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ABSTRACT This paper presents a simple and efficient approach for predicting the plastic limit loads in cracked plane-
strain structures. We use two levels of mesh repartitioning for the finite element limit analysis. The master level handles an
adaptive primal-mesh process through a dissipation-based indicator. The slave level performs the subdivision of each
triangle into three sub-triangles and constitutes a dual mesh from a pair of two adjacent sub-triangles shared by common
edges of the primal mesh. Applying a strain smoothing projection to the strain rates on the dual mesh, the
incompressibility constraint and the flow rule constraint are imposed over the edge-based smoothing domains and
everywhere in the problem domain. The limit analysis problem is recast into the compact form of a second-order cone
programming (SOCP) for the purpose of exploiting interior-point solvers. The present method retains a low number of
optimization variables. It offers a convenient way for designing and solving the large-scale optimization problems
effectively. Several benchmark examples are given to show the simplicity and effectiveness of the present method.

KEYWORDS cracked structure, limit analysis, von Mises criterion, edge-based strain smoothing, second-order cone
programming, adaptive

1 Introduction

Limit analysis furnishes a direct tool for evaluating
elastic – plastic fracture toughness and safety of fracture
failure structures. The slip-line field (SLF) theory has
commonly been used for evaluating analytically the load
bearing capacity of cracked structures [1–3]. However, it
heavily depends on geometry and loading conditions of the
underlying problem. The earlier approaches for estimating
the limit collapse load rely on the upper and lower bound
theorems. The Koiter’s kinematic (upper bound) theorem
[4] uses a kinematically admissible displacement field
yielding the minimum load factor, while the lower bound
theorem (or Melan’s static theorem) [5] employs a
statically admissible stress field to determine the maximum
load factor. It is well known that the analytical methods
following these two approaches are unsuitable for general

problems in engineering practice [6,7]. Finite element
approaches for the limit load of cracked structures have
therefore been studied, e.g., [8–11]. Alternative formula-
tions include meshfree methods [12], smoothed finite
elements [13,14] and isogeometric analysis (IGA) [15,16].
It was shown in Ref. [16] that higher-order methods
produce sufficiently accurate solutions, but an adaptive
mesh refinement of such higher-order elements is more
challenge.
In this study, we focus on lower-order finite elements

based on triangular meshes owing to its simplicity. Due to
the enforcement of the incompressibility phenomenon in
cracked plane-strain problems, these conventional FE
models often work poorly. Hence various advanced
techniques have been developed [17–26]. Among kine-
matic formulations based on lower-order finite elements,
the approach based on discontinuity velocity fields
[18,22,24] is popular in the finite element limit analysis.
The discontinuous velocity [4] in constant finite elements
is a simple and efficient approach, but it performs poorlyArticle history: Received Jun 23, 2015; Accepted Sept 1, 2015
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for unstructured meshes [4]. The linear strain finite
elements (or quadratic velocity fields) [26] can be acted
as an alternative way to deal with certain shortcomings of
constant strain elements.
On the other hand, the localized plastic deformations in

the limit analysis lead to the slow convergence of the
numerical solutions [27]. Therefore, the adaptive mesh
refinement should be enhanced. Due to the absence of a
priori error estimate, posteriori approaches are therefore
the most suitable way to derive the adaptive mesh
refinement. The local and global errors based on a
posteriori error estimate have been studied intensively. A
directional error estimate with the recovery gradients and/
or Hessian of a finite element solution was studied in Refs.
[27,28]. The other effective error estimate based on the
global error of solving the combined solutions of both the
lower and upper bound problems can be found in Refs.
[29,30]. A dissipation-based mesh adaptivity to accom-
plish closely bracketed lower and upper bounds of the
exact collapse load was recently investigated in Ref. [31].
As a special case of a dissipation-based mesh adaptivity
[31], the indicator based on plastic dissipation was also
used in the adaptive mesh refinement scheme [32–34].
Plastic dissipation indicator permits to detect plastic
regions or slip-line pattern where the adaptive re-meshing
is needed. In addition, an adaptivity technique in meshfree
methods [35] is also promising for limit analysis problems.
Very recently, an adaptive selective ES-FEM, which used a
two-level mesh repartitioning strategy [36] in combination
with a projection operator of strain rates, for plastic
collapse analysis has been proposed in Ref. [37].
In this paper, we exploit an adaptive selective ES-FEM

for the finite element limit analysis of cracked plane-strain
structures. The two-level mesh repartitioning scheme in
this study consists of two mesh levels. The kinematic
formulation relies on the usual piecewise linear displace-
ments and is constructed based on a primal mesh or master
level. A projection operator [38] of strain rates performed
over a dual mesh (slave level) of common edges of
adjacent elements is used to fulfill the flow rule constraint
and to offer an optimal value of constraint ratio for the
volumetric locking-free computation. The resulting non-
smooth optimization problem is then recast in the form of
minimizing a sum of Euclidean norms with an aim of using
an efficient interior-point method. More importantly, an
adaptive procedure is added at the master-level mesh
repartitioning to enhance the computational efficiency. The
method is very simple to implement into a finite element
code. It will be shown in numerical examples that our
method produces a high-precision solution with a low
number of degrees of freedom.
The rest of the paper is outlined as follows: the

kinematic theorem is reviewed in the next section. Section
3 presents a two-level mesh finite element formulation and
an edge-based strain smoothing. Section 4 summarizes a
solution procedure of the discrete problem. An adaptive

mesh refinement is given in Section 5. The numerical
procedure is presented in Section 6. Section 7 illustrates
three numerical examples. Finally, we close with some
concluding remarks.

2 A background on the kinematic theorem

Let us consider a rigid-perfectly cracked plastic body of a
two-dimensional problem domain bounded by a boundary
of continuous and discontinuous parts Γ ¼ Γ _u [Γt[Γc,
Γ _u \ Γt \ Γc ¼ ∅, where Γc stands for the crack boundary.
The body force f acts within the domain and the surface
traction g is enforced on the free portion Γt while the
boundary Γ _u is prescribed by the velocity vector _u. The
weak form can be stated as follows

a σ, _uð Þ ¼ f ð _uÞ, 8 _u 2 V, (1)

where the external work rate reads

f ð _uÞ ¼ !
Ω
f⋅ _udΩþ!

Γt

g⋅ _udΓ, (2)

and the internal work rate is

a σ, _εð _uÞð Þ ¼ !
Ω
σ : _εð _uÞdΩ: (3)

We define a space of kinematically admissible velocity
fields indicated by

V ¼ f _u 2 ðH1ðΩÞÞ2, _u ¼ _u  on  Γ _ug, (4)

and a convex set S which contains admissible stress fields
such that

S ¼ fσ 2 ΣjψðσÞ£0g, (5)

where the yield function ψðσÞ is convex, σ satisfies the
yield condition and Σ denotes a space of symmetric stress
tensors.
The limit analysis problem is to seek the actual collapse

multiplier α* such that [20]

α* ¼ max 9σ 2 Sja σ,εð _uÞð Þ ¼ αf ð _uÞ,8 _u 2 Vf g
¼ max

�2S
min
_u2W

a σ, _εð _uÞð Þ
¼ min

_u2W
max
σ2S

f σ, _εð _uÞð Þ
¼ min

_u2W
Dð _uÞ,

(6)

where the setW is defined byW ¼ _u 2 V f ð _uÞj ¼ 1f g and
the dissipation is Dð _uÞ ¼ max

σ2S
a σ, _εð _uÞð Þ.

Regarding the von Mises criteria presented for plane
strain cracked structures, one writes

ψðσÞ ¼
ffiffiffiffiffiffiffiffiffiffi
J2ðsÞ

p
– k£0, (7)

where
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J2ðsÞ ¼
1

2
s : s,�m ¼ 1

2
trðσÞ,s ¼ σ –�mI,k ¼ �yffiffiffi

3
p , (8)

and �y is the yield stress.
Now the explicit form of the plastic dissipation can be

formulated as a function of the plastically admissible
strains (those obeying the associated flow rule) [18]:

Dð _uÞ ¼ !
Ω
2k

ffiffiffiffiffiffiffiffiffiffi
J2ð _eÞ

p
dΩ, (9)

where _eij ¼ _εij –
1

2
r⋅ _uδij, and J2ð _eÞ ¼

1

2
_e : _e.

Theoretically, the incompressibility condition r⋅ _u ¼ 0
is required to ensure the finite plastic dissipation [20].
Numerically, this causes difficulties to lower-order finite
elements [17,18]. For this reason, we introduce an
alternative formulation based on the edge-based strain
smoothing technique [38] and the two-level mesh
repartitioning scheme [36].

3 On a selective edge-based strain
smoothing

3.1 A two-level mesh repartitioning scheme for the
lower-order finite element formulation

Assume that a bounded domainΩ is discretized into a set T
(at master level) of Ne triangular elements having a set ∂T
of edges Ns and Nn nodes such that Ω � Ωh ¼

XNe

e¼1
Ωe.

Each element Ωe is then implemented with one node at its
centroid and is further divided into three sub-triangles (or
macro-elements) as shown in Fig. 1. Let us denote a setM
(at slave level) of 3� Ne macro-elements involving a set
∂M of Ns þ 3� Ne edges and Nn þ Ne nodes such that

Ω � Ωh ¼
X3�Ne

e¼1
Ωm

e as illustrated in Fig. 2. Let Vh � V
be a finite element approximation space of kinematically
admissible velocity fields. The approximate displacement
space Vh involves piecewise linear functions denoted as

Vh ¼ f _uh 2 ðH1ðΩÞÞ2, _uh Ωe
2 P1ðΩm

e Þ2
�� �

, (10)

where P1ðΩm
e Þ stands for the set of polynomials of degree

1 for each displacement component.
The discrete form is to seek a collapse multiplier αþ that

satisfies the following optimization problem:

αþ ¼ minDh _uh
� �

, s:t:
r⋅ _uh ¼ 0,

uh 2 Wh:

(
(11)

It is evident from finite element limit analysis that
constant strain elements lead to poor numerical perfor-
mance in the incompressibility limit due to volumetric
locking under plastic yield conditions [1–18]. Among
various advanced numerical techniques, constant strain

elements enhanced by discontinuous velocity fields
[18,22,24] and the linear strain elements [26] are very
efficient. It was proven in Ref. [36] that a Vh space defined
in Eq. (10). can be combined with the two-level mesh
repartitioning scheme so that such constant strain elements
pass the inf-sup condition [39] which is also required in the
plastic limit analysis. In the following, we generalize the
two-level mesh repartitioning scheme in the selective ES-
FEM for accurately computing the plastic limit loads of
plane-strain fracture problems.

3.2 Selective edge-based smoothed strain rates

The basic idea is to construct a dual mesh for imposing the
incompressibility condition [36]. Therefore, we first define
a slave mesh M of 3� Ne macro-elements with Nn þ Ne

nodes and Ns þ 3� Ne edges. A dual mesh T is then
obtained based on smoothing domainsΩs

k with the area A
s
k .

Each smoothing domain is created by embracing a pair of
macro-elements having a common edge k 2 f1,2, � � � ,Nsg
such that Ω ¼ [Ns

k¼1
Ωs

k and Ωs
i \ Ωs

j ¼ ∅, i≠j as shown in

Fig. 2. More details for the mesh repartitioning scheme can
be founded in Ref. [36].
Next we reconstruct constant strain rates via a smooth-

ing or constant (average) projector Ph
k of the compatible

strain rates on a dual mesh of edge-based smoothing
domains [38]:

_εðkÞ ¼ rs _u
h ¼ Ph

krs _u
h ¼ 1

As
k
!

Ωs
k

rs _u
hdΩ, (12)

where rs is the matrix of differential operators.

Fig. 1 A refinement of triangular elements on a primal mesh.
(a) One triangle is divided into three sub-triangles; (b) eight
triangles are divided into 24 sub-triangles fΩm

e ,e ¼ 1,2 � � � ,24g
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For the smoothed volume expansion rate, one has

r⋅ _uh ¼ Ph
kr⋅ _uh ¼ 1

As
k
!

Ωs
k

r⋅ _uhdΩ: (13)

Fulfilling the incompressibility condition requires

8Ωs
k 2 T ,r⋅ _uh ¼ 0: (14)

It was shown in Ref. [36] that volumetric locking can be
avoided by enforcing the incompressibility condition on
the dual mesh through the two-level mesh repartitioning
scheme.

3.3 Limit load statement for sES-FEM

The discrete problem is to seek an approximated collapse
multiplier αþ

αþ ¼ minD
h

_e
h
s _uh
� ���� ������ �

,
	

such  that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 _e

h
	 �r

¼ _e
h
s

��� ������ ���
r⋅ _uh ¼ 0

_uh 2 Wh,

8>>><
>>>:

(15)

where

_e
h
s ¼ 2_e h

112 _e
h
12

h iT
  and 

D
h
_uh

� � ¼ !
Ω
kk_ehskdΩ ¼

XΝ s

k¼1

kAs
kk _ehskk : (16)

Due to the smoothed strain rates being constant over the
smoothing domain Ωs

k , the incompressibility constraints is
well enforced over each smoothing domain, and is hence
fulfilled over the entire problem domain.

4 The discrete problem with the
second-order cone programming

The limit analysis problem given in Eq. (15) is a nonlinear
optimization problem [19] with equality constraints. As
stated in Ref. [20], some problems can be solved by
minimizing a sum of norms. Hence the underlying
optimization problem can be rewritten as follows:

αþ ¼ min
XNs

k¼1

kAs
ktk ,

such  that

tk³ _e
h
sk

��� ������ ���,
Ph
kr⋅ _uh ¼ 0,  k ¼ 1, � � � ,Ns,

_uh ¼ _u0   on  Γ _u,

f _uh
� � ¼ 1:

8>>>>>><
>>>>>>:

(17)

The optimization problem Eq. (17) belongs to a second-
order cone programming (SOCP) form [40,41]. Let Nvar be
the total number of variables of the optimization problem.
For plane strain problems, Nvar equals NoDofs + 3Ns

where NoDofs is the total number of the degrees of
freedom (DOFs) of the discrete problem.

5 An adaptive mesh refinement

In plastic collapse analysis, the plastic strain rate varies
substantially over the problem domain, especially along
the yield lines. Adaptive h-refinement is on ideal choice to
reduce the high computational cost. Ideally, a mesh should

Fig. 2 A primal mesh of triangular elements and a dual mesh of
edge-based smoothing domains Ωs

k connected to edge k. (a) Five
edge-based smoothing domains Ωs

k , k = 1, 2,...,5; (b) sixteenth
edge-based smoothing domains (or integration domains) Ωs

k , k = 1,
2,...,16
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be fine along the yield lines and gradually coarse when it is
away from the plastic zones. More importantly, this mesh
size adjustment should be done automatically, as illustrated
in Ref. [29]. In elasticity, an effective error estimator or
indicator is often used to quantify the error arising from
numerical methods. In plastic collapse analysis, such an
error indicator is a non-trivial task. Alternatively, an
indicator based on the plastic dissipation through the
element can be used for the activation of adaptive re-
meshing.
In the present method, the performance of the automatic

local refinement is quite simple and efficient. Having this
advantage is due to utilizing three-node triangular
elements.

5.1 Dissipation-based indicator

The localized plastic deformations heavily affect the
accuracy of numerical solutions in limit analysis. At limit
state, the plastic dissipation will concentrate in the regions
characterized by high strain rates. We here use the plastic
dissipation of each element regarding as an indicator in the
adaptive h-refinement procedure. It is calculated as

ηe ¼
1

3

	
ηðiÞ þ ηðjÞ þ ηðkÞ

�
, (18)

where ηðiÞ,ηðjÞ and ηðkÞ are the plastic dissipations on the
three edges i, j and k of the element e, respectively, and the
plastic dissipation on edge k is given as

ηðkÞ ¼ kAs
ktk : (19)

5.2 Plastic dissipation indicator and refinement strategy

The global indicator, η, can be computed as the sum of the
local refinement indicator for all the individual elements:

η ¼
Xnel
e¼1

ηe: (20)

Through the local refinement indicator, ηe, one marks
the elements Ωe 2 T for refinement following the Dorfler
criterion [42]. A minimal set M � T is determined such
that X

Ωe 2M

ηe³#η,  for  some  # 2 ð0,1Þ: (21)

A new mesh T is then generated from T by refining (at
least) the marked elements Ωe 2 M though the algorithm
of newest vertex bisection reported in Refs. [43,44].

6 Numerical procedure

In this section, we describe the numerical implementation

of the present method. The algorithm is summarized as
follows:
1) Define the problem domain;
2) Discretize the problem domain with the coarse primal

mesh based on 3-node triangular elements and:
- Add one node at center of each element subdividing

into 3 sub-triangles;
- Create element connectivity of sub-triangles (subsec-

tion 3.1).
3) Loop over each adaptive step // (iter = 1:MaxIt)
{
- Construct a dual mesh of edge-based smoothing

domains (subsection 3.2);
- Loop over edge-based smoothing domains
{
+ Evaluate smoothed strain rates defined in Eq. (12);
+ Store smoothed strain rates for each flow rule point k.
}// End the loop over the smoothing domains
Enforce the incompressibility constraints in Eq. (14);
Introduce auxiliary variables and define a second-order

cone programming (SOCP) in Eq. (17);
Exploit several SOCP solvers, e.g., MOSEK, for

optimization solution;
Evaluate element-based dissipation indicator ηe and the

global indicator (η)
While condition Eq. (21)
{
Call adaptive procedures in Section 5

}
- Add one node at center of each element and subdivide

each element into three sub-triangles;
}// End the loop over final adaptive step

7 Numerical examples

This section aims to examine the performance of the
present method through three benchmark problems. For
comparison, the elements used in this paper are denoted as
follows:
� T3 – the linear triangular elements.
� ES-T3 – the edge-based smoothed finite linear

triangular elements [38,46].
� sES-T3 – the selective edge-based smoothed finite

linear triangular elements.
The program is compiled by a desktop computer with

Intel® Xeon (2.4GHz CPU, 32G RAM). The conic
interior-point optimizer of the academic MOSEK package
[45] is employed.

7.1 Notched tensile specimen

The first example is a double notched tensile specimen
problem [20] as shown in Fig. 3. Two typical meshes are
plotted in Figs. 4 (a) and (b). Only the upper-right quarter
of the specimen is modeled. The exact solution is not
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available, and a reference upper bound value of α* =
1.1316 has been provided by Ref. [20].
To prove the performance of the present method in the

incompressibility regime, we also consider T3 and ES-T3

elements. The computation of limit loads for plane strain
problems using ES-T3 has been already pointed out in Ref.
[46]. However, the previous method required a special
mesh arrangement [17,18]. As numerically validated
below, it can lead to poor performance with unstructured
meshes under the incompressibility constraints. In other
words, the original ES-T3 [46] is not capable of producing
accurate solutions for arbitrary meshes. Fig. 5 shows that
the solution using both T3 and ES-T3 does not converge to
the reference value with a primal mesh as given in
Fig. 4(a). As expected, the sES-T3 works well.
We next evaluate the computational cost based on the

total variables Nvar, iterations, and optimization Mosek
times. The results are displayed in Fig. 6. As seen, the
present method solves well for the large-scale optimization
problem with the maximum variables around Nvar =
140000 after 19 step iterations. Although the total number
of variables is quickly increased for fine meshes, the
computing time is about 16 s only.

Fig. 3 Fully model of notched tensile specimen: geometry (L = b
= 1) and loading

Fig. 4 Typical mesh of symmetric model of notched tensile
specimen (a = 1/2). (a) T3; (b) sES-T3

Fig. 5 1/4 the notched tensile specimen (a = 1/2): The
convergence of limit load factor versus number of variables

Fig. 6 The computational cost of the notched tensile specimen (a
= 1/2): The Mosek optimizer time versus number of ariables
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Now we use the adaptive re-meshing procedure
provided in Section 5 to enhance the solution accuracy
with a low number of variables. The mesh refinement
process begins at a uniformly coarse mesh as plotted in
Fig. 4(b). Several adaptive meshes are presented in Fig. 7.
The mesh is refined primarily in the regions characterized
by high strain rates. Fig. 8 shows the error in limit load
factor with respect to the number of variables. The h-
adaptive method reduces significantly the number of
variables and reaches accurate solutions. Figure 9
demonstrates that the plastic dissipation distribution is
produced well by the adaptive sES-T3. We also solved this
problem for various crack lengths. As shown in Fig. 10, the
present solutions match well with the reference values.

7.2 Centre cracked plate subjected to tension

Next we consider a plate of dimension b � H having a
center crack of length a as shown in Fig. 11(a). The plate is
subjected to tension. The analytical limit load multiplier is
given as Ref. [3]

α ¼ 2ffiffiffi
3

p ð1 – a=bÞ: (22)

Due to the symmetry of the problem, the upper-right
quarter of the plate is modeled. Similar to the previous
example, we verify the performance of the method for the
case a/b = 0.5. A coarse mesh and several h-adaptive
meshes are shown in Figs. 11(b)–(f). Limit load factor

Fig. 7 Adaptive meshing strategy of 1/4 the notched tensile specimen (a = 1/2) using sES-T3 elements. (a) Nvar = 587, α+ = 1.223;
(b) Nvar = 4197, α+ = 1.145; (c) Nvar = 13052, α+ = 1.137; (d) Nvar = 33237, α+ = 1.136
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using uniform and adaptive refined meshes, respectively,
are depicted in Fig. 12. As expected, the adaptive sES-T3
gains α+ = 0.581 (with the error of 0.7%) with a low
number of 25312 variables. On the other hand, the collapse
limit load value α+ = 0.583 (with the error of 1%) requires
a uniformly fine mesh of 166532 variables. It is worth to
mention that our approach employs only the constant strain
rate and nonetheless produces accurate results for the
unstructured meshes. The plastic dissipation distribution in
the full model using an adaptive meshing algorithm is
displayed in Fig. 13.
The present method is also applied for the problem with

various crack lengths. The results are shown in Fig. 14. An
excellent agreement to the analytical solutions is observed.

7.3 Single-edge cracked plate subjected to tension

The last example is a plate of length H width b and a single
edge cracked of length a. It is subjected to tension as
depicted in Fig. 15(a). The analytical solution with respect
to x ¼ a=b was reported in Ref. [2] as

α ¼ 3:404ffiffiffi
3

p f½ð2:06 – xÞ2 þ 0:5876ð1 – xÞ2�1=2 þ ð2:06 – xÞg,

8x³0:545, (23)

and in case of x < 0:545, the solution is bounded by Ref.
[3]

2ffiffiffi
3

p ð1 – x – 1:232x2 þ x3Þ£α

£
2ffiffiffi
3

p
	
1 – x – 1:232x2 þ x3 þ 22x3ð0:545 – xÞ2

�
: (24)

Due to its symmetry, only the upper haft of the plate is
modeled. A coarse mesh is given in Fig. 15(b). For
x ¼ 0:5, the exact value of the limit load factor is bounded
by 0.366£α£0.373. For comparison, the lower bound
solution, namely α– = 0.366, is used to measure the global
error (%)

errorð%Þ ¼ αþ – α –

αþ þ α – � 100: (25)

Several adaptive re-meshing steps are given in Fig. 15
(c) – (f). The mesh refinement is primarily performed along
plastic zones. Fig. 16 plots the load factor versus the
number of variables. As seen, the computed value using
the adaptive mesh is quite close to the actual value. The
error is less than 4% for Nvar = 1087, while it requires a
large number of variables (Nvar = 16502) for the uniform

Fig. 8 1/4 the notched tensile specimen (a = 1/2): The
convergence of limit load factor versus number of variables

Fig. 9 Plastic dissipation of a full model of the notched tensile
specimen (a = 1/2) using adaptive sES-T3 elements

Fig. 10 Collapse limit load factor versus crack-width length ratio
of the notched tensile specimen using adaptive sES-T3 elements
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Fig. 11 A model of a center-cracked plate and several adaptive meshes. (a) Full model; (b) initial coarse mesh (Nvar = 212, α+ = 0.736);
(c) (Nvar = 632, α+ = 0.653); (d) (Nvar = 2317, α+ = 0.589); (e) (Nvar = 6522, α+ = 0.583); (f) (Nvar = 25312, α+ = 0.581)

Fig. 12 The convergence of limit load factor versus number of variables for a center-cracked plate
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Fig. 13 Plastic dissipation distribution of a full model of a center-
cracked plate

Fig. 14 Collapse limit load factor versus crack-width length ratio
of a center-cracked plate

Fig. 15 A single-edge cracked plate and several adaptive meshes (x = 0.5). (a) Full model; (b) coarse mesh (Nvar = 212, α+ = 0.577); (c)
(Nvar = 582, α+ = 0.427); (d) (Nvar = 3172, α+ = 0.382); (e) (Nvar = 10302, α+ = 0.373); (f) (Nvar = 27467, α+ = 0.372)
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mesh to reach an error below 4%. To reduce the error to
0.8%, the present method requires a low number of
variables (Nvar = 27467) for the adaptive refined mesh,
while for a uniform mesh with Nvar = 166532, the error is
approximately 1.4%. Figure 17 shows plastic dissipation
zones which agrees well with results in Ref. [10]. Finally,
Fig. 18 shows the load factor for various crack lengths.

8 Conclusions

We have presented a constant strain element formulation
and an adaptive h-refinement for plastic collapse analysis
of plane-strain fracture structures. The present method
displaced the constant strain rate over a dual mesh by the
two-level mesh repartitioning scheme. The average

operator over edge-based strain smoothing domains of
the dual mesh was used to enforce the incompressibility
condition, which is then held everywhere in the entire
structure. The method is capable of handling a large size of
optimization problem, which is formulated by the second-
order cone programming (SOCP) and is solved efficiently
by interior-point solvers. The adaptive mesh procedure was
based on the dissipation indicator and the latest vertex
bisection strategy was sufficiently exploited in this study.
Several numerical examples were provided and the
obtained results showed high accuracy and effectiveness
of the present method. To end the paper, the present
method can be straightforwardly extended to the 3D
fracture problems for the limit and shakedown analysis.

Acknowledgements This research is funded by Vietnam National
Foundation for Science and Technology Development (NAFOSTED) under
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Fig. 17 A full view of deformation and plastic dissipation of a
single-edge cracked plate (x = 0.5)

Fig. 18 Collapse limit load factor versus crack-width length ratio
of an edge-cracked plate

Fig. 16 The convergence of limit load factor for a single-edge cracked plate (x = 0.5)
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