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ABSTRACT Settlement of sediments behind weirs and accumulation of materials floating on water behind gates
decreases the performance of these structures. Weir-gate is a combination of weir and gate structures which solves them
Infirmities. Proposing a circular shape for crest of weirs to improve their performance, investigators have proposed
cylindrical shape to improve the performance of weir-gate structure and call it cylindrical weir-gate. In this research,
discharge coefficient of weir-gate was predicated using adaptive neuro fuzzy inference systems (ANFIS). To compare the
performance of ANFIS with other types of soft computing techniques, multilayer perceptron neural network (MLP) was
prepared as well. Results of MLP and ANFIS showed that both models have high ability for modeling and predicting
discharge coefficient; however, ANFIS is a bit more accurate. The sensitivity analysis of MLP and ANFIS showed that
Froude number of flow at upstream of weir and ratio of gate opening height to the diameter of weir are the most effective
parameters on discharge coefficient.
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1 Introduction

Modeling the hydraulic structure in real conditions is the
main part of hydraulic engineering studies. Weirs and gates
are the most common structures, which have been widely
used in water resource projects such as irrigation and
drainage networks [1,2]. As definition states, any obstacle
standing on the way of water flow is called a weir.
Construction of weirs on waterways reduces the velocity of
flow at the upstream weirs that leads to settlement of
suspended sediment [3–14]. Defining the hydraulic proper-
ties of flow over weirs is usually conducted under clean
water conditions. In other words, in most studies, the effect
of suspended sediment loads has been ignored, whereas in
real hydraulic projects water flows always include some
suspended loads [12,13,15–19]. Settlement of sediments in
upstream of weirs has lead to the change of defined
hydraulic properties, which are derived in laboratory
experiment conditions or theoretical formulas, which
have been proposed to this purpose. Israelsen and Hansen

[20] stated that when depth of tapped sediments is close to
75 percent of weir height, discharge is calculated eight
percent more than the real data. Gates are other structures
which are widely used in water engineering projects as
well. The main points related to gates are accumulation of
suspended material behind them. This condition caused to
change the condition of derived governing equation to real
situations. Improving the performance of hydraulic
structures is a major part of hydraulic engineering
activities. One way to solve the infirmity of both
mentioned structures is proposing a new structure, which
is a combination of both weir and gate called weir-gate
structure. Negm et al. [21] have studied hydraulic proper-
ties of V-Notches weir-gate. They proposed an equation to
calculate diacharge coefficient of weir-gate steucture.
Negm et al. [22] studied the effects of hydraulic and
geometric parameters on discharge coefficient of rectan-
gular weir-gate structure and realized that using conven-
tional weir discharge coefficient leads to unacceptable
errors for discharge calculation. UsingΠ theorem as a
dimensional analysis technique, Ferro [23] derived para-
meters involved in discharge coefficient of weir-gateArticle history: Received Feb 6, 2016; Accepted Apr 10, 2016
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structure. He stated that the ratio of critical depth relative to
specific discharge to the opening height of the gate and the
ratio of total upstream head to the opening height of the
gate are the most effective parameters on discharge
coefficient. Negm et al. [24] proposed an equation for
rectangular weir-gate with lateral contraction. They stated
that the ratio of total upstream head to the opening height
and the ratio of flow depth on opening height of the gate
are affective parameters for modeling discharge coefficient
of weir-gate structure. By advancing of experimental
studies on weir hydraulics, investigators have evaluated
various forms for crest of weirs. Among various forms of
weir's crest, the cylindrical form has been welcomed by the
researchers due to its high capacity for passing the flow
[25]. References [26,27] have conducted extensive studies
on flow characteristics over circular crest weir. They stated
that the ratio of total upstream head to the ratio of crest is
the most effective parameter on discharge coefficient of
circular crest weir [28–30]. Using circular crest concept,
investigators have tried to develop and improve the
performance of weir-gate by proposing cylindrical weir-
gate [31]. Figure 1 shows a schematic shape of cylindrical
weir-gate and its geometric and hydraulic parameters.
Cylindrical weir-gate as shown in the Fig. 1 can smoothly
pass the flow over and under the structure. Investigators
have studied the hydraulic properties of weir-gate structure
using laboratory experiments.
In Fig. 1, Qs is discharge in main channel, yup= upstream

flow depth,Hup = total head of flow at upstream, Qw = weir
discharge,Qg gate discharge,Hw depth of flow on the crest,
Qd = downstream discharge, yd = downstream discharge, a
= gate opening height, Vg = velocity of flow under the gate,
Vw = overflow velocity, Va = mean velocity, S0 = bed slope
of main channel, D = diameters of cylinder. Recently, by
advancement in soft computing techniques in water
resource management for accurately modeling hydraulic
phenomena [7–9,32–41], researchers have attempted to
use these techniques for modeling discharge coefficient of
hydraulic structures especially for weirs. Juma et al. [42]
used neural network techniques for modeling discharge
coefficient of circular crest weir. They stated that the neural
network has a high ability for modeling discharge

coefficient of circular crest weir. Up to now, authors have
not found any report on modeling discharge coefficient of
cylindrical weir-gate using illustrated soft computing
techniques in the materials and methods section. There-
fore, in this study, the performance of two soft computing
techniques (ANFIS and MLP) was evaluated for modeling
and predicting discharge coefficient of cylindrical weir-
gate.

2 Materials and methods

As shown in the literature, several hydraulic and geometric
parameters are involved in discharge coefficient of
cylindrical weir-gate. In Eq. (1), the involved factors
have come together.

f ðQs,yup,yd,Hw,a,Vw,Vg,D,δ,B,S0,g,�,�,�,CdsÞ ¼ 0, (1)

where B= width of main channel, g = gravity acceleration,
�= surface tension, δ = amount of contraction, �=
kinematic viscosity, �= fluid density, Cds = discharge
coefficient of weir-gate. Assessing the component of
involved parameters shows that three basic components
including length (L), time (T ) and mass (M ) are presented;
therefore, using Π theorem as dimensional analysis and
with regarding Eq. (1) and basic components, 13(16–3 =
13) dimensionless parameters are derived, as presented
in Eq. (2). It is notable that during derivation of
dimensionless parameters, three variables including D
(L), gðm=t2Þ and �ðm=l3Þ were considered as repetitive
parameters.
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Investigators have always attempted to keep turbulent
flow condition in their studies; therefore, the effect of

Fig. 1 Sketch of cylindrical weir-gate and its hydraulic parameters
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viscosity (Reup) is removed and have adherence to the
minimum depth as well, so that the Weber number (Weup)
can be ignored. Based on the published reports, in
experiments, usually the width of main channel and
longitudinal channel slope remain constant; therefore,
δ=D , B=D and S0 have constant values. Instead of
measuring the Froude number of flow over and below
the structure (Frw,Frg), the upstream Froude number (Frup)
has been measured. Equation (2) can be rewritten as
Eq. (3).
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¼ 0: (3)

With combination of both dimensionless parameters
(yup=D and yd=D) as below, the new form of Eq. (3) is

derived as Eq. (4). It is notable that the term Qs=g
0:5y2:5up is

familiar to the Froude number; therefore, the upstream
Froude number is a suitable proxy to show the effect of this
parameter. The flow was presorted subcritical in experi-
ments. Therefore, control of flow is conducted at the
upstream and the effect of tail water (yd) is negligible.
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In Table 1, 89 data sets related to involved parameters on
discharge coefficient of weir-gate are collected from Severi
et al. [31]. These data are used for developing ANFIS and
MLP models.

3 Artificial neural networks (ANNs)

ANN is a nonlinear mathematical model that is able to
simulate many complex mathematical system that relate
inputs and outputs. Multilayer perceptron (MLP) networks
are common types of ANN widely used in the research. To
use MLP model, definition of appropriate functions,
weights and bias should be considered. Due to the nature
of the problem, different activity functions in neurons can
be used. An ANN may have one or more hidden layers.
Figure 1 demonstrates a three-layer neural network
consisting of inputs layer, hidden layer (layers) and outputs
layer. As shown in Fig. 4, wi is the weight and �i is the bias
for each neuron. Weight and biases’ values will be
assigned progressively and corrected during training
process comparing the predicted outputs with known
ones. Such networks are often trained using back
propagation algorithm. In the present study, MLP was
trained by Levenberg–Marquardt technique, since this
technique is more powerful and faster than the conven-

tional gradient descent technique [7–9].

4 Adaptive neuro fuzzy inference systems
(ANFIS)

Adaptive neuro fuzzy inference system (ANFIS) is a
powerful tool for modeling complex systems based on
input and output data. ANFIS is realized by an appropriate
combination of neural and fuzzy systems. This combina-
tion enables using both numeric powers of intelligent
systems. In fuzzy systems, different fuzzification and
defuzzification strategies with different rules were con-
sidered for inputs parameter. For carried out the effect of
fuzzy logic on inputs data, three stages should be
considered. Stage one is selecting membership function
for each inputs variable. In this stage, a Gaussian function
may be considered for each of inputs variables. Figure 3
shows a fuzzy reasoning process. For simplicity, a fuzzy
system with two inputs and one output variable was
considered. Suppose that the rule base contains two fuzzy
if-then rules.

Rule  1 :   if   x  is  A1   and  y  is  B1; then  f1 ¼ p1xþ q1yþ r1,

Rule  1 :   if   x  is  A2   and  y  is  B2; then  f2 ¼ p2xþ q2yþ r2,

where A1, A2 and B1, B2 are MFs for inputs x and y,
respectively; p1, q1, r1 and p2, q2, and r2 are parameters of
output function. ANFIS architecture is presented in Fig. 3
(b). In the first layer, all inputs variables gave the grade
membership with membership function and in layer 2, all
membership grades will be multiplied together. In layer 3,
all grades of member will be normalized and in layer 4, the
contribution of all rules will be computed. And in the last
layer, output variable will be computed as weighted
average of grade membership [16].

5 Results and discussion

5.1 Results of ANNs

Preparation of multilayer perceptron (MLP) neural net-
work model as a common type of ANN models through
soft-computing techniques is based on the data set.
Therefore, collected data set was divided into three groups
as training, validation and testing data set. Validation data
set was considered for avoiding overtraining of ANN
model. The dimensionless parameters, presented in Eq. (4),
were desirable as input parameters for MLP model
development and discharge coefficient was considered as
model output. Data selection for preparation of MLP
model was carried out using randomly approach. Seventy
percent of total data set was considered for training, 15
percent for validation and the rest (15 percent) for testing.
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Table 1 Summary of collected data [31]

row a/D HW/D Frup Cds row a/D HW/D Frup Cdds

1 0.00 0.62 0.28 1.37 46 0.27 0.62 0.26 0.85

2 0.00 0.52 0.30 1.37 47 0.27 0.55 0.27 0.89

3 0.00 0.44 0.32 1.38 48 0.27 0.35 0.29 0.93

4 0.00 0.33 0.34 1.38 49 0.27 0.27 0.31 0.97

5 0.00 0.11 0.35 1.40 50 0.40 1.13 0.27 0.73

6 0.00 0.99 0.37 1.40 51 0.40 1.04 0.28 0.76

7 0.20 1.37 0.30 1.04 52 0.40 0.95 0.30 0.80

8 0.20 1.28 0.32 1.08 53 0.40 0.85 0.31 0.83

9 0.20 1.18 0.33 1.11 54 0.53 0.41 0.31 0.70

10 0.20 1.08 0.36 1.12 55 0.53 0.31 0.33 0.73

11 0.20 0.97 0.37 1.17 56 0.00 1.08 0.14 1.25

12 0.20 0.85 0.39 1.19 57 0.00 1.02 0.15 1.28

13 0.40 1.13 0.31 0.80 58 0.00 0.97 0.16 1.28

14 0.40 1.04 0.32 0.85 59 0.00 0.9 0.18 1.30

15 0.40 0.95 0.34 0.89 60 0.00 0.83 0.19 1.32

16 0.40 0.85 0.36 0.94 61 0.00 0.75 0.21 1.35

17 0.40 0.73 0.38 0.97 62 0.09 0.59 0.15 0.94

18 0.40 0.61 0.39 1.01 63 0.09 0.54 0.16 0.97

19 0.60 0.92 0.32 0.66 64 0.09 0.5 0.17 1.01

20 0.60 0.83 0.33 0.71 65 0.09 0.38 0.19 1.04

21 0.60 0.73 0.35 0.75 66 0.09 0.32 0.20 1.09

22 0.60 0.62 0.36 0.79 67 0.09 0.28 0.21 1.13

23 0.60 0.5 0.38 0.83 68 0.18 0.5 0.17 0.77

24 0.60 0.33 0.39 0.87 69 0.18 0.44 0.18 0.81

25 0.80 0.55 0.36 0.64 70 0.18 0.39 0.19 0.83

26 0.80 0.5 0.37 0.66 71 0.18 0.33 0.20 0.86

27 0.80 0.47 0.37 0.69 72 0.18 0.26 0.21 0.89

28 0.80 0.73 0.39 0.71 73 0.18 0.16 0.22 0.93

29 0.80 0.37 0.40 0.74 74 0.00 1.55 0.12 1.22

30 1.00 0.5 0.40 0.62 75 0.00 1.26 0.13 1.24

31 1.00 0.36 0.40 0.64 76 0.00 1.22 0.15 1.25

32 0.00 0.76 0.20 1.32 77 0.00 1.21 0.16 1.27

33 0.00 0.72 0.22 1.34 78 0.00 1.18 0.17 1.30

34 0.00 0.68 0.23 1.35 79 0.00 1.16 0.18 1.32

35 0.00 0.64 0.25 1.37 80 0.08 0.5 0.13 0.94

36 0.00 0.59 0.27 1.40 81 0.08 0.47 0.15 0.95

37 0.00 0.54 0.28 1.40 82 0.08 0.43 0.17 1.01

38 0.13 0.91 0.21 0.98 83 0.08 0.37 0.18 1.05

39 0.13 0.85 0.23 1.02 84 0.08 0.32 0.18 1.08

40 0.13 0.8 0.25 1.06 85 0.08 0.26 0.20 1.10

41 0.13 0.72 0.26 1.08 86 0.16 0.42 0.16 0.81

42 0.13 0.65 0.28 1.13 87 0.16 0.37 0.18 0.83

43 0.13 0.57 0.30 1.16 88 0.16 0.3 0.19 0.90

44 0.27 0.74 0.23 0.78 89 0.16 0.27 0.20 0.92

45 0.27 0.68 0.24 0.82
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Designing the architect of MLP model is mostly based on
designer's experience, whereas recommendation of inves-
tigators, who conducted similar research, is useful. In this
paper, recommendations of Parsaie and Haghiabi [7–9]
were used. Preparation of MLP model includes the number

of hidden layer(s), number of neurons in each hidden layer,
defining suitable transfer function for neurons of hidden
layer(s), defining suitable transfer function for output layer
and learning algorithm. To obtain an optimal structure and
avoid the over- parameterization of MLP model, first, one

Fig. 2 Sketch of three-layer ANN architecture

Fig. 3 ANFIS model structure
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hidden layer was considered and then, the number of
neurons in hidden layer is increased one by one. Various
types of transfer functions such as log-sigmoid (logsig),
tan-sigmoid (tansig), and linear (purelin) etc. were tested.
This process continues to obtain a model with suitable
performance. All stages of MLP preparation were
conducted in the environment of MATLAB software.
Table 2 presents a summary of trial and error process
conducted during MLP model.
As presented in Table 2, model number 3 has suitable

performance for predicting discharge coefficient and
increasing the number of neurons in hidden layer does
not have a significant effect on increasing model
performance. As presented in Table 2, MLP model number
3 has one hidden layer with five neurons. The tansig and
purelin functions were considered as transfer function for
hidden and output layers transfer function respectively.
The developed MLP model structure is shown in Fig. 4.
The mean square error of MLP during training is shown in
Fig. 9. It is notable that the Levenberg–Marquardt
technique was used for MLP model learning.
Results of MLP model during training, validation and

testing stages are shown in Figs. 5, 6 and 7. In these
figures, results of MLP model were plotted together with
measured data. To evaluate model precision, the standard
error indices were also calculated and presented in these

figures. Since error indices present an average value for
error calculation, distribution of error for the training,
validation and testing data sets was also plotted. To give
more information about error distribution, the histogram of
errors was also plotted. As seen from these figures, the
error distribution is focused around zero for training,
validation and testing.

5.2 Sensitivity analysis of effective parameters

The most effective parameters for prediction of discharge
coefficient by ANN were defined via simple approach.
This approach describes the effect of each parameter on
model performance to predict the output [43–46]. First,
regarding to Eq. (2), all parameters are considered as inputs
for ANN. Then, one of the input parameters is removed
from input parameters and again the model is prepared
with the same structure. It is notable that preparation of
models was considered regarding the notes in model
development section. Performance of models in absence of
each input parameter is assessed using calculation of error
indices including R2and RMSE. Obviously, removing one
of input parameters causes the change of model perfor-
mance. Depending on the severity of performance
changing, the effect of each parameter is assessed. Results
of sensitivity analysis of MLP are given in Table 3. As seen

Fig. 4 Architect of developed ANN

Table 2 Performance and summary of MLP model during development stage

row N-H-L F-HL&TF S-HL&TF during training stage during testing stage

R2* MSE* RMSE * R2* MSE* RMSE*

1 1 5-Purelin - 0.91 0.0007 0.0073 0.83 0.004 0.09

2 1 13-Purelin - 0.94 0.0003 0.0055 0.96 0.003 0.06

3 1 5-tansig - 0.998 0.000081 0.009 0.991 0.0004 0.021

4 4 9-tansig - 0.998 0.000061 0.007 0.993 0.0003 0.017

Note: N-H-L: number of hidden layer(s), F-HL&TF: first hidden layer and transfer function, S-HL&TF: second hidden layer and transfer function,*error indices of
MLP
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Fig. 6 Performance of ANN in validation stage

Fig. 5 Performance of ANN in training stage
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in Table 3, absence of Froude number (Frup) and a/D
causes a dramatic decrease in the accuracy of models;
therefore, it was found that these parameters are the most
important ones for modeling discharge coefficient of side
weir.

5.3 Results of ANFIS

Similar to artificial neural network models (MLP)
preparation, developing ANFIS model is based on data
set. Compared to other ANN models such as Multilayer
perceptron neural network (MLP) model, the main
advantage of ANFIS is its utility in stage of designing
the structure of model and this utility is related to
specifying the number of membership function to inputs
variable based on its influence on output parameter. This
utility of ANFIS model leads to developing a model that

is more optimal and has more reliability, since each
parameter, which is more effective on outputs, can get
more membership function. In this study, results of MLP
are used to develop an optimal structure. Data sets are
randomly divided into two groups as training and testing.
Based on the results of MLP, 71 data sets (80 percent) of
collected data were considered for ANFIS model training
and the rest (20 percent = 18) for model testing. The
structure of ANFIS, which has the best performance, is
given in Table 4. As shown in Table 4, the Gaussian
function (guassmf) was considered for membership
function and weight average (wtaver) approach was
considered for defuzzification method. Figure 8 is the
performance of ANFIS model during training stage and
Fig. 9 shows the results of ANFIS model for testing data.
As shown in Figs. 8 and 9, the histogram and distribution
of errors are also plotted to assess the performance of
ANFIS model in training and testing stages. In overall, as
shown in Figs. 8 and 9 the ANFIS model's ability is
suitable for predicting the values of discharge coefficient in
training and testing stages. As seen from Table 4, the most
affective input variables such as Frup and a=D get more
memebrship fucntion compared to other variables during
ANFIS model development. The histogram of error shows
that values of error focus around zero and histoagram is
almost symmetric.

Fig. 7 Performance of ANN in testing stage

Table 3 Results of sensitivity analysis of ANN

model absent inputs output R2 RMSE

MLP

- Frup, Hw/D,
a/D

Cdsd 0.99 0.021

Frup Hw/D, a/D Cdsd 0.78 0.075

Hw/L Frup, a/D Cdsd 0.91 0.038

a/D Frup, Hw/D Cdsd 0.86 0.143

118 Front. Struct. Civ. Eng. 2017, 11(1): 111–122



Fig. 9 Performance of ANFIS model during testing stage

Fig. 8 Performance of ANFIS model during training stage
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5.4 Sensitivity analysis of ANFIS

To assess performance of developed ANFIS model in
absence of each input, a sensitivity analysis was carried
out on ANFIS model. This process has another advantage
related to the response of developed optimal ANFIS
model in absence of input parameters. Regarding
this approach, which was considered for sensitivity
analysis of ANN, sensitivity analysis of ANFIS also was
conducted. Results of sensitivity analysis of ANFIS are
given in Table 5. Overviewing Table 5 uphold the results
of sensitivity analysis of ANN whereas Table 5 shows
that the structure of developed ANFIS is more sensitive to
the absence of important parameters and has less
sensitivity to the absence of each parameters which are
less important.

6 Conclusion

Weir-gate is a structure which solves the infirmity of weir
and gate separately in real conditions of usage in water
engineering projects. Recently, implementing soft-com-
puting techniques for modeling systems, which are based
on input and output data set investigators have attempted to
use these methods to increase precision of modeling. In
this study, discharge coefficient of weir-gate was predicted
using adaptive neuro fuzzy inference systems (ANFIS) and
multilayer perceptron neural network (MLP). Results of
MLP indicated that the Froude number of flow at upstream
of weir and ratio of gate opening height to diameter of weir
are the most effective parameters on discharge coefficient.
Results of MLP and ANFIS showed that these models have
so suitable performance for modeling and predicting
discharge coefficient of weir-gate.
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