1 82-86 0-1 0-58

2 5 94.1 92.7-95.9 2-4 129-143 2-4 90-136

3 5 96.1 95.9-96.3 4-8 126-143 7-9 98-123

Fig. 8 Distributions of factors and % density
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